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Abstract. In order to build descriptions of prototypical situations, we first 
developed a system, MLK (Memorization for Learning Knowledge), allowing 
us to gather events related to similar situations starting from descriptions found 
in texts, these events being represented by conceptual graphs. One of the stages 
to build these prototypes consists of generalizing some similar graphs in order 
to produce a description. In this paper, we present a cost bounded algorithm of 
conceptual graph generalization, proceeding by ascending clustering.  The use 
of costs on the operations of generalization allows us to control the growth of 
the search space. 

1. Introduction 

Text understanding requires knowledge about concrete situations that are developed 
in order to recognize links between the different events. Such knowledge is often 
represented by schemas whose content describes characters and events involved in a 
situation. However handcoding schemas is a very difficult task, even on a limited 
domain. Automatic acquisition of situation descriptions has been [1], [2] and [3], but 
essentially to learn new specialized situations of predefined ones. Inside a framework 
that does not make any hypothesis on the existence of general knowledge, we have 
first conceived the system MLK (Memorization for Learning Knowledge) [4], [5], 
able to learn from the accumulation of its own experience. MLK memorizes each 
specific situation found in texts by aggregating it with an already memorized 
description if a similarity between their events is recognized. This process leads to 
incrementally build aggregated Thematic Units (TU) that are precursors of general 
schemas. Each event inside a TU is represented by a weighted conceptual graph (CG) 
[6]. In order to build a general description of a situation from a TU, we have studied 
how to generalize these events, i.e. conceptual graphs, to find a description level 
accounting for different formulations of a same event. This kind of problem is 
dependant on ascending clustering methods from positive examples. Generalization 
algorithms of conceptual graphs have already been proposed [7], [8], but they only 
generalize concepts, and not the graph itself. Generalizing both concepts and graphs 
entail a combinatory explosion when searching for all the possibilities. Therefore, we 
have developed a cost-bounded generalization algorithm that limits the search space 
and leads us to propose informative generalizations. A cost is associated with each 
generalization operator, and we take advantage of semantic knowledge to produce 
meaningful descriptions of events. 



2. System Overview 

The system input is made of a set of conceptual graphs describing events related to a 
situation of the same kind, for example to come in a house, to attack a woman, to stab 
a man with a knife, to arrest the murderer, etc. In order to elaborate a description of 
the situation from these events, a main stage is to find a right level of description 
leading to generalize those specific graphs describing a same kind of event. In the 
preceding example, it would consist of proposing a description where the woman 
attack and the man stabbing are generalized, whereas the two other events are left as 
it. Then the problem can be formulated as follows: given a set of conceptual graphs, 
find among them those that can be generalized while keeping an informative 
description level. Our purpose is not to find the common generalization of all the 
events, but a description level keeping the specificity of the kinds of events 
represented by the graphs. Coming back to the example, our goal is not to generalize 
the four events in a single one that would be to carry out an action. 
The method we propose consists of developing a sub-set of the possible 

generalizations of each graph, by generalizing concepts and removing relations. 

Generalization is controlled by the use of semantic knowledge: a lattice of concept 

types and constraints on the arguments related to some concepts, given by canonical 

graphs. It avoids overgeneralizations that would not have any meaning. Developing 

all the generalizations of a graph is unconceivable, even if limiting them by 

comparison with domain knowledge. Therefore, in order to limit the size of the 

generalization space, a cost is associated to the generalization operators, allowing the 

system to associate a cost to each graph produced and to limit their formation by 

fixing a threshold. Costs are defined according to the task and encode the 

generalization level that is searched.  All the generalizations are organized in 

configurations allowing the system to know which initial graphs are generalized. 

These configurations represent the different possibilities to describe the initial 

situation. The choice of one of them is done according to the number of initial graphs 

that are generalized and to the cost of the different configurations. Thus, the 

description level that is built is constrained both by the semantic knowledge and by 

the costs associated to the generalized graphs. This method allows us to bypass the 

difficulty coming from the impossibility to define negative examples in our task and 

then to use classical learning algorithms. 

