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ABSTRACT 

The radular anatomy and evolution of the radular apparatus in predatory marine 

gastropods, superfamily Conoidea, is reconstructed on the basis of a molecular 

phylogeny, based on three mitochondrial genes (COI, 12S and 16S) for 101 species. A 

unique feeding mechanism involving use of individual marginal radular teeth at the 

proboscis tip for stabbing and envenomation of prey at the proboscis tip appeared at the 

earliest stages of evolution of the group. The initial major evolutionary event in 

Conoidea was the divergence to two main branches. One is characterized by mostly 

hypodermic marginal teeth and absence of an odontophore, while the other possesses 

a radula with primarily duplex marginal teeth, a strong subradular membrane and 

retains a fully functional odontophore. The radular types that have previously been 

considered most ancestral, “prototypic” for the group (flat marginal teeth; multicuspid 

lateral teeth of Drilliidae; solid recurved teeth of Pseudomelatoma and Duplicaria), were 

found to be derived conditions. Solid recurved teeth appeared twice, independently, in 

Conoidea – in Pseudomelatomidae and Terebridae. The Terebridae, the sister group of 

Turridae, are characterized by very high radular variability, and the transformation of the 

marginal radular teeth within this single clade repeats the evolution of the radular 

apparatus across the entire Conoidea.  

 

Conoidea, Conus, radula, molecular phylogeny, evolution, feeding mechanisms, toxins, 

morphological convergence, character mapping 
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Introduction 

 

Gastropods of the superfamily Conoidea (= Toxoglossa) constitute a hyperdiverse 

group of predatory marine snails that includes in particular the famous genus Conus. 

Conoideans are notable for the possession of a large venom gland (Figs. 1-4, vg), 

together with a highly modified radula. 

An unusual peculiarity of Conoidean foregut anatomy is that the buccal mass with 

the radular sac is situated at the proboscis base (Fig. 1 – bm, rsod) and the radula 

cannot be protruded through the mouth and used for grabbing and rasping the prey.  

The most outstanding character of Conoidea is the unique mechanism of 

envenomation of the prey. Some conoideans were long known to use individual teeth at 

the proboscis tip for stabbing and injecting neurotoxins into prey (eg. Kohn, 1956). A 

marginal tooth is detached from the subradular membrane (when present), transferred 

to the proboscis tip (Figs. 2, 4), held by sphincter(s) in the buccal tube (Figs. 2, 4 – bts) 

and used for stabbing and envenomating the prey. Use of marginal teeth at the 

proboscis tip was observed directly and studied in detail in various species of Conus 

that possess elongate, barbed, harpoon-like, hollow marginal teeth (Kohn, 1990; Olivera 

et al., 1990; Kohn, Nishi & Pernet, 1999), through which the venom is injected into the 

prey. The prey is swallowed whole, sometimes being similar in size to the predator itself 

(eg. Kantor, 2007). In these cases the radular apparatus underwent profound 

transformation and the odontophore completely disappeared. Another important 

character is that the anterior part of the radular diverticulum, which is homologous to the 

sublingual pouch of other gastropods, is transformed into a caecum (“short-arm of the 

radular sac”), where fully formed marginal teeth are stored prior to their use on the 

proboscis tip (Taylor et al., 1993).  

Conversely, in many conoideans the radular apparatus includes a radula with a 

well developed subradular membrane and a fully functional odontophore with muscles, 

thus suggesting that the radula still has some (although maybe limited) function as a 

complete organ. As in conoideans with hypodermic teeth, the radula and odontophore 

are situated at the proboscis base and normally cannot be protruded through the mouth 

(Fig. 1). In conoideans with non-hypodermic marginal teeth (and a functional 

odontophore) the separate tooth was very often (in most preserved specimens 

examined) found held at the proboscis tip (Figs. 1-2). Teeth were first recorded in serial 

histological sections of probosces in several species of Aforia (Cochlespiridae) (Sysoev 

& Kantor 1987), Drilliidae (Sysoev & Kantor 1989), and in three additional families, here 
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referred to as Turridae, Clavatulidae and Pseudomelatomidae (Kantor & Taylor, 1991). 

