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Abstract. ― For over a decade now, High Throughput sequencing (HTS) approaches 24 

have revolutionized phylogenetics, both in terms of data production and methodology. 25 

While transcriptomes and (reduced) genomes are increasingly used, generating and 26 

analyzing HTS datasets remains expensive, time consuming and complex for most non-27 

model taxa. Indeed, a literature survey revealed that 74% of the molecular phylogenetics 28 

trees published in 2018 are based on data obtained through Sanger sequencing. In this 29 

context, our goal was to identify the strategy that would represent the best compromise 30 

among costs, time and robustness of the resulting tree. We sequenced and assembled 32 31 

transcriptomes of the marine mollusk family Turridae, considered as a typical non-32 

model animal taxon. From these data, we extracted the loci most commonly used in 33 

gastropod phylogenies (cox1, 12S, 16S, 28S, h3 and 18S), full mitogenomes, and a 34 

reduced nuclear transcriptome representation. With each dataset, we reconstructed 35 

phylogenies and compared their robustness and accuracy. We discuss the impact of 36 

missing data and the use of statistical tests, tree metrics, and supertree and supermatrix 37 

methods to further improve the phylogenetic data acquisition pipelines. We evaluated 38 

the overall costs (time and money) in order to identify the best compromise for 39 

phylogenetic data sampling in non-model animal taxa. Although sequencing full 40 

mitogenomes seems to constitute the best compromise both in terms of costs and node 41 

support, they are known to induce biases in phylogenetic reconstructions. Rather, we 42 

recommend to systematically include loci commonly used for phylogenetics and 43 

taxonomy (i.e. DNA barcodes, rRNA genes, full mitogenomes, etc.) among the other 44 

loci when designing baits for capture. 45 

 46 
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1. Introduction 49 

For over a decade now, high throughput sequencing (HTS) data has allowed not only 50 

the production of a substantial amount of DNA sequences relevant for phylogenetics, 51 

but also triggered many discussions on phylogenetic reconstruction methods (e.g. 52 

Edwards 2009; Lemmon & Lemmon 2013; Leaché et al. 2015a; Leaché & Oak 2017). 53 

Most authors concluded in the superiority of HTS approaches for reconstructing trees at 54 

all phylogenetic scales, especially in terms of robustness of the tree but also in the 55 

context of studying biological processes (e.g. introgression or horizontal transfer). 56 

Nevertheless, there is still a considerable amount of recent studies presenting trees 57 

obtained using first generation sequencing (chain-termination sequencing based on the 58 

incorporation of dideoxynucleotides, herein referred to as “Sanger sequencing” – e.g. 59 

Heather & Chain 2016). This technique has typically been used to sequence a few loci 60 

amplified by PCR. Although the first commercial HTS technology was introduced in 61 

2004 (Mardis 2008), phylogenetic studies using this technology were not exceeding 62 

12% of the total molecular phylogenetic studies up until 2016 (Fig. 1). In 2018, only 63 

26% of molecular phylogenetic studies were based on HTS data. The simple, rapid, and 64 

stable standard protocols for producing and analyzing datasets based on Sanger 65 

sequencing data may explain why they are still primarily used in phylogenetic studies, 66 

while HTS-based studies remain costlier and more complex (both in terms of library 67 

preparation and data analysis). Thus, the sustained attractiveness of the Sanger 68 

sequencing approach to phylogenetics, indisputable in terms of number of published 69 

studies to date, contrasts with the premise that HTS data will allow us to “achieve 70 

phylogenomic Nirvana” (Faircloth 2013).  71 



 

Multiple studies have explored tree robustness through the dissection of a particular 72 

HTS dataset – the recently defined practice of “phylogenomic subsampling” (reviewed 73 

in Edwards 2016). This practice mostly focuses on “the study of the information content 74 

of phylogenomic matrices of different sizes,” implying an in silico subsampling of loci 75 

(Edwards 2016). One way of extending the practice of phylogenomic subsampling 76 

beyond its quantitative aspects would be to take into account the nature of particular 77 

loci. This approach would evaluate the phylogenetic significance of the use of particular 78 

genome regions (e.g. coding vs. non-coding sequences; Chen et al. 2017). The 79 

development of orthology assessment pipelines (e.g. UPhO; Ballesteros & Hormiga 80 

2016) also enabled their comparison with the same dataset, usually of transcriptomic 81 

nature (Washburn et al. 2017; Cuhna & Giribet 2019). Other studies also focused on the 82 

sequencing method used to extract a particular set of loci, mostly leading to studies 83 

comparing HTS vs. Sanger sequencing methods to recover phylogenetic datasets and 84 

draw conclusions on the superiority of one dataset type over another (e.g. Ruane et al. 85 

2015; Lee et al. 2018).  86 

In addition to data exploration alone, the computational time needed to analyze various 87 

datasets - including the phylogenetic reconstruction - can be calculated (e.g. Leaché et 88 

al. 2015b). The time for sample preparation and sequencing can also be estimated (e.g. 89 

Lemmon et al. 2012), but this information is more often reported in HTS method 90 

description articles, and rarely compared among methods of data acquisition. Even 91 

fewer studies evaluated monetary costs (reagents, library preparation and sequencing) 92 

for a particular phylogenetic dataset (e.g. Moreau & Wray 2017) or more generally for a 93 

taxonomic group (e.g. McKain et al. 2018). Finally, we only found two studies that 94 

evaluated both time and money in relation with the preparation of a specific 95 



phylogenetic dataset (Lemmon et al. 2012; Cruaud et al. 2014). These studies led to the 96 

conclusion that HTS data will produce more data and more robust trees, justifying the 97 

higher costs.  98 

However, such studies are often conducted on so-called “model taxa” (e.g. Primates in 99 

Collins & Hbrek 2018), for which genomic data is already abundant and the range of 100 

possible data acquisition methods is not limited by the absence of annotated genomes. 101 

However, more than 99% of the biodiversity is constituted on non-model taxa, i.e. taxa 102 

for which no or little genomic and/or transcriptomic data are available, and for which 103 

orthologous loci databases are information-poor. For those taxa, alternative strategies 104 

have been developed such as exon-capture (Bi et al. 2012), Anchored hybrid 105 

Enrichment (Lemmon et al., 2012) or Ultraconserved elements (McCormack et al., 106 