3. Conceptual Graphs 

Semantic knowledge is represented in a lattice of types of concept and by canonical 
graphs associated to some types in order to precise their thematic roles (i.e. relations), 
as agent, object, etc., and semantic constraints on concepts that might fill them (see 
Fig. 1). We do not follow the Conceptual Graphs standard draft NCITS.T2/98-003. 
The "syntactic" knowledge held by star graphs is coded by our canonical graphs. 
Conceptual graphs that represent events (see Fig. 2) are obtained by application of 
formation rules to one or several canonical graphs, as described in Sowa [6]. So, these 
graphs are built with respect to the constraints defined in the knowledge base. A graph 
resulting from the application of these rules is a specialization of one (or several) 
initial graph(s). In Fig. 2, the graph results from a maximal joint between two graphs 



produced after restrictions on types of concept in the canonical graphs associated to 
stab and body. See [9] for a detailed presentation of the formation rules and their 
relation with subsumption. The class of CGs we consider is the class of simple CGs 
derived from canonical graphs, with n-ary relations and with a distinguished concept 
node explained below. 

[Stab]- [Stab]- 

(agent)  → [Human]   (agent)  → [Man] 

(dest.)  →  [Body ]   (dest.)  →  [Body ] - 

(instrument)   →  [CuttingEdge]   (partOf)   →    [Man] 

  (instrument)   →  [Knife] 

Fig. 1. A canonical graph   Fig. 2. An event 

As our graphs represent events, we distinguish a concept that is significant for the 

event type, named predicate (Stab in Fig. 2), this concept playing a particular role 

inside our application. Other kinds of concept result from abstractions done during the 

aggregation process in MLK. They already generalize instances linked to a same 

predicate that are found in texts. See [4] and [5] to find details about the process that 

build these graphs.  

4. Graphs Generalization 

4.1 Method 

Some graphs belonging to the initial set may contain different predicates while 

being very similar, as in Fig. 3. If graphs are identical except for their predicate, and if 

these predicates are semantically close, these graphs have to be replaced by a graph 

that generalize them. The same principle applies if the graphs only differ by some 

details in the predicate arguments. The problem is then to find the least common 

generalization of several graphs, given one does not a priori know which graphs in 

the initial set have to be generalized. 

Explode ShopLocSourceBurstBomb Source Bomb
 

Fig. 3. Similar conceptual graphs with different structures and concepts 

Such a problem is similar to conceptual clustering, with conceptual graphs as the 
description language of the concepts to be learned [10]. Initial conceptual graphs are 
equivalent to first order logic formulas, made of a conjunction of positive predicates, 
the concepts and the relations of the graphs. This problem is close to the work of 
Mineau and Bournaud. Even if we do not search for a classification, which is the 
problem they have to solve, the generalization space has also to be generated in order 
to choose the generalization level we want to reach. In their work, a graph is 
represented by the set of its relations to avoid comparison of graphs, that is a NP-
complete problem. However, this approach cannot be applied in our application given 
that the structure of the graphs may be modified during the generalization process 
when removing relations. We have to reason on graphs themselves in order to keep 



specific links between a predicate and its arguments, i.e. to maintain their 
connectedness. It is then impossible to generate meaningful generalizations in a 
limited time without controlling the growth of the generalization space. The process 
we propose is a cost-bounded algorithm that associates a cost to each generalization 
operator and uses domain knowledge to avoid overgeneralizations. This algorithm has 
been conceived without taking into account the specificity of our application other 
than the presence of a central concept in conceptual graphs. So we consider that types 
of relations are organized in a lattice, even if our knowledge representation does not 
use this possibility. 

We have defined three primitive generalization operators: 

1. concept generalization: replacing a type of concept by its supertype in the lattice, 

2. relation generalization: replacing a type of relation by its supertype in the lattice, 

3. relation removing: removing a relation in the graph, and some associated concepts. 