The base of the tooth was held by special sphincter(s) and/or an epithelial pad of the 

buccal tube. Thus the presence of marginal teeth detached from the radular membrane 

and of different morphologies, from solid duplex to specialized hypodermic, used one by 

one at the proboscis tip for stabbing the prey can be inferred from anatomical 

characters (presence of the sphincters in the buccal tube). 

Peculiarities of the feeding mechanisms have been discussed for different groups 

of Conoidea (eg. Taylor et. al., 1993; Kantor et al., 1997; Kantor & Taylor, 2002) and 

several feeding mechanisms have been suggested. Based on the foregut anatomy, the 

use of the teeth at the proboscis tip was found improbable in only two groups of radulate 

Conoidea that possess the proboscis – Strictispiridae, and the clade formed by the 

genera Pseudomelatoma, Hormospira and Tiariturris, previously recognized as a 

separate (sub)family Pseudomelatomidae (Kantor, 1988; Kantor & Taylor, 1991, 1994). 

In all others the marginal teeth are used at the proboscis tip. 

Despite the fact that the Conoidea are one of the most well-known groups of 

Neogastropoda from the point of view of anatomy and lately molecular phylogeny, data 

on their feeding and diet are still very limited. With the exception of Conus information 

on feeding is available for fewer than 50 species and involved much less direct 

observation (eg. Heralde et al., 2010). Most of the conoideans (other than Conus) feed 

on sedentary and errant polychaetes, although feeding on other worms (sipunculans 

and nemerteans) and even molluscs has been recorded (Miller, 1989, 1990). This 

information is derived mainly from gut content analysis.  

Radular anatomy of the Conoidea is highly variable both in terms of the number of 

teeth in a transverse row and in the shape of the teeth. For a long time, radula 

morphology together with shell characters constituted the basis of the higher 

classification of the group (e.g. Powell, 1942, 1966; McLean, 1971). Since about 1990 

anatomical investigations of conoideans have revealed great variability in foregut 

anatomy, and characters defined in these studies have been used to unravel 

phylogenetic relationships (Taylor, 1990; Taylor et al., 1993; Kantor, Medinskaya & 

Taylor, 1997). Various hypotheses have been proposed concerning the evolutionary 

transformations in radular morphology of Conoidea (Shimek & Kohn, 1981; Kantor & 

Taylor, 2000; Kantor, 2006). However, one of the reasons for the lack of a clear 

understanding of major radular transformations is that radula evolution was inferred 

from phylogenetic hypotheses themselves based partially on radular morphology (eg. 
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Taylor et al., 1993). As a consequence many parallel evolutionary transformations 

cannot be traced. 

The rapid development of molecular phylogenetics provided new insight and 

revolutionary changes in our understanding of conoidean evolution. DNA sequences 

were first used to infer phylogenetic relationships within genera or subfamilies (e.g. 

Espiritu et al., 2001; Duda & Kohn, 2005; Heralde et al., 2007; Holford et al., 2009) and 

then among most of the families and subfamilies (as erected by Powell, 1942, 1966; 

McLean, 1971; Taylor et al., 1993) of the Conoidea (Puillandre et al. 2008). An updated 

molecular phylogeny based on three mitochondrial genes (COI, 12S and 16S) and 

including representatives of 103 genera was recently proposed (Puillandre et al., 2011). 

The single recognized taxon missing from the analysis was the (sub)family 

Strictispiridae McLean, 1971. Most of the clades inferred have robust support that 

allowed the status of the different families and subfamilies previously proposed to be 

clarified and lead to a new classification of the group into 15 families (Bouchet et al., 

2011).  