2012), referred herein as “sequence capture”. These strategies allowed 107 

phylogenomicists to utilize very distant genomic resources for specific non-model 108 

groups (e.g. Haddad et al., 2017). Still, lacking whole genome data limit the possibilities 109 

to a handful of loci (the highly conserved ones), exclude non-coding material from 110 

potential markers, and complexify the task of sorting orthology from paralogy. 111 

 112 

Thus, most available studies focus on model taxa only, are generally limited to the 113 

comparison of datasets of either different quantity or different nature of data, but rarely 114 

both, using criteria related to tree robustness or time and money needed, but rarely both. 115 

To provide arguments to choose one strategy over another in phylogenetic 116 

reconstruction in non-model taxa, we here provide a comparison of several sequencing 117 

and tree-reconstruction strategies in terms of robustness of resulting trees, and time and 118 

money needed to produce and analyze the datasets. To do so, we used the family 119 



 

Turridae (Conoidea, Gastropoda), a group of marine molluscs, as an example. The 120 

Turridae constitute a good example of non-model animal taxon because of the lack of 121 

genomic resources (e.g. no assembled and annotated genome, less than ten nuclear 122 

markers represented in public databases, no karyotypes available), even in closely 123 

related groups. The closest reference would be the recently published genome of 124 

Pomacea canaliculata (Liu et al. 2018) and its divergence time with the family Turridae 125 

is estimated at 283 Ma (Zapata et al. 2014). The family comprises 216 species 126 

(WoRMS, checked on May 2019) but this number is largely underestimated (Puillandre 127 

et al. 2012). Most of the molecular phylogenies published for this group used the same 128 

classical mitochondrial (cox1, 12S and 16S rRNA) and/or nuclear (28S rRNA) markers 129 

(Heralde et al. 2007, 2010; Olivera et al. 2008; Puillandre et al. 2012; Fedosov et al. 130 

2011; Todd & Rawlings 2014; Puillandre et al. 2017). Two venom-gland transcriptomes 131 

are published (Gonzales and Saloma 2014) that were not used primarily for 132 

phylogenetic purposes but for toxin research, because the Turridae are venomous and 133 

constitute a group of interest for bioactive compound discovery (Puillandre & Holford 134 

2010). Finally, only one phylogenomic (RAD-seq) study (Abdelkrim et al. 2018a) was 135 

published for species-delimitation purposes on eight species in the Xenuroturris/Iotyrris 136 

complex. 137 

We analyzed 32 transcriptomes (29 Turridae + 3 outgroups), corresponding to 18 138 

species, from different tissues (venom gland, salivary gland or foot), from which we 139 

extracted in silico five datasets: (i) the barcode fragment (658bp) of the cox1 gene, the 140 

most frequently sequenced marker in gastropod systematics; (ii) a multilocus dataset 141 

that is typically produced using Sanger sequencing to conduct phylogenetic studies in 142 

gastropods, corresponding to fragments of the mitochondrial cox1, 16S rRNA and 12S 143 



rRNAgenes, and the nuclear 28S rRNA, 18S rRNA and histone h3 genes (e.g. Fedosov 144 

et al. 2018; Johnson et al 2010); (iii) complete mitochondrial genomes (e.g. Uribe et al. 145 

2018); (iv) a sequence capture approach, targeting a selection of nuclear loci (e. g. 146 

Abdelkrim et al. 2018b); (v) an RNA-seq dataset (e.g. Cunha et Giribet 2019). Because 147 

this dataset include only a limited number of Turridae lineages, the goal is not to resolve 148 

the Turridae phylogeny, but to compare those five datasets. We empirically evaluated 149 

the capacity of each dataset to resolve relationships among the 32 samples, within 150 

which divergence ranges between 0 (intra-specimen divergence) and 79.4 Ma 151 

(estimated age of origin of the family Turridae; Abdelkrim et al. 2018b). We also 152 

evaluated the time necessary for sample preparation, sequencing and data analysis, 153 

along with the monetary costs of each step to estimate the overall cost of producing 154 

each dataset.  155 

 156 

2. Material and Methods 157 

2.1 Sampling 158 

Twenty-eight specimens, representing six genera of Turridae and related outgroups 159 

(Conidae and Mitridae) were collected during several field expeditions organized by the 160 

Muséum national d’Histoire naturelle (MNHN; “KAVIENG” in Papua New Guinea, 161 

“KANACONO” in South New Caledonia), by joined Russian-Vietnamese Tropical 162 

Center (Vietnam), and by the University of Utah in collaboration with the University of 163 

the Philippines (Philippines). Specimens were photographed and the shells were broken 164 

to access the animal. For twenty-seven specimens, only one tissue type was sampled 165 

(venom gland, salivary gland or foot) depending on the project they were associated 166 

with; for one specimen, both venom gland and salivary gland tissue were sampled, 167 



 

resulting in a total of 29 tissues (Supplementary Table 1). Remains of vouchers, when 168 

available, were kept and are deposited in the MNHN collections.  169 

In addition, we used publicly available transcriptomes from three species: 170 

Unedogemmula bisaya, Gemmula speciosa (Turridae) and Terebra subulata from a 171 

closely related family Terebridae (NCBI Sequence Read Archive (SRA) accession no.’s 172 

SRR1574923, SRR1574907 and SRR2060989, respectively; Gonzales and Saloma 173 

2014; Gorson et al. 2015). 174 

 175 

2.2 RNA Extraction, Library Preparation and Sequencing 176 

RNA was extracted using a Trizol protocol or the Qiagen RNeasy Micro kit, following 177 

the manufacturer’s recommendations. Bioanalyzer traces were used to assess total RNA 178 

quality and determine suitability for sequencing. The cDNA libraries were prepared and 179 

sequenced either at the New York Genome Center or at the Evolutionary Genetics Lab 180 

at UC Berkeley (Supplementary Table 1). In New York, libraries were prepared using 181 

the automated polyA RNAseq library prep protocol and sequenced with Illumina HiSeq 182 