We have not defined an operator for removing concepts because removing a 
concept entails the removal of all the relations it is linked to. If we come back to the 
example in Fig. 3, removing the concept Shop leads to remove the relation Loc, and 
conversely removing the relation Loc leads to remove the concept Shop in order to 
keep a connected graph (in such a case, we keep the connected component that 
contains the predicate). Removing relations is then sufficient since removing concepts 
is strictly included in the results of the removal of relations, which may entail the 
removal of several concepts and relations. 

These operators create a partial order between the resulting graphs, as defined in 
[6] and [9]. Precisely, the subsumption relation defined for conceptual graphs is the 
relation induced by the existence of a projection between two graphs [11]. 

We associate a cost to each operator since we dispose neither a domain theory 
(general knowledge about situations for example), nor a characterization of the pieces 
of knowledge we want to learn that would give us a formal proof of the quality of the 
generalization. We use an empirical evaluation based on semantics and the estimation 
of the loss of information when generalizing. 

In order to find this cost, we have reasoned on the effect of each operation in terms 
of loss of information it entails. In our context, the cost of  each operator is related to 
the concept it applies to: predicate or not, concept derived from the canonical graph of 
the predicate or not. When generalizing a concept that is not derived from the 
canonical graph of the predicate, named common concept, the generalization is made 
on characteristics that are peripheral to the event. Removing relations, that, as already 
said, causes the removal of concepts, entails the suppression of some of these 
characteristics. As a matter of fact other concepts cannot be removed, as one cannot 
remove relations belonging to the canonical graph of the predicate without losing the 
meaning of the graph (the canonicity of the resulting graph is no more verified). 
Lastly, the operation we consider as very costly is the generalization of the predicate, 
since, as we have seen in part 2, we want to avoid many generalizations of the 
predicates in order to keep kinds of events specific to the described situation. So the 
least common generalization is a graph achieved by preferentially generalizing 
concepts other than the predicates. 

We have defined the following order of the costs of the operators, this ordering 
characterizing the loss of information: 



generalization of a common concept ≤ generalization of a concept derived 
from the canonical graph ≤ removal of a relation ≤ generalization of the 
predicate 

The relative order is more significant than absolute values that defines costs. The 
value given to each operator is connected to the threshold that is fixed to compute 
generalizations for a given application, the number of operations it is likely to realize, 
and the importance of each operation in relation to the others. These values have to be 
fixed experimentally according to the application. 

Let us now present some specificity due to the conceptual graph formalism and our 
application. Firstly, it is not possible to suppress the predicate, since the resulting 
graph(s) would no longer refer to the described event. Secondly, if two non-connected 
graphs result from a suppression, we only keep the graph containing the predicate. 
Thirdly, a concept is never generalized in a concept more general than the one in the 
canonical graph. And last, when generalizing a predicate, a verification is done using 
the new canonical graph to ensure the canonicity of the resulting graph. A 
consequence of having this distinguished concept is that the complexity of the 
operations on CGs is reduced due to less possible matching between two graphs. But 
that does not reduce a lot the size of the effectively searched space. 

4.2 The Generalization Algorithm 

One stage of the algorithm consists in building the generalization space which 
contains, at the beginning, the conceptual graphs to be generalized, i. e. the root 
nodes. During the processing, each node resulting from a generalization is inserted in 
this space only if it does not already exist. A node of depth n is the result of n 
generalizations of a root node. For example, a conceptual graph that contains 3 
concepts and 2 relations may be processed by applying 5 generalizations of concept or 
relation and 2 removal of relation. It would generate, at most, 7 new nodes. The cost 
associated to each node, related to the path towards the root node, is equal to the cost 
of its father plus the cost of the operation which has given it birth. The cost of a root 
node is zero. Applying such an algorithm until a common generalization is found, if it 
exists, is exponential in the general case. Bounding the set of the possible 
generalizations by fixing a maximal cost on the nodes entails a quite reasonable 
practical complexity (this latter point will be detailed in the following section) and all 
the generalizations having a cost less than this threshold are computed. 