The molecular framework provides an opportunity to reconstruct the transformation 

of the morphological characters and to test previously proposed hypotheses. This 

approach has demonstrated the independent loss of the venom gland in two 

independent lineages of Terebridae (Holford et al., 2009), but is still not widely used in 

Conoidea. Here we attempt a reconstruction of the major morphological transformations 

of the radular apparatus in Conoidea based on the molecular phylogeny. For the first 

time evolution of the radular apparatus is discussed based on a framework 

reconstructed using characters completely independent of anatomy, that is DNA 

sequences. Understanding the transformations of the radular apparatus is important not 

only for understanding the evolution of the group in general, but also because it may 

provide new insight into the factors leading to hyperdiversification of the group that lead 

to the appearance of probably the most diverse marine mollusc taxon in terms of 

species richness. Furthermore, clarifying the evolution of the group, and in particular the 

evolution of characters linked to the venom apparatus, should be of great value in the 

discovery of new venom compounds with pharmacological applications (Olivera 2006, 

Puillandre & Holford 2010). 
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Material and methods 

 

Radula preparation 

Of the 102 ingroup species in the molecular analysis (Puillandre et al. 2011), the 

radula of 51 species was examined (in most cases using the same specimens as used 

for the molecular analysis), 10 species were radula-less, and for 13 species published 

data were used (Table 2). In most cases unavailability of the radula was explained by 

destruction of the body during DNA extraction (usually for very small specimens). For 

six species radular characters were examined using congeners (usually those whose 

position within the genus was confirmed by other molecular data). These species are 

marked by an asterisk on the molecular trees. The complete range of variability of the 

radula in Conoidea is not, however, covered by the species in our tree (only a single 

species of each genus was used in the analysis). Although some species with important 

or unique radular morphology are not included in the current analysis, from separate 

molecular analyses we know their phylogenetic position and therefore these species are 

sometimes mentioned in the discussion. 

The radulae were always cleaned with diluted bleach (1 part of commercially 

available bleach to 3-4 parts of distilled water). Cleaning radulae in bleach does not 

damage radular teeth or the subradular membrane if used in the correct concentration 

and if the radulae are not exposed to bleach for a long time. Furthermore, soft tissues 

are diluted in bleach rapidly (usually within a few minutes), allowing continuous 

observation under the microscope that reveals many important features that otherwise 

can easily be overlooked, eg. folding of the radular membrane, attachment of radular 

teeth to the membrane, presence of a ligament, etc. 

The tiny radulae were cleaned in a drop of water placed on a cover-slip. The 

bleach was added either with a syringe or a minute plastic pipette. After dissolving the 

soft tissues the radula or separate radular teeth were transferred with a needle or single 

hair into a drop of clean water on the same cover-slip. This minimizes the chance of 

losing the small radulae. Two changes of water were usually enough to rinse the radula. 

After rinsing, the radula was partially pulled out of the drop so that the extruded part 

adheres to the glass by surface tension. This permits the radula membrane to be more 

easily unfolded with a single hair, and allows individual teeth to be placed in the desired 

position prior to drying. The radula was then completely pulled out of the water drop and 

allowed to dry. The cover-slip was then mounted on the stub. Although simple, this 
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method provides excellent results, allowing manipulating objects smaller then 100 µm in 

length. 

Acronyms for depositories of voucher specimens 

INVEMAR – Instituto de Investigaciones Marinas y Costeros, Colombia 

MNHN -- Muséum National d’Histoire Naturelle Paris, France 

MNZ – Museum of New Zealand Te Papa Tongareva, Wellington, New Zealand 

NHMUK – Natural History Museum, London, UK 

USNM – National Museum of Natural History, Smithsonian Institution, Washington 

DC, USA 

 

Tree mapping 

Nine radular morphology characters coded as 31 character states (Table 1) were 

used for reconstruction of the radular transformation. Characters were mapped on the 

tree of Puillandre et al. (2011) using Mesquite Version 2.74 (Maddison & Maddison, 

2007-2010), using the option ‘‘tracing character history’’ and the parsimony ancestral 

reconstruction method. Most of the characters were treated as unordered. For the 

characters describing central and lateral teeth (characters # 1 & 2 in Table 1) the 

stepmatrix model was tried in addition to the unordered; it allows interdicting some of 

the transformation sequences, in our case from absent to present, that is interdicting re-

appearance of central and lateral teeth after they had been lost. 