4000 with 150-bp paired-end reads. In Berkeley, the KAPA Stranded mRNA-Seq kit 183 

was used to synthesize cDNA, ligate adapters using TruSeq HT adapters and barcode 184 

samples. Samples were then sequenced with Illumina HiSeq 2000 or 4000 (see 185 

Supplementary Table 1) with 100-bp paired-end. 186 

 187 

2.3 Transcriptome Assembly and Quality Assessment  188 

All the transcriptomes, including the ones downloaded from GenBank, were assembled 189 

following the same procedure. Trimmomatic v.0.36 (Bolger et al. 2014) was used to 190 

remove adapters and filter low quality reads (ILLUMINACLIP option enabled, seed 191 



mismatch threshold = 2, palindrome clip threshold = 40, simple clip threshold of 15; 192 

SLIDING WINDOW option enabled, window size = 4, quality threshold = 20; 193 

MINLEN = 36; LEADING = 3; TRAILING = 3). Reads were merged using FLASH 194 

v1.2.8 (Magoc and Salzberg 2011) with a min. overlap parameter of 5, a maximum 195 

overlap parameter of 100 and a mismatch ratio of 0.05. FastQC (Andrews 2010) was 196 

used for raw reads quality control. Transcripts were assembled using Trinity v2.4 with 197 

default parameter (Grabherr et al. 2011). Cap3 (Huang and Madan 1999) with default 198 

parameters and cd-hit v4.6 (percent identity = 99%; Li and Godzik 2006) were finally 199 

applied to reduce redundancy in the assemblies. 200 

BBMap (Bushnell 2014) was used to generate basic assembly statistics and BUSCO 201 

(Simão et al. 2015) to evaluate transcriptome completeness. Finally, bowtie2 v2.2.6 202 

(Langmead and Salzberg 2012) and samtools v1.3 (Li et al. 2009) were used to evaluate 203 

read representation in each assembled transcriptome, as recommended in the Trinity 204 

manual. 205 

 206 

2.4 Transcriptome Orthology Inference 207 

Two approaches were used to assess orthology among transcripts, from here onwards 208 

referred to as “reference-based” approach and “graph-based” (without a reference 209 

genome) approach (Fig. 2).  210 

For the reference-based approach, the Pomacea canaliculata genome (ASM307304v1; 211 

Liu et al. 2018) was used as a reference. Following the pipeline described in Phuong 212 

and Mahardika (2018) and Phuong et al. (2019), blastx was used to associate transcripts 213 

to peptide sequences of P. canaliculata and tblastn to associate peptides of 214 

P.canaliculata to transcripts from the BLAST + v2.2.31 suite (Altschul et al. 1990) with 215 



 

an e-value threshold of 1e10-10 and a word size value of 11. For each sample, bowtie2 216 

v2.3.4.1 was used with the very sensitive-local alignment option and not allowing for 217 

discordant pair mapping (unexpected paired read orientation during mapping) to map 218 

reads to the selected transcripts from the reciprocal blast step. Duplicates were marked 219 

using picard-tools v2.0.1 (http://broadinstitute.github.io/picard) using default 220 

parameters. All positions with a coverage < 5X were masked and the entire sequence 221 

was removed if >30% of the sequence was masked. To fix assembly errors, single 222 

nucleotide polymorphisms (SNPs) were called using samtools v1.3 (default parameters) 223 

and bcftools v1.3 (Li et al. 2009) using the call command. Transcripts for each locus 224 

were aligned as nucleotides using MAFFT v7.222 (Katoh et al. 2005) option -auto. To 225 

limit misalignments and paralogs inclusion, uncorrected pairwise distances were 226 

calculated at each locus for all possible pairwise comparisons and sequences were 227 

removed if the uncorrected pairwise distance was greater than the 90th percentile 228 

(threshold was set empirically) of pairwise distances across all loci for that pair of 229 

species.  230 

For the graph-based approach, we used UPhO (Unrooted Phylogenetic Orthology; 231 

Ballesteros and Hormiga 2016), a method that uses the topology of individual gene trees 232 

to identify clades corresponding to orthologous groups. Following the workflow 233 

established by the authors, all transcripts in open reading frame (ORF) were extracted 234 

from the transcriptome assemblies with custom Python scripts, and all ORFs that were 235 

less than 100 amino-acid long were eliminated. An all-versus-all blastp search was then 236 

performed, using a relaxed expectation value threshold of e = 1 x 10-5.  237 

To reduce missing data, only the clusters that contained the maximum number of 238 

samples (32) were selected. The gene-family amino-acid sequence clusters were aligned 239 



and cleaned using mafft (option ‘-auto’), trimAL (option ‘-gappyout’) and Al2phylo (-m 240 

32 -t 300 -p 0.80). After alignments, the sequences were converted from amino acids 241 

back to nucleotides to increase the number of informative sites and improve the 242 

phylogenetic pipeline accuracy. Gene-family trees (GFTs) were estimated using IQ-tree 243 

(Nguyen et al. 2014). The best substitution model for each GFT was estimated with 244 

ModelFinder (Kalyaanamoorthy et al. 2017) following the BIC criterion. Subsequently, 245 

1,000 ultrafast bootstraps (UFBoot) (Hoang et al. 2017) were performed on each GFT to 246 

obtain branch support. The branches representing putative orthogroups were finally 247 

extracted with UPhO (-m 4 -S 0.80). The orthogroup alignments obtained were cleaned 248 

and analyzed using MAFFT, trimAL, Al2phylo and IQ-tree with the same parameters as 249 

above (except for the -m parameter in Al2phylo, set to 4).  250 

 251 

2.5 Transcriptome Phylogeny 252 

Ten datasets were generated. For the reference-based approach three subsets were 253 

defined with a minimum of 4, 16 and 32 samples / locus. These subsets were analyzed 254 

using a supermatrix - concatenated alignment of all the loci - and a supertree approach, 255 

resulting in six datasets referred as follows: Ref-IQ4, Ref-IQ16, Ref-IQ32, Ref-AS4, 256 

Ref-AS16 and Ref-AS32 (IQ referring to IQ-tree and AS to ASTRAL – see below). 257 

Similar subsets were constructed for the graph-based approach with 16 and 4 samples / 258 

locus (the 32 sample/locus dataset was not analyzed here because only one locus was 259 

retrieved). The resulting four datasets are referred to as follows: Uph-IQ4, Uph-IQ16, 260 