Fig. 4 shows an example where three conceptual graphs (the root nodes x1, x2 and 

x3) have been generalized in the graphs (a, b, c, d), (c, b, e) and (e, f, g, d) 

respectively. Values on the branches are the costs of the applied operators. 

Costs which stop the generalization process, more than maintaining the semantics 

of the graphs, yield the possibility to control the growth of the generalization space. In 

order to improve more effectively the performance of the algorithm, we have 

implemented some principles. For example, if the cost to find a supertype common to 

the predicate of a graph and the predicates of each other graph of the initial set 

oversteps the given threshold, this graph is removed from the initial set. By using this 

principle, the algorithm applies on graphs that may be a generalization of two root 

graphs, and not on the very initial graphs, given they all contain a different predicate 

(see Initialization part of the algorithm in Fig. 6). On another hand, graphs are 



indexed by their predicate and their number of relations and concepts, such as 

comparison of graphs is only done if these characteristics are identical. 

x1 x2 x3

a

b d

e gf
c

21 1
1

1
1

1

3

4

2
3

 

Fig. 4. A generalization space built from 3 root graphs 

The aim of the algorithm is to generate all the possible descriptions of the initial 

set, the set of configurations. A configuration is a set of conceptual graphs, 

generalized or not, that represents a partition of the initial examples, the root graphs. 

After application of the algorithm, only the graphs that generalize several root graphs 

with the root graphs themselves are kept. Other nodes, that just generalize a unique 

initial conceptual graph, are useless for our purpose (for the example in Fig. 4, 

retained nodes appear in the first column in Fig. 5). The generalization cost of a node 

is the average cost of the generalization costs of this node, these latter costs 

correspond to the different path issued from the different root nodes. Finding the set 

of configurations consists of building all the subsets of nodes such as each initial node 

is generalized once and only once in the subset. Each configuration is evaluated by 

the average cost of its elements. 

Nodes Average costs Origins 

c  (1+3)/2 = 2  x1 x2 

b  (1+1)/2 = 1  x1 x2 

d  (1+6)/2 = 3.5  x1 x3 

e  (1+2)/2 = 1.5  x2 x3 

x1  0  x1 

x2  0  x2 

x3  0  x3 

Configurations = {[c, x3] (2), [b, x3] (1), [d, x2] (3.5), [e, x1] (1.5), [x1, x2, x3] (0)} 

Fig. 5. Results of the generalization algorithm 

Configurations are computed during the generalization process (cf. Updating 

configurations in the algorithm). At each step, partial configurations, corresponding to 

the retained generalizations, are updated if the new graph generalizes at least two root 

graphs. 

If more than one configuration has been built at the end of the processing, we 

choose the one that verifies the following criteria, applied in this order: a) the 

configuration that corresponds to the generalization of the maximum number of root 

graphs; b) the configuration containing less numerous elements; and c) the 

configuration having the minimal cost, other than zero, considering it is the most 

likely to be the most common specific description of the initial events. By means of 

these criteria, we encode that the best description of the initial situation corresponds 



to the maximal regrouping of graphs, whose cost is less than the limit. In the example 

of Fig. 4, these criteria lead to choose the configuration [b, x3] having an average cost 

equal to 1. These criteria fit our application, even if, for other kinds of applications, 

another order or other criteria may have to be found. 
E, set of initial graphs, E = {gi} and n = |E|. 
Cgi, sets of generalized graphs from each root 
graph gi. 
G, generalization space, the set of all 
computed generalized graphs. Each 
generalized graph is related to a list of root 
graphs it generalizes. 
Cp, set of partial configurations, initialized to an 
empty set 
cgp, cost to generalize a predicate 
la, threshold that stops generalization 
 
Notation: a -> b  : a associated to b 
 
Initialization 

For all g ∈ E, and For all g’ ∈ E do 
 Create a set Cg 
 If the predicate of g has a common 
  supertype, sc, with length d of the path 
  between the predicate of g’ and sc, 
  such as d x cgp < la 
 then,  
 create a copy gc of g,  

 replace the predicate of gc by sc 

 add gc ot Cg 

 add g to G 
 endIf 
endFor 

Abstraction 
While it exists a node to develop do  

 For all Cgi ∈ Cg, do 
  Selection of a node nd from Cgi 
  Updating configurations  
   with nd comingFrom Cgi 
  generalize nd -> son(nd) 
  add son(nd) to Cgi 
 endFor 

endWhile 

 
Compute the final result 

Selection 
Depends on the way the generalization space 
is searched: in our case, the first found. 
Suppress the chosen graph from Cgi. 
 