The familiar classification accepted here is that of Bouchet et al. (2011). For 

convenience, in addition to the families recognized by Bouchet et al. (2011) we refer to 

major clades A and B (without attributing any taxonomic status to them) that are 

different in many aspects of anatomy and radular morphology. 

 

Results 

 

Although the radulae of Conoidea have been described in many publications, the 

thorough use of scanning electron microscopy revealed many previously overlooked 

characters and allowed new interpretations of structures already described. Therefore 

we provide here a much updated overview of the radular characters. The evolution of 

each of the nine characters analysed is described. 

 

Character 1. Central tooth of the radula (Figs. 5 and 6). 

6 
 



A central tooth is present in all outgroups. It is absent in clade A and present in 

some groups of clade B. The morphology of the central tooth is rather variable in 

gastropods. Two major types are found in the outgroups, both multicuspid. Describing in 

detail the morphology of the teeth of groups other than Conoidea (eg. Bandel, 1984) is 

outside the scope of the current paper. In Conoidea the situation with the central tooth is 

very confusing. In some species the central tooth appears as a well-defined structure. 

Two major types of such teeth can be identified: narrow unicuspid (shield-like with a 

small cusp and sometimes with additional serrations) (Figs. 7-9, 12-13); and broad 

unicuspid, with a large curved cusp and well defined lateral flaps (Fig. 14). 

Conversely, in a number of Conoidea from clade B there are vestigial rather 

indistinct structure(s) occupying the middle portion of the subradular membrane (Fig. 

29, 31 – marked with arrows). In some cases they can be hardly seen without staining 

the radular membrane or even under SEM. These structures may be either a much 

reduced broad central tooth with lateral flaps with or even without a central cusp, or 

alternatively three teeth – vestigial central and vestigial laterals (see below) partially or 

completely fused (Fig. 17-18). Vestigial structures were found in some 

Pseudomelatomidae, Clavatulidae and Turridae (Iotyrris Medinskaya & Sysoev, 2001). 

Narrow unicuspid central teeth are found in most Drilliidae and some Turridae (in 

our dataset exemplified by species of Xenuroturris Iredale, 1929 and Turridrupa Hedley, 

1922 – Figs. 34-35, as well as Gemmula and Turris). A broad well defined central tooth 

was recorded in three clades – in some Pseudomelatomidae (Pseudomelatoma, 

Hormospira Berry, 1958 and Tiariturris Berry, 1958 – Fig. 14), Cochlespiridae (Fig. 40), 

and Gemmuloborsonia Shuto, 1989 (not currently attributed to any family – Fig. 32). In 

these genera the posterior edge of the tooth, bearing the cusp, is well elevated over the 

membrane. 

Four analyses were performed. In the first, the inconspicuous central teeth, when 

recognized, were considered as unicuspid narrow (lateral flaps were considered as 

vestigial plate-like lateral teeth), and character states were unordered (Fig. 5). The tree 

was 13 steps long and suggested that the plesiomorphic condition of the character in 

clade B is the absence of the central tooth and the central teeth originated 

independently in 8 clades. Since central teeth are present in the outgroups this can be 

considered a reversion. However, the presence of numerous reversions within clade B 

seems rather unlikely. 

Therefore the second analysis was performed with reversions interdicted 

(stepmatrix parsimony model) (Fig. 6). The tree was 18 steps long (5 steps longer) and 
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the analysis did not allow reconstruction of the single most parsimonious state in Clade 

B, since a multicuspid tooth (characteristic for Neogastropoda), a narrow unicupsid 

tooth and a broad unicuspid tooth are equally parsimonious. This analysis suggested 

independent losses of central teeth in several clades: most species of 

Pseudomelatomidae, Leucosyrinx Dall 1889, Horaclavidae and Terebridae, as well as in 

some species of Turridae and Clavatulidae. 