Uph-AS4 and Uph-AS16. 261 

Best substitution models were estimated for each partition (locus) in each concatenated 262 

dataset with ModelFinder following the BIC criterion. Supermatrix trees were 263 



 

reconstructed using IQ-tree and 1,000 UFBoot were performed on each dataset. An 264 

individual tree for each locus was also generated with IQ-tree, using the associated best 265 

substitution model for datasets Ref-AS4, Ref-AS16, Ref-AS32, Uph-AS4 and Uph-266 

AS16. The supertree approach implemented in the program ASTRAL-III (Zhang, 267 

Sayyari and Mirarab 2017) was then applied to combine the single-locus trees into a 268 

single supertree for each of these datasets.  269 

 270 

2.6 Sequence Capture  271 

We used the Ref-AS4 dataset and selected the 3,000 shortest loci (ranging from 96 to 272 

839 bp) to simulate a sequence capture datasets (Bi et al. 2012; Jiang et al. 2017; 273 

Abdelkrim et al. 2018b). Three subsets were generated, with a minimum of 4, 16 and 32 274 

samples / locus for which both supermatrix and supertree approaches were applied, as 275 

explained above. These datasets will be referred as follow: Cap-IQ4, Cap-IQ16, Cap-276 

IQ32, Cap-AS4, Cap-AS16 and Cap-AS32. 277 

 278 

2.7 Mitogenomes and Nuclear Markers 279 

The Pinguigemmula sp. (Turridae) mitogenome (MH308408.1; Uribe et al. 2018) was 280 

used as a reference to extract partial (up to 20% missing data) to complete mitogenomes 281 

(including tRNAs) from the transcriptomes and create the dataset “MT.” Several 282 

sequences of 28S rRNA, 18S rRNA and histone 3 (h3) of Turridae from GenBank were 283 

used as references to extract the corresponding loci from the 32 transcriptomes by 284 

BLAST. Along with the mitochondrial cox1, 12S and 16S fragments, they constitute the 285 

Sanger multilocus dataset “SAN.” Finally, the cox1 alone constitutes the Sanger 286 

barcode dataset “BC.” The same protocol as for the reference-based approach was 287 



applied for mapping, filtering and alignment. For the MT, SAN and BC datasets, each 288 

codon position of the protein coding genes was treated as an independent partition, as 289 

well as each non-protein coding gene. The best substitution model was estimated for 290 

each partition in each concatenated dataset with ModelFinder following the BIC 291 

criterion and 1,000 UFBoot were performed on each dataset to obtain branch support 292 

for the trees reconstructed with IQ-tree. 293 

 294 

2.8 Tree Topology Evaluation 295 

The Turridae trees published so far suffer from both incomplete sampling and lack of 296 

resolution (e.g. Heralde et al. 2007; Puillandre et al. 2012). Thus, these published trees 297 

can hardly be used as a reference tree for the Turridae. Consequently, two approaches 298 

were used to evaluate tree topology decisiveness and informativeness.  299 

For the matrix and supermatrix datasets (BC, SAN, MT, Cap-IQ, Ref-IQ, Uph-IQ), the 300 

log-likelihood of multiple constrained tree searches for each dataset was compared and 301 

the results were statistically tested with IQ-TREE using the Shimodaira-Hasegawa 302 

(1999) (SH) test. The trees were constrained respectively following all the different 303 

topologies retrieved with the different datasets, except for the intra-specific and 304 

outgroup nodes, resulting in a total of eight unique constrained topologies (the same 305 

topologies found for Cap-IQ32 and CapIQ16, Cap-IQ4 and Ref-IQ32, Ref-IQ16 and 306 

Ref-IQ4).  307 

For the supertree datasets (Cap-AS, Ref-AS and Uph-AS), tree metrics were used to 308 

evaluate loci quality. The normalized quartet distance of each locus was calculated 309 

using TreeCmp (Bogdanowicz et al. 2012) with reference to the corresponding supertree 310 

with collapsed intraspecies nodes. Additionally, the quartet distance metric score 311 



 

distribution of BUSCO (single-copy + fragmented) loci trees versus all other single-312 

locus trees for Ref-AS16 and Ref-AS32 were compared to evaluate the quality of the 313 

reference-based approach. The quartet score (proportion of quartets satisfying the 314 

supertree) was also used to evaluate the overall support of supertree analysis using 315 

ASTRAL-III’s log.  316 

 317 

2.9 Data, Time and Money Evaluation 318 

Data – The AMAS python program (Borowiec 2016) was used to calculate alignment 319 

statistics for each dataset, including the number of loci, the alignment length (in the case 320 

of ASTRAL-III, the median length of all loci), the total number of matrix cells and 321 

undetermined cells (to evaluate missing data) and the proportion of variable and 322 

parsimony-informative sites. 323 

Time and money – Comparisons of costs (time and money) were measured respectively 324 

in number of days and euros but did not take into account specimen collection and 325 

salary costs, both varying too much depending respectively on the taxon, the country 326 

where research is carried out, or the academic level of the person employed (e.g. 327 

graduate or engineer). Costs were evaluated by the Service de Systématique Moléculaire 328 

(SSM) platform at the MNHN (UMS 2700). The time estimates were based on a 329 

realistic best-case scenario, meaning that each step of lab preparation and data analysis 330 

are supposed to work on the first try with the methods used at the SSM.  331 

 332 

3. Results 333 

3.1 Transcriptome Sequencing, Assembly and Quality Assessment 334 



The total number of raw reads used for transcriptome assembly ranged from 42,770,212 335 

to 138,181,918 and the number of assembled contigs ranged from 46,027 to 283,318. 336 

The mean value of N50 is 539. At least 80% of input reads mapped back to the 337 

transcriptome assemblies. The mean BUSCO completeness value is 49.1%, ranging 338 

from 36% to 83.7% (Supplementary Table 1). Pearson’s r showed a strong correlation 339 

between assembly size and BUSCO completeness (ρ=0.78, p-value = 1.54E-07) but no 340 

correlation between the number of raw reads and BUSCO completeness (ρ=-0.01, p-341 

value= 0.98) (Supplementary Table 2). Transcriptomes produced from foot tissue 342 

(Gemmula sp. and M. mitra) showed a greater BUSCO completeness than 343 

transcriptomes produced from venom or salivary glands, suggesting transcript 344 

abundance variation among tissues and/or overrepresentation of some transcripts in 345 

glands (e.g. highly expressed toxins – Dutertre et al. 2014). However, more 346 

transcriptomes assembled based on different tissues from the same specimen are needed 347 

to properly test this hypothesis. 348 

 349 

3.2 Phylogenetic Results 350 

The monophyly of the ingroup Turridae is always confirmed, except with two datasets 351 