Updating configurations with nd 
comingFrom Cgi 
/ updating of the generalization space/ 

If nd ∉ G, 
then add nd -> {root graph of nd} in G 
else 
 If  nd had already been generated  
 from the same root graph 
 then 

  If the cost of nd is lesser,  
  then replace the old graph 
   by nd  
  endIf 
 else 

/ updating of the partial configurations / 
 add, in G, the new root graph of nd to 
 the list of its root graphs. 
 remove all the configurations 
 containing nd 
 For all cp = {a, b, c ...}->{x1, x2, x3, ...}∈ 
Cp do 

  If  the list of root graphs of cp 
  does not contain any x’i, root  
 graphs of nd 
  then 

  create a copy of cp, add nd to 
  the left member and the x’i to  
 the right member: 
  new configuration = {a, b, c,..., 
  nd}->{x1, x2, x3, ..., x’1,x’2, x’3} 
  add the new configuration to Cp 
  endIf 

 endFor 

 create a new configuration with nd 
 endIf 

endIf 

Fig. 6. The generalization algorithm 

The algorithm we propose is general enough to be used in other applications. We 

will see in the latter sections that heuristics coming from the application domain and 

expressed with simple numeric values, entail the considerable pruning of the search 

space, allowing the algorithm to find only the more informative generalizations. As 

for all algorithms depending on heuristics, it is not easy to formally demonstrate the 

complexity of our algorithm, thus we have worked on a demonstration of the 

adequacy and the efficiency of this method by extensive tests. 



5. Results 

The process has been applied with success to the results of MLK, but this does not 

entail a validation on a quantity of data sufficiently large, because text representations 

that compose the input of MLK are handcoded at this moment. That is why, in order 

to test our algorithm in a better way, we conceived a test generator. Its knowledge 

(lattice of types and canonical graphs) is compatible with our application and the 

generator is parameterizable so that it can simulate different kinds of application.  

5.1 Domain Knowledge 

Our application exploits a lattice of types of concepts and a set of canonical graphs. 

The lattice (see Fig. 8), results from the work of Chibout [12] who created an 

ontology of approximately 3,000 concepts for verbs and entities. We extracted a sub-

part from this ontology so that to obtain a lattice regular enough in depth and in 

breadth. Thus, 368 concepts were extracted and distributed in a lattice with an average 

depth of 5.59 for a branching factor of 2.75. We have selected 8 verbs from the 128 

verbs retained to assign canonical graphs to them. These canonical graphs are defined 

relative to the types retained in the lattice and to produce homogeneous bench tests, so 

that global results will have a signification.  

ToDrinkFunction LiquidAgent Object
 

Fig. 7. Canonical graph of the concept denoted by the verb "to drink" 

The 8 types are ToCauseDeath, ToCauseToFeel, ToDivide, ToBreak, ToFly, 

ToAbsorb, ToEat and ToDrink. Subtypes inherit of the canonical graph of their father. 

Figure 7 shows the canonical graph of ToDrink. The Function concept is the 

supertype of 55 concepts. Some of them are Artisan, Killer or Deputy. Liquid is the 

supertype of, among others, Water, Alcohol and Syrup 

The lattice of relation types is limited in our application to a flat lattice: all the 

relations have the same supertype (T) and the same subtype (⊥). For our tests, we 

have used four relations: Relation, Agent, Object and Place. 

5.2 Bench Test Generation 

We have generated sets of graphs with controllable properties for the generalization. 