The third and forth analyses were with alternative coding of the characters and 

with unordered and stepmatrix parsimony models correspondingly. Species with 

vestigial central structures were coded as having the broad unicuspid teeth. The 

reconstruction produced longer trees (15 and 20 steps, respectively), which were 

therefore rejected. 

 

Character 2. Lateral teeth of the radula (Fig 27). 
Lateral teeth are present in all outgroups. They are absent in Clade A and present 

in some groups of Clade B. 

There are two major types of lateral teeth among the ingroup species in our tree. In 

Drilliidae they are well formed and multicuspid, completely separate from the central 

tooth (Figs 7-10). In all others (some Pseudomelatomidae, Turridae and Clavatulidae) 

they are very weak, plate-like, non-cuspidate and usually completely or partially fused 

with the central tooth (when it is present), forming the "central formation" (Kantor, 2006) 

(see the discussion below). In some groups the laterals are so weak that their presence 

can be revealed only by staining of the subradular membrane. This is particularly 

characteristic for Clavatulidae, in which they were first revealed by Kilburn (1985). 

A first analysis with character states unordered suggested the absence of lateral 

teeth is ancestral for the Conoidea and independent appearance of the lateral teeth 

occurred independently in five clades (all in clade B). Since central teeth are present in 

outgroups these events would be considered as a reversions. 

The second analysis was performed with reversions interdicted (Fig. 27) and 

resulted in a longer tree (17 steps vs 9 in the previous analysis). The analysis did not 

allow reconstruction of the single most parsimonious state for the entire Conoidea nor 

for Clade B since multicuspid neogastropod type teeth, unicuspid neogastropod type 

teeth and plate-like lateral teeth were equally parsimonious.  

For most of clade B conoideans (except Cochlespiridae) the most parsimonious 

state was plate-like teeth, while multicuspid teeth seems to re-appear in the branch that 

combines Drilliidae and Pseudomelatomidae. Lateral teeth are independently lost in 
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several lineages – in most species of Pseudomelatomidae, Horaiclavidae, Terebridae 

and others. 

In all the species in our tree, the presence of the lateral teeth was combined with 

the presence of the central tooth, which is not the case for all conoideans (see 

discussion). 

 

Character 3. Morphology of the marginal teeth (Fig. 43). 
Despite great variability of the marginal teeth in Conoidea, four major types can be 

recognized: 

a. duplex teeth, consisting of a major element (limb) attached to the 

subradular membrane along most of its length (Figs. 23-24 – ml) and the 

accessory limb, that is the thickened edge of the major element, usually 

more or less elevated above the membrane (Fig. 23-25 – al). These teeth 

demonstrate the great variability in shape (see Kantor, Taylor, 2000) (Figs. 

28, 30, 33, 34-42) and have often been referred to as "wishbone" (e.g. 

Powell, 1966). The term was coined based on the misconception that the 

limbs are separate and the tooth is actually bifurcating, as it appears under 

the light microscope (most of Clade B). In some cases the limbs are nearly 

equally developed and the teeth attain a trough-shape, becoming “semi-

enrolled” (see below, Figs. 25-26). In the analysis this condition was also 

coded as “duplex teeth”. 

b. flat simple plate-like teeth (some Drilliidae) (Fig. 7). 

c. Solid, recurved teeth, attached to the membrane along part of the length, 

sometimes with a slightly broadened base that is actually attached to the 

membrane (some Pseudomelatomidae -- Pseudomelatoma, Hormospira 

Berry, 1958 and Tiariturris Berry, 1958 – Fig. 14; some Terebridae -- 

Euterebra and Duplicaria – Fig. 48, the latter not represented in our tree). 

d. Hypodermic teeth. These are hollow enrolled teeth (Figs. 47, 49, 50-53) 

attached to the subradular membrane only by a narrow base or through a 

flexible stalk, the ligament (Fig. 51) (some Borsoniidae, Conidae and 

others). 