(Uph-AS16 and Uph-AS4), where the outgroup Terebra is found in the ingroup 352 

(Supplementary Fig. 1). The genera Gemmula and Turris are systematically retrieved 353 

polyphyletic (Fig. 3), as shown in previous studies (Puillandre et al. 2012; Fedosov et 354 

al. 2011). The species represented by several specimens (X. legitima, I. cingulifera, I. 355 

musivum and I. olangoensis) are always recovered as monophyletic groups except for 356 

one dataset (Uph-IQ4), in which a specimen of I. cingulifera is placed as a sister group 357 

of the other members of Iotyrris. Apart from the Uph-IQ4 dataset, the relationships 358 



 

inferred among X. legitima and all three Iotyrris species are always identical. The long 359 

branches Turris and Lophiotoma are found as sister groups only in the “Ref” and “Cap” 360 

datasets. Finally, the relationships among Gemmula sp., T. nadaensis, Unedogemmula – 361 

the earliest offshoots in the ingroup – and the rest of the Turridae appear to be the most 362 

problematical (Fig. 3). The phylogenetic results are globally congruent with previous 363 

studies (e.g. Puillandre et al. 2012), despite the heterogeneity in the number of species 364 

per lineage and several missing lineages. Overall, the graph-based approach (UPhO) 365 

shows very low taxon occupancy (see also Fernandez et al., 2018) and fewer 366 

parsimony-informative sites, and hence results in shortest branches and incongruent 367 

results with the reference-based approach. An extreme case is the specimen of I. 368 

cingulifera not retrieved within the I. cingulifera species node in the UPh-IQ4 dataset. 369 

This specimen’s transcriptomes shows poorer results in terms of assembly size 370 

(38,931,364 bp, compared to the 56,711,565 mean) and BUSCO completeness (23.8% 371 

of complete single loci). Nevertheless, the reference-based reconstructions do not suffer 372 

from this low-quality transcriptome.  373 

Except for the BC and SAN datasets, support for specific to supra-specific nodes ranged 374 

between 75% and 100% (Table 1), and shows no correlation with the dataset size. 375 

Interestingly, in the mitogenome dataset (MT), bootstrap supports were similar or 376 

superior to those of larger datasets, but those values were negatively affected by the 377 

removal of some regions such as tRNAs (Supplementary Fig. 1). 378 

 379 

3.3 Topology Evaluation 380 

Except for UPh-IQ4, all the datasets had  at least one alternative constrained topology 381 

credible under the SH test (Table 2). The credible sets of trees for the smallest datasets 382 



(BC, SAN and MT) contained more constrained trees than the credible sets of trees for 383 

the larger datasets (Cap, Ref & Uph).  384 

Not a single-locus tree with 16 or more terminal entities fully matches its corresponding 385 

supertree (Figure 4). This is also true for the UPhO-AS16 single-locus tree distribution 386 

(Supplementary Fig. 2). The student’s t test results of quartet distance metric score 387 

distribution of BUSCO (single-copy + fragmented) loci trees versus all other loci trees 388 

for Ref-AS16 showed a significant difference between the two distributions (p-value 389 

<2.2e-16; Fig. 4b). The quartet score decreases when reducing taxon occupancy: for 390 

Ref-AS32, Ref-AS16 and Ref-AS4 the normalized quartet scores were respectively 391 

0.730, 0.709 and 0.707 (Supplementary Table 3). 392 

 393 

3.4 Data, Time and Money 394 

All Sanger markers were extracted from the transcriptomes except for h3, lacking in 25 395 

of the transcriptomes. The largest dataset (DS5aIQ4) is a concatenated alignment of 396 

14,586,607bp (71.7% of missing data), corresponding to 9,232 loci (DS5aAS4), of 397 

which all other datasets were constructed, except for the graph-based approach ones. 398 

The graph-based approach generated too few loci with no missing data (32 399 

terminals/locus), therefore only four datasets were retained (Table 1). As shown on the 400 

Figure 5, the reference-based and graph-based approach used respectively 285,660 and 401 

35,595 transcripts for each pipeline, but only 19,008 (6.8%) of the total transcripts are 402 

in common between the two pipelines. 403 

Unsurprisingly, the larger datasets are also more costly (Table 1), ranging from an 404 

estimated 226€ for the CO1 dataset to 8,828€ for transcriptomes, for the production of a 405 

32 terminal entity phylogeny (as for this study). But, while the Sanger datasets (BC, 406 



 

SAN) costs increase proportionally with the number of specimens and number of loci 407 

targeted, the mitochondrial and sequence capture datasets costs will dramatically reduce 408 

when pooling a lot of specimens. This is particularly the case for the sequence capture 409 

dataset, especially when considering the price of custom baits. By pooling 100 post-410 

capture libraries on a single sequencing lane (instead of the 32 in this study), the cost 411 

per specimen goes down from 196€ to 81€ (273€ to 105€ if including the transcriptome 412 

sequencing and the design of the probes). Finally, the transcriptomes dataset is the only 413 

HTS dataset not following the rule of decreasing costs when pooling more specimens, 414 

simply because there is a limit on the number of transcriptomes that can be sequenced 415 

on a single lane. 416 

 417 

4. Discussion 418 

4.1 Comparison of the Five Sequencing Strategies 419 

In the present study, we compare datasets that are representative of the outputs of the 420 

pipelines used in most empirical phylogenetic studies in non-model animal taxa, and 421 

evaluate them in terms of costs (money and time) and robustness of the resulting tree. It 422 

should be noted that the conclusions on the cost evaluations rely on the assumption that 423 

the overall costs and timeframes of analyzed methodologies will be similar in other 424 

labs. Furthermore, another cost, the environmental cost (the impact of each pipeline on 425 

the environment), was not calculated due to the multicity of parameters to take in 426 

account. However, library preparations and the use of data centers (Jones, 2018) would 427 

surely represent a substantial environmental cost for HTS-based trees. If this cost is 428 

rarely considered, in the future scientists might be encouraged to lower their ecological 429 

footprint. 430 



Our results show that traditional Sanger sequencing of one to six loci will retrieve trees 431 

with robust nodes for more than half of the clades, quickly and at very affordable costs. 432 