By specializing canonical graphs in directions randomly chosen and in different 

depths, our task is then to retrieve the original common graphs, or, better, some 

specialization of them that might not have appeared during the generation phase. So, 

our generator builds sets of graphs such as each set possesses a partition of its graphs 

where each part (named family) is made of graphs that are specialized from a graph 

more specific than their common canonical graph. This definition of the searched 

generalizations comes from our application for which it is not suitable to generalize 

events by their canonical graph: it does not fit an informative description.  



  Sportive Boxer  
 ActionFunction Criminal Murderer  
   Killer  
  Creator Inventor  
   Magistrate Advocate 
    Judge 
    Locksmith 
   Artisan Clockmaker 
    Shoemender 
    Joiner 
  Trade  Cattlefarmer 
   AgriculturalFunction Farmer 
    Cultivator 
 ProfessionalFunction   Pastrycook 
   Shopkeeper Grocer 
Function    Butcher 
    Baker 
  MedicalProfession Nurse  
   Doctor Surgeon 
   Prince Psychiatrist 
  Sovereign Queen Dentist 
   King  
 PoliticalFunction  Emperor  
  Senator   
  Depute   
  Minister   
 MilitaryFunction    
 ToSuckUp    
  ToIngest ToGulpDown ToWolfDown 
   ToIngurgitate ToFeed 
ProcessVerb    ToNibble 
  ToSwallow ToEat ToSupper 
 ToAbsorb   ToLunch 
   ToBooze ToDevour 
  ToDrink ToSip  
  ToBreathIn  ToLap 

Fig. 8. Extracts from the concept ontology 

To produce a bench test, the generator randomly chooses n predicates (P1 and P2 

in Fig. 9), each one being the origin of one family. The canonical graph of each 

predicate is then specialized several times (s1 times in family 1 and s2 times in family 

2) to generate n graphs, named ancestor graphs. Each ancestor graph is differently 

specialized (k1, k2, …, k5 times in family 1 and k1, k2 and k3 times in family 2), 

creating different specializations named cousin graphs.  

P1 P2

Canonical Graph of P1 Canonical Graph of P2

Ancestor Graph Family 1

s1

Cousin 11 Cousin 13

Ancestor Graph Family 2

s2

Cousin 21 Cousin 23

k1 k5 k1 k3

 

Fig. 9. Bench test generation framework 

Input data of the generalization process are the set of all the cousin graphs of 

different families (the 8 cousin graphs), the goal being to retrieve the set made of the 

ancestor graphs. The numbers of specialization operations applied (restriction of type 



belonging to the canonical graph or not, addition of a relation) are set at the time of 

the bench test specification. 

We can see below an example of test containing four graphs with two families of 

two graphs each. The graphs have been obtained following the parameters presented 

in Fig. 10.  

Graph 1: 
[ToNibble]{ 

— (Agent) -> [Nurse], 

— (Object) -> [Cake], 

— (Rel) -> [Apple]} 

Graph 2: 
[ToDevour]{ 

— (Agent) -> [Nurse], 

— (Object) -> [Meat], 

— (Rel) -> [Rice]} 

Graph 3: 
[ToKill]{ 

— (Object) -> [Reptile], 

— (Agent) -> [Assassin],  

— (Rel) -> [Car]} 

Graph 4: 
[ToEmbed]{ 

— (Agent) -> [Killer], 

— (Objet) -> [Insect], 

— (Rel) -> [Water]  

Specializations for 

ancestors 

Specializations for cousins Predicates Canonical Graphs 

predicate canonical 

graph 

concepts 

predicate canonical 

graph 

concepts 

concept 

adding 

1 1 1 ToEat [ToEat] ->  

(Agent) ->[Function] 

(Object) -> [Food]  

0 3 

1 1 1 

1 2 1 ToCause 

Death 

[ToCauseDeath]->  

(Agent) -> [Function] 

(Object)-> [Alive] 

0 3 

1 2 1 

Fig. 10. Parameters for generating a set of graphs 

This example entails the construction of 6 configurations in a total time of 115s. 