 

The analysis was not able to resolve the single most parsimonious state for the 

entire Conoidea, but suggested that a duplex tooth is the most parsimonious state for 

clade B. Flat teeth are characteristic only for some Drilliidae and according to the tree 
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they are an autapomorphy of several species, thus suggesting their derivation from 

duplex teeth. Similarly, solid recurved teeth originated from duplex teeth twice 

independently in the evolutionary history of Conoidea – in some Pseudomelatomidae 

and Terebridae. Hypodermic teeth are a synapomorphy of clade A but also appeared 

independently in Terebridae. The marginal teeth have been also lost several times 

independently (at least three times in clade B and twice in Terebridae).  

 

Character 4. Morphology of duplex marginal teeth (Fig. 44). 
Duplex teeth are very variable in morphology. The difference in appearance is 

mainly determined by relative size and shape of the accessory limb, as well as the 

degree of its elevation above the surface of the subradular membrane. The 

representation of the taxa in our tree does not allow more detailed analysis, although 

the general patterns can be traced. 

We recognize four subtypes of duplex teeth, although much more variation can be 

found in other Conoidea not included in our study. 

The first subtype is characterized by equal or nearly subequal development of 

major and accessory limbs. This type of tooth is found in Cochlespiridae (Figs. 40-41) 

(represented only by two genera in our tree) in which the teeth are characterized by 

relatively large size of the accessory limb (Fig. 41 – al) that is of nearly the same size as 

the major limb (Fig. 41 – ml). This produces the appearance of the tooth folded 

lengthwise. The analysis suggested that it is an apomorphy of the clade. 

A similar subtype, although having a different appearance, is the so-called semi-

enrolled tooth (Taylor et al., 1993; Kantor, Taylor, 2000). In this type the accessory limb 

is also subequal in size to the major limb (Figs. 25-26), but the lengthwise folding is 

much less tight and the teeth attain a trough-like shape. According to the analysis, this 

type of tooth appeared several times independently in clade B – in some genera of 

Pseudomelatomidae (in the clade Pilsbryspira McLean, 1971, Zonulispira Bartsch, 1950 

and Pyrgospira McLean, 1971 – Fig. 21, and independently in Ptychobela Thiele, 1925 

(Fig. 22), Cruziturricula Marks, 1951 (Fig. 11), Imaclava Bartsch, 1944, and Iotyrris 

(Turridae). 

The most parsimonious plesiomorphic state for most of clade B (except 

Cochlespiridae) is the duplex marginal tooth with unequal sizes of the major, larger limb 

and smaller accessory limb (“unequal limbs” in Fig. 44). Depending on the degree of 

difference the tooth may look very different, in its most extreme state being nearly flat 

with a narrow and very slightly raised accessory limb (eg. Funa Kilburn, 1988 – Fig. 37). 
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In most groups the accessory limb is comparatively large and the tooth edge adjoining 

the limb is significantly raised above the membrane, so that the accessory limb 

occupies the dorsal position on the major limb (eg. 20, 39). Different teeth of this 

subtype have been thoroughly illustrated by Kantor et al. (1997) and Taylor et al. 

(1993). 

A characteristic type of duplex tooth is found in the genera Comitas Finlay, 1926 

and Knefastia Dall, 1919 (Figs. 16, 23). The teeth are nearly flat, broadly elongate, with 

the major limb thickened at the tip and along one side, while the accessory limb is 

represented by the narrow thickened margin of the tooth that does not reach the tip of 

the tooth but is inserted in a shallow and narrow socket, slightly overlaying the 

thickened part of the major limb. 

 

The several following characters (5-8) apply to hypodermic teeth only. 

Hypodermic teeth are hollow enrolled marginals, usually with overlapping edges 

(exemptions are some representatives of Mangeliidae – Fig. 50, not present in our 

dataset) and open at both the tooth base and near the tip. Teeth of this morphology are 

found mostly among representatives of clade A and in most radulate Terebridae. 