Indeed, the cox1 barcode tree alone retrieved both monophyletic species and most nodes 433 

well supported. This particular result might partially explain why, despite 15 years of 434 

HTS development and democratization, the vast majority of articles is still presenting 435 

trees produced with such datasets (Fig. 1). Surely, the “Sanger era” has not yet arrived 436 

to its end, and many more phylogenies with such datasets will be published in the years 437 

to come. 438 

Nevertheless, some nodes remain unsupported, in particular the deeper nodes. We found 439 

that the best compromise for retrieving a fully resolved and highly supported tree is the 440 

mitogenome dataset, for which all nodes have >80% bootstrap and the costs are less 441 

than half the price of a sequence capture. However, previous studies have already 442 

shown that mitogenomic trees are subject to artifacts, such as long-branch attraction 443 

generated because of the high rates of mutation of the mitochondrial genome, especially 444 

in the third codon positions (Bergsten 2005, Arabi et al. 2010). Moreover, a 445 

mitogenome can be considered as a single locus and thus cannot be subjected to 446 

congruence tests. The use of nuclear HTS data becomes even more indispensable when 447 

investigating biological processes such as introgression (e.g. Eaton et al. 2015; Zhang et 448 

al. 2015), where analysis of unlinked markers is necessary. 449 

The sequence capture and RNA-seq datasets (based on a reference genome) yielded 450 

similar results in terms of phylogenetic reconstruction accuracy, number of credible sets 451 

of trees passing the SH test and single-loci tree metrics distribution. However, the costs 452 

of sequence capture are by far more affordable than costs of producing and analyzing 453 

transcriptomes. Furthermore, RNA-seq requires high-quality, fresh RNA samples, not 454 



 

often available for a representative set of taxa. These considerations led to the 455 

conclusion that sequence capture might be the best method to produce a complete, high 456 

resolution tree for a non-model taxon, with a cost per specimen estimated at 80-100€ (if 457 

at least 100 specimens are sequenced on one lane) and a processing time of a few weeks 458 

to a few months (Supplementary Table 4). Nevertheless, transcriptomic data remains 459 

necessary to identify suitable markers that will be targeted by sequence-capture, 460 

especially when there is no available genome. Furthermore, transcriptomic data might 461 

be more suitable for backbone phylogenetic trees, including very deep relationships (i.e. 462 

several hundreds of millions of years; Cunha & Giribet 2019; Kocot et al. 2011). But 463 

very deep relationships also imply that it will be harder to distinguish orthology from 464 

paralogy. In summary, the Sanger approach still remains relevant to resolve 465 

phylogenetic relationships at a low price (both time and money), and can provide a 466 

preliminary outline of the taxon diversity, useful to select a subset of samples that can 467 

be analyzed with a more costly approach. However, some gene markers might not be as 468 

useful as thought, depending on the taxon (e.g. 18S, see Fig. 4), and 12S and 16S will 469 

generally only comfort the cox1 results. We thus recommend starting with DNA 470 

barcoding but from there going directly to sequence capture (if there is a strong need to 471 

clarify the remaining challenging nodes). Mitogenomes indeed provide the best 472 

compromise between tree quality and costs, but are subject to potential biases. Finally, 473 

RNA-seq appears only appropriate for constructing phylogenies in the case of very deep 474 

relationships or simply to identify suitable markers for sequence capture. 475 

 476 

Another class of HTS datasets that has not been explored is the reduced-representation 477 

approaches such as RAD-seq (e.g. Baird et al 2008). RAD-seq has already been 478 



established as a suitable tool for phylogenetic inference (e.g., Cariou et al. 2013; Cruaud 479 

et al. 2014). In a recent in silico study (Collins & Hbrek 2018), the authors even found 480 

that RAD and sequence capture datasets gave highly congruent results. However, RAD-481 

seq datasets are reduced-representation of genomes, and extracting an in silico RAD-seq 482 

dataset from our transcriptomes may have produced biased results, not equivalent to 483 

other RAD-seq datasets. Nonetheless, it could be argued that sequence capture methods 484 

are more promising for phylogenetic studies, because markers are not anonymous, and 485 

their sets can be tailored with more versatility according to the needs, samples with 486 

fragmented DNA can be sequenced more efficiently, information content per locus is 487 

higher (allowing the use of supertree approaches) and larger evolutionary time scales 488 

are covered (Harvey et al. 2016).  489 

 490 

4.2 A Note on Topology Accuracy Assessment 491 

As shown in Table 1, the majority of the concatenated datasets show >80% or even 492 

100% bootstrap values for all nodes – the same applies for ASTRAL support values – 493 

even though the amount of data can vary by a factor of 100 between datasets. Despite 494 

high node support, several topologies are in conflict, especially for the earliest 495 

relationships of the Turridae (Gemmula sp., Unedogemmula and T. nadaensis). Even if 496 

the true tree is unknown, we know that, at best, only one of these topologies is correct. 497 

It has already been showed that the bootstrap support value can rapidly saturate when 498 

increasing the number of sites (especially invariant ones), proportion of missing data, or 499 

both (Simmons & Freudenstein 2011). Furthermore, when using supermatrix 500 

approaches, log-likelihood ratio tests have been used to statistically test if a given 501 

dataset can accommodate several topologies (e.g. McFadden et al. 2006). In our case, all 502 



 

datasets (except the particular case of Uph-AS4) tolerated at least one, but not all, 503 

different (constrained) topologies, suggesting that the unconstrained topology is equal to 504 

or only slightly better than alternative one(s). The high-bootstrap values and non-505 

conclusive log-likelihood ratio tests for each phylogenomic datasets called for 506 

alternative methods to measure tree robustness. 507 

The normalized quartet score (Bayzid et al. 2015) is the proportion of quartets from the 508 

input single-locus trees that agree with the resulting supertree. We used it to measure 509 

the relevance of datasets with low taxon occupancy (e.g. Ref-AS4) when considering a 510 

supertree approach. Our results show that the normalized quartet scores for Cap-AS, 511 