We can see below the optimal solution obtained in 15 seconds and a non-optimal 

solution. Costs of operations are specified in section 5.4. 

Optimal Solution: 
[ToEat]{ 

— (Agent) -> [Nurse], 

— (Object) -> [Food]} 

Cost: 8.0 

[ToCauseDeath]{ 

— (Agent) -> [Criminal], 

— (Objet) -> [Animal]} 

Cost: 10.0 

Non-optimal Solution: 
[ToEat]{ 

— (Agent) -> [MedicalProfession], 

— (Object) -> [Aliment]} 

Cost: 10.0 

[ToCauseDeath]{ 

— (Agent) -> [Criminal], 

— (Objet) -> [Animal]} 

Cost: 10.0 

If we look again at the definition of a good solution given section 4.2, the optimal 

solution in this example respects the established criteria: maximum of root graphs 

generalized, minimum number of graphs in the configuration and minimal cost in the 

case of configuration equality. In the non-optimal configuration, the concept Nurse in 

the two graphs of the first family has been overgeneralized in MedicalProfession. So, 

we really have obtained the best solution for a cost inferior to those of the other 

solution. The four other solutions, not presented here, have inferior costs but do not 

generalize all the graphs. 

We will now describe two bench tests. The first one tests a difficult case with very 

specialized graphs and little generalization costs. It entails the generation of a great 

number of configurations and high computation times. The second one shows the 

efficiency of the system with higher costs. 



5.3 A Borderline Case 

We produced 33 sets of 4 graphs containing 3 to 5 concepts and belonging to 2 

families. These graphs were produced by applying 3 to 8 specialization operations on 

canonical graphs. The threshold for the generalization was set to 10 and a limit of 

processing time was fixed to 1 hour by case. For this data set, we set low values to 

costs of operations in order to test the borderline case: the costs allow the system to 

compute all the ancestor graphs. These costs are the following: 

1. any concept generalization: 1, 

2. generalization of one concept of the canonical graph: 1, 

3. predicate generalization: 2, 

4. relation suppression: 1. 

The generalization process finds 32.15 configurations on average by bench test, in 

an average time of 28mn, 30% of the generalization processes reaching the time limit. 

The 70% solved cases are solved in an average time of 15mn. 

5.4 Costs Utilization 

To show the efficiency of mindfully chosen costs, we carried out the same kind of 

tests, but with costs multiplied by 2. We generated 60 bench test with 4 graphs each. 

With a time limit set to 1 hour, we obtained 12,2 configurations on average by case. 

With 20mn., we obtained 11.9. So, 97.5% of the configurations obtainable in 1 hour 

were obtained in less than 20mn. The following results were obtained in this time 

limit: 96.7% of the bench tests lead to at least one solution and 73,3% of the cases did 

not reach the time limit. 
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Fig. 11. Percentage of computed configurations relatively to the processing time 

Figure 11 shows the percentage of configurations obtained for all bench tests in 

function of the time. It shows that in a reasonable time of 7mn., 90% of the solutions 

obtainable in 20mn (92.3% of those obtainable in 1 hour) are already obtained. Thus, 

according to task requirements, if it is possible to miss some solutions, then one can 

parameterize the generalization system with processing times really acceptable. 

For these tests, the relevant solutions (i.e. informative) are thus those that contain 

generalized graph(s) equal to the ancestor graphs from which the graphs of the tests 

are issued. This relevant solution can only be found if, for each graph, the sum of the 

costs of the specialization operations applied to them is lower or equal to the 

generalization limit, here 10. The number of bench tests in this case is 22 (37%). With 

a processing time set to one hour, the relevant solution is found for all these cases and 



in 20mn., 20 solutions are found (90.9%). In the other 63%, for which the theoretical 

cost of the optimum solution is higher than the limit, we find nevertheless 15.8% of 

configurations in which the number of generalized graphs is the same as the number 

of families. This can be explained by the fact that cousin graphs are randomly 

generated. If by chance the specialization process goes the same way for some graphs, 

then the effective relevant solution is more specific than the ancestor graph. 