Nevertheless, in at least one genus of Clavatulidae (Toxiclionella Powell, 1966) and in 

Cruziturricula the marginal teeth are very similar in anatomy (Figs. 11, 32). The major 

difference between hypodermic teeth in clade A and Terebridae on one hand and in 

Toxiclionella and Cruziturricula on the other is the form of attachment to the radular 

membrane. In the former, the teeth are attached only by the base, while in the latter 

along most of their length. This suggests different evolutionary origins of such teeth 

(Kantor & Taylor, 2000). 

The anatomy of hypodermic teeth has been successfully used in the phylogenetic 

reconstructions of Conidae (Kohn et al., 1999) and high congruence was found between 

feeding type and tooth anatomy in Conus (eg. Duda et al., 2001). At the same time 

there is a limited number of characters, that are widespread across multiple families 

posessing hypodermic teeth. 

 

Character 5. Presence of a spur (Fig. 45). 
The basal spur is an anterior projection on the base of the tooth (Fig. 53). Its 

function is probably to tighten the grasp of the proboscis tip during feeding and thus to 

prevent premature loss of the tooth from the proboscis (Kohn et al., 1999). Our analysis 
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suggested several independent origins of this character – in Conidae, Borsoniidae, 

Mangeliidae and Terebridae (Fig. 45). 

 

Character 6. Presence of a barb(s) (Fig. 54). 
A barb is a projection from the shaft of the tooth that has a cutting edge and joins 

the shaft at an acute angle (Fig. 52). There can be from 0 to 5 barbs (Conus 

californicus) (Kohn, Nishi & Pernet, 1999). The analysis suggests that the barbs 

appeared independently in every family of clade A except Mitromorphidae, in which they 

are absent.  

 

Character 7. Presence of a blade (Fig. 55). 
The blade is a projection from the shaft of the tooth that has a cutting edge and 

joins the shaft at an obtuse angle (Kohn et al.,, 1999) (Fig. 53). In some cases the 

distinction between a barb and a blade is subtle. The analysis suggested that a blade 

originated independently twice – in clade A and in Terebridae. Presence of a blade was 

the most parsimonious ancestral state for clade A (Fig. 55). 

 

Character 8. Presence of a ligament (Fig. 56). 
The ligament is an elongate, flexible stalk, attached to the base of the tooth and to 

the membrane, when the latter is present (Fig. 51). In fresh radulae the ligament can be 

subcircular in cross-section, but when air-dried the ligament is usually flat and 

membrane-like. The presence of a ligament is often not recorded during radula 

description. 

A ligament has so far only been recorded in clade A, and its presence is the most 

parsimonious ancestral state for the clade. It is present in Conidae, Borsoniidae, 

Mitromorphinae and at least in one species of Raphitomidae (Thatcheria mirabilis – see 

Taylor et al., 1993 -- fig. 23 c). 

 

Character 9. Use of marginal teeth at the proboscis tip for stabbing prey (Fig. 
57). 

The analysis suggested that the use of marginal teeth at the proboscis tip is the 

most parsimonious plesiomorphic state for the entire Conoidea. 
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Discussion 

 

Origin of the conoidean feeding mechanism and general evolutionary trends 

 

Use of separate marginal teeth one by one at the proboscis tip is one of the most 

intriguing characters of conoidean evolution. Taylor et al. (1993) suggested that 

conoidean feeding mechanisms gradually evolved within the group, but first appeared in 

the early stages of conoidean evolution. We traced the use of separate marginal teeth 

at the proboscis tip on a molecular tree using available published and unpublished 

anatomical data. As was mentioned in the introduction, the base of the tooth is held by 

special sphincter(s) and/or an epithelial pad of the buccal tube. Thus use of teeth at the 

proboscis tip can be inferred from anatomical characters (presence of the sphincters of 

the buccal tube). Although we do not have anatomical data for every species included in 

our analysis, they are available for species of most of the genera and for every family, 

allowing us to extrapolate to the remaining members of the clade. The analyses clearly 

suggested that the origin of the peculiar feeding mechanism is an apomorphy of 

Conoidea in general, and it appeared before the divergence of the two major clades (A 

and B) (Fig. 57). 