Ref-AS and UPh-AS datasets are systematically lower with low taxon occupancy. Such 512 

results would imply that, as for supermatrix (Philippe et al. 2017), datasets with low 513 

taxon occupancy should be avoided (but see e.g. Kallal et al. 2018). Graphical 514 

representations of single-loci tree distribution, sometimes referred to tree space 515 

visualization in its extended version (Hillis et al. 2005) show promising results for 516 

understanding inconsistency among the datasets. The distribution of single-loci tree 517 

distance to a reference tree (Fig. 4a) has already been used to compare the quality of 518 

different datasets (Simmons 2017), but also within-dataset informativeness (e.g. intron 519 

vs. exon; Chen et al. 2017). In the case of non-model taxa, such distribution patterns can 520 

be used to compare loci with high reliability of orthologous relationships (e.g. BUSCO 521 

single-copies) versus shallow orthologous loci (e.g. from a reference-based or a graph-522 

based approaches) and thus evaluate the quality of a pipeline (Fig. 4b). In our case, we 523 

show that a simple blast and downstream filtering approach against a reference genome, 524 

even a very distant one, gives satisfactory results, although not sufficient to obtain 525 

orthologous loci of similar confidence to BUSCO single-copy loci.  526 



 527 

4.3 Improving Sequence Capture: Challenges and Perspectives 528 

An important challenge of HTS in phylogenetic reconstruction is to a priori identify 529 

loci that better reflect evolutionary relationships among taxa. Our reference-based and 530 

graph-based approaches implemented herein correspond to the two alternative 531 

strategies, widely used to infer orthologous loci from de novo assembled transcriptomes 532 

(as reviewed in Laumer 2018). In our case, the graph-based approach with UPhO 533 

yielded poor results in comparison to the reference-based approach, but more empirical 534 

and in silico generated datasets need to be analyzed to properly compare them. The 535 

UphO approach was especially sensitive to missing data (specimen of I. cingulifera not 536 

found with other I. cingulifera specimens in DS Uph-IQ4) and the tree reconstruction 537 

method (Terebra found in the ingroup for DS Uph-AS16 and Uph-AS4 ). One of the 538 

reasons that Terebra was found in the ingroup for the Uph-AS16 and Uph-AS4 datasets 539 

could be that the orthologs found with the graph-based approach were generally poorly 540 

informative (~7% parsimony-informative sites on average), thus resulting in poorly 541 

resolved single-locus trees. Conversely, the reference-based approach showed satisfying 542 

results, both in terms of pipeline celerity (avoiding “all-vs-all” blast use), tree 543 

robustness and congruency between subsamples. Furthermore, it retrieved far more loci 544 

than the BUSCO database. However, single-loci tree evaluation (Fig. 4) showed that the 545 

loci retrieved with our reference-based approach are not all informative and/or accurate, 546 

and the loci selection could be improved. The use of other alignment statistics, such as 547 

the proportion of parsimony-informative sites, could allow for a more precise a priori 548 

selection of loci (e.g. HaMStR; Ebersberger et al. 2009). Nonetheless, in our dataset, 549 

and quite paradoxically, there is a slight negative correlation between the number of 550 



 

parsimony-informative sites in the single-locus alignments and the single-locus-tree 551 

distances to the supertree (e. g. for Ref-AS32 ρ=0.40, p-value = 9.93E-20 – 552 

Supplementary Table 5), suggesting that most of the phylogenetic signal retrieved in the 553 

single-locus trees would not be conveyed by the parsimony-informative sites. Finding 554 

true, orthologous, informative loci still needs development, especially when no close 555 

reference genome is available. This relies on finding a better combination of filtering 556 

thresholds, alignments statistics and tree metrics to reduce the costs and increase the tree 557 

robustness, generating a solid framework to test evolutionary hypotheses.  558 

Finally, one particular advantage of the Sanger approach to reconstructing phylogenies 559 

is its routine application. A phylogenetic dataset can be completed regularly, by adding 560 

additional sequences on a day-to-day basis, with little doubt on the loci sequenced (but 561 

see Mutanen et al. 2016). This is less true for HTS based approaches, which usually 562 

provide a large amount of data requiring significant investment and staff trained in 563 

bioinformatics to eventually combine several datasets, produced in several batches 564 

and/or by different research teams. To combine the advantage of both approaches, i.e. a 565 

small set of well identified loci that can easily be incremented and a larger, more 566 

informative dataset, we propose the following strategy: together with the loci that will 567 

be identified as targets in the exon capture approach, the mitochondrial and nuclear loci 568 

traditionally used in Sanger sequencing (typically, the cox1, 16S, 12S, 28S, 18S and h3 569 

for the mollusks), and even full mitogenomes, could also be captured (e.g. Espeland et 570 

al. 2018with the cox1 only). Hence, the backbone phylogeny obtained with a sequence 571 

capture dataset can further be completed with additional nuclear core markers or 572 

mitochondrial genomes, using a multilevel dataset approach.  573 
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Figure legends 843 

Figure 1. Proportion of articles over time that used Sanger sequencing (dark grey) or 844 

HTS (light grey) to reconstruct a phylogeny. Articles were extracted using the Web of 845 

Science “Basic Search”, every two years from 2006 to 2018, and using the keyword 846 

“Phylogen*” in TITLE only. Only the first 50 articles of the list with newly produced 847 

genetic data with one of the two methods were screened and categorized as “Sanger” or 848 

“HTS”.  849 

Figure 2. Flowchart summarizing the in-silico approach used to generate all the 850 

datasets. Data are framed by parallelograms, tasks by rectangles and datasets by 851 

rounded rectangles. 852 

Figure 3. From top to down and left to right: phylogenetic trees corresponding to the 853 

BC, SAN, MT, Cap-IQ16, Ref-IQ16 and UPh-IQ4 datasets. Outgroups are not shown. 854 

Bootstrap values for the fully supported and intraspecies nodes are not shown. Colors 855 

represent genera or genera-level groups. Scale: average number of substitutions per site. 856 

Figure 4. Distribution of quartet distance of single-locus trees of the Ref-AS16 dataset 857 

against the Ref-AS16 supertree, for the BUSCO loci (dark grey) and the other loci (light 858 

grey). (a) Total number of counts, with indication of some specific loci (e.g. 28S) 859 

distance to supertree (arrows). (b) Scaled density plot, with dotted lines representing the 860 

mean values.  861 

Figure 5. Number of unique and shared transcripts for the Ref, UPh and BUSCO sets of 862 

loci recovered after the first blast step of each pipeline. Total number of transcripts for 863 

all transcriptomes is 3,634,333 (supplementary Table 1). 864 

 865 



Tables 866 

Table 1. Description of the datasets analyzed. Me = median loci length. For the 867 

robustness evaluation, only the nodes between the ingroup to the species nodes were 868 

taken into account. More details on time and money evaluation is available in 869 