5.5 Analysis 

It has to be noted that in the first series of tests, the obtainable relevant solutions are 

obtained in 70% of the cases (23/33). In the second series, 100% of the obtainable 

solutions are found in one hour, however it contains a least number or test cases. So, 

with low costs, a great number of solutions is found and we also miss some good 

solutions. On the contrary, with high costs, the number of possible solutions is lower 

and the system finds all of them. When we will apply the system on real data, we will 

have to choose costs according to these two extremes. 

These tests show that a cost-bounded algorithm allows us to generalize conceptual 

graphs in a reasonable time, in tasks where costs on the generalization operators are 

definable. Differences between the two series of tests show the benefits of modulating 

the costs and the limit threshold in order to produce interesting generalizations and to 

avoid the production of graphs corresponding to overgeneralizations in the 

application, i.e. valid graphs with a too general description level. 

It is not an easy task to show the validity of solutions obtained with unsupervised 

learning. Thus, we have conceived our test protocol in such a way that the searched 

solution can be characterized. In our application framework, the validation could be 

done externally by an expert who would answer the following question: "Does the 

produced solution seem coherent to you: are events described at a correct description 

level compared to the described situation?". In case of non-satisfaction, it is possible 

to execute the process again to search for new generalizations. Another possibility 

would be to validate a system using the learned knowledge. 

6. Previous Works 

Mineau [7] and Bournaud [8] have conceived algorithms to build a classification from 

an initial set of conceptual graphs. Even if we do not want to classify data, finding a 

generalization level can be seen as an equivalent problem as it requires the algorithm 

to compute possible generalizations. The major difference comes from the 

generalization operators used. Suppression of relations entails the necessity of a 

complete description of each generalized graph and not only a partial description by 

their relations. To limit the effective complexity, we have introduced costs associated 

with operators. These costs have to be fixed relative to the type of generalizations 

expected in the application. As in [8], we also use domain knowledge to constrain 

generalization. 

Our work comes under Inductive Logic Programming (ILP) domain [13] and our 

problem is particularly close to the work of Esra Erdem and Pierre Flener [14], who 

redefine the minimal generalization in order to find a minimal set of generalized 



clauses in function of an over-generalization criterion. In the field of ILP and 

conceptual graphs, our kind of problem is studied in the work of Marc Champesne on 

the reduction of the search space by the use of the notion of "empirical subsumption" 

[11]. However his results can only be applied to non-connected graphs whereas our 

algorithm handles connected ones. 

About our application itself, i.e. learning descriptions of prototypical situations, our 

work is different of [1], [2] and [3] essentially because we do not hypothesize the 

existence of previous knowledge about situations and learning is completely 

unsupervised. The system MLK, which implements this application, gathers and 

selects events and their relevant characteristics when recurrent situations are found in 

texts, and the system proposed in this paper assumes the construction of a general 

description with respect to semantic knowledge. 

7. Conclusion 

Learning structures in order to describe concrete situations has lead us to construct the 

system MLK, able to identify events linked to a same situation. In the purpose of 

generating general descriptions for these situations, we have studied the 

generalization of events represented by conceptual graphs. However the 

generalization algorithm we propose is independent enough of our particular context 

and could be used with other applications. 

This algorithm is completely implemented in Smalltalk. The tests made show the 

benefit of fixing costs on generalization operators in applications having only a weak 

domain theory. 

The protocol of bench tests generation we have developed allows us to control 

different parameters such as the definition of an optimal solution, the number of 

operations to be applied in order to find this solution and the homogeneity of the 

bench tests. It presents two major advantages: testing the efficiency of our approach 

and allowing us to find values for the diverse parameters of the generalization 

algorithm by successive tests.  

At this time, we are working on the automatic acquisition of ontologies from 

partial syntactic analysis of phrases. This work will allow us, in a middle-term 

prospect, to apply the described generalization process to a great amount of data very 

similar to Thematic Units. In a more long-term prospect, this should entail the 

application of the complete MLK system on data automatically extracted from large 

volumes of texts. 
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