Supplementary Table 4. 870 

Table 2. Summary table of the Shimodaira-Hasegawa tests for each dataset constrained 871 

with each topology, with 1,000 resamplings using the RELL method. The topologies are 872 

on the top (as column headers) and the datasets on the side (as row headers). “+”: the 873 

corresponding topology is not rejected; “-”: vice-versa. 874 

 875 



 

Supplementary Material 876 

Supplementary Table 1. Description of the specimens and transcriptomes. 877 

Supplementary Table 2. Correlation table between different sequencing and assembly 878 

results 879 

Supplementary Table 3. Quartet scores for ASTRAL-III datasets 880 

Supplementary Table 4. Evaluation of the costs (time and money) for each dataset. 881 

Supplementary Table 5. Correlation coefficient of single-loci’s quartet distance 882 

against several alignment statistics.  883 

Supplementary Figure 1. 20 species tree produced for this study. 884 

Supplementary Figure 2. Distribution of quartet distance of single-locus trees of the 885 

UPh-AS16 dataset against the UPh-AS16 supertree 886 



dataset type orthology assesment Phylogenetic method
Dataset 
name

No of 
loci

Alignement 
length Missing data Variable sites

Parsimony 
informative sites

Lab 
work

Data 
analysis

Cost per 
specimen

Cost per base 
(per specimen)

Cost per variable site 
(per specimen)

% nodes > 80% BS 
or 95 PP* % nodes = 1*

ML (IQ-TREE) BC 1 658 76 (0.4%) 258 (39.2%) 165 (29%) 2 - 7 0,011 0,027 61.1 16.6
ML (IQ-TREE) SAN 6 4,787 12,820 (8.4%) 889 (18.6%) 565 (11.8%) 2 - 40 0,01 0,045 77.7 55.5
ML (IQ-TREE) MT 1 14,927 27,562 (5.8%) 6,491 (43.5%) 4,922 (33%) 5 1 54 0,0036 0,0085 100 77.7
ML (IQ-TREE) Cap-IQ32 274 136,799 249,086 (5.7%) 46,491 (34%) 28,083 (20.5%) 100 83.3

Supertree (ASTRAL-III) Cap-AS32 274 Me = 498 Me = 402.5 (2.6%) Me = 165.5 (32.6%) Me = 95.5 (18.6%) 77.7 77.7
ML (IQ-TREE) Cap-IQ16 1373 743,778 8,009,019 (33.6%) 266,325 (35.8%) 148,171 (19.9%) 100 88.8

Supertree (ASTRAL-III) Cap-AS16 1373 Me = 548 Me = 1,901 (15.2%) Me = 182 (34%) Me = 92 (17.5%) 94.4 83.3
ML (IQ-TREE) Cap-IQ4 3000 1,623,052 31,758,137 (61.1%) 499,798 (30.8%) 218,629 (13.5%) 94.4 94.4

Supertree (ASTRAL-III) Cap-AS4 2999 Me = 555 Me = 1,491 (26.4%) Me = 154 (29.9%) Me = 56 (11.8%) 94.4 88.8
ML (IQ-TREE) Ref-IQ32 473 480,293 2,533,447 (16.5%) 158,798 (33.1%) 91,619 (19.1%) 94.4 94.4

Supertree (ASTRAL-III) Ref-AS32 473 Me = 698 Me = 1,046 (4.2%) Me = 239 (31.8%) Me = 139 (17.8%) 88.8 88.8
ML (IQ-TREE) Ref-IQ16 4663 8,187,363 153,998,814 (58.8%) 2,450,395 (29.9%) 1,147,534 (14%) 94.4 94.4

Supertree (ASTRAL-III) Ref-AS16 4663 Me = 1,276 Me = 9,438 (34.6%) Me = 409 (31.2%) Me = 183 (14.8%) 94.4 94.4
ML (IQ-TREE) Ref-IQ4 9232 14,586,607 334,525,406 (71.7%) 3,832,278 (26,3%) 1,465,372 (10%) 94.4 94.4

Supertree (ASTRAL-III) Ref-AS4 9232 Me = 1,173 Me = 5,877.5 (42.9%) Me = 314 (27.7%) Me = 100 (9.6%) 94.4 94.4
ML (IQ-TREE) Uph-IQ16 347 245,095 2,812,587 (35.9%) 43,022 (17.6%) 20,211 (8.2%) 88.8 88.8

Supertree (ASTRAL-III) Uph-AS16 345 Me = 618 Me = 0 (0%) Me = 88 (14.3%) Me = 41 (6.7%) NA (84.2) NA(78.9)
ML (IQ-TREE) Uph-IQ4 7313 6,681,038 170,796,960 (79.9%) 1,165,551 (17.4%) 368,737 (5.5%) 88.8 88.8

Supertree (ASTRAL-III) Uph-AS4 7058 Me = 645 Me = 2 (0%) Me = 82 (11.6%) Me = 16 (2.2%) NA (73.7) NA (73.7)

Sanger - DNA barcoding gene
Sanger - multilocus

mitogenome

Genome reference

DATA TIME (days) MONEY (euros) ROBUSTNESS

sequence capture 10 6 to 10 196

0,00445

0,00078

0,00041

0,001432759

0,000263519

0,00012076

0,000572567

0,00003359

0,00001885

0,001122014

0,000041161

transcriptomes 8 275

20 to 40

30 to 50

Genome reference

UPhO
0,000097

0,00071

0,000046

0,000029

0,0026



Dataset / Topology BC SAN MT Cap-IQ32 Cap-IQ16 Cap-IQ4 Ref-IQ32 Ref-IQ16 Ref-IQ4 Uph-IQ16 Uph-IQ4
BC + + + + + + + + + -

SAN + + + + + + + + + -
MT + + + + + + + + + -

Cap-IQ32 - - - + + + + + + -
Cap-IQ16 - - - + + + + + + -
Cap-IQ4 - - - + + + + + + -
Ref-IQ32 - - - + + + - - + -
Ref-IQ16 - - - + + + + + - -
Ref-IQ4 - - - + + + + + - -

Uph-IQ16 - + + + + + + + + -
Uph-IQ4 - - - - - - - - - -
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