The initial divergence of Conoidea into clades A and B (that is the clades with 

primarily hypodermic and primarily duplex marginal teeth, respectively) is an 

unexpected inference from the conoidean molecular phylogeny. In previous cladistic 

analyses based on morphological characters the representatives of clade A (referred to 

as family Conidae by Taylor et al., 1993) appeared as a terminal clade, suggesting the 

gradual transformation of radular morphology. The molecular-based results contradict 

this hypothesis. 

Although there is no fundamental difference in feeding mechanism between clades 

A and B, there are nevertheless important differences in the anatomy of the radular 

apparatus. In clade B, the radular apparatus consists of a more or less well-developed 

odontophore with supporting musculature (it is absent only in a few species that lack a 

radula, eg. Horaiclavus phaeocercus Sysoev, 2008, Horaiclavidae – Fedosov & Kantor, 

2008), moderately strong continuous radular membrane and (not always) presence of 

central and/or lateral teeth. An important character of the radula is that the marginal 

teeth are attached to the membrane along a significant or even most of their length. 

Exceptions are some Terebridae (discussed below). 
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In clade A an odontophore with muscles is absent and the subradular membrane is 

very thin to vestigial. The teeth are attached to the membrane only by the very narrow 

base of the tooth, sometimes through a flexible stalk – the ligament. The attachment of 

the marginal tooth (of hypodermic type) to the membrane only by the base facilitates 

rolling of the tooth, which may be formed by a few completely overlapping rolls in 

Conidae (for more details see Kantor & Taylor, 2000), although usually the edges of the 

tooth plate are only slightly overlapping (Fig. 51 – cross sections through the tooth). 

Thus the molecular analysis suggests that appearance of the conoidean feeding 

mechanism was the key apomorphy of the superfamily. We suggest that it may have 

greatly improved prey capture and allowed rapid diversification and species radiation 

that resulted in the modern hyperdiverse group that includes about 4600 Recent 

described species and a larger number of still unnamed ones (Bouchet et al., 2009). 

The splitting of Conoidea into two groups with different radular types and foregut 

anatomies was the first major evolutionary event, taking place at the earliest stage of 

evolution of the group after the initial appearance of the unique feeding mechanism. 

 

Transformation of the non-hypodermic marginal teeth (clade B) 

 

Non-hypodermic marginal teeth are found in clade B and are very variable, 

although they can be reduced to 3 major morphological types – duplex (including semi-

enrolled), solid recurved and flat simple plate-like. 

The solid recurved teeth were previously considered as the prototype marginal 

teeth in Conoidea (eg. Kantor & Sysoev, 1990) and with the exception of three genera, 

which were united in the Pseudomelatomidae (sensu Taylor et al., 1993), were also 

found in some Terebridae (genera Duplicaria and Euterebra). The tooth morphology in 

these two lineages is very similar. Plotting the character on a molecular tree clearly 

indicated that this tooth type appeared independently twice and analysis suggested that 

this type of marginal tooth developed secondarily from duplex teeth. Some important 

differences can also be mentioned: in Pseudomelatomidae sensu Taylor et al., 1993 the 

radula is long (about 100 rows of teeth in Tiariturris) and possesses large and broad 

unicuspid central teeth; in Terebridae with these solid recurved teeth the radula is short 

(about 20 rows of teeth) and lacks the central teeth. 

The functioning of this type of radula remains largely unknown. The shape of the 

rather strongly recurved teeth precludes their use separately at the proboscis tip. In 

Duplicaria and Euterebra the venom gland as well as proboscis is absent, while the 
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odontophore is present (Rudman, 1969; Taylor, 1990). In Pseudomelatoma and 

Hormospira the venom gland is present and well developed, the proboscis is long, but 

the buccal tube lacks the sphincter that can hold the tooth (Kantor, 1988). 

The three genera comprising Pseudomelatomidae sensu Taylor et al., 1993 (and 

encompassing only six Recent species) have very limited distribution – all are found in 

the Panamic province. It is possible that they comprise a local radiation connected to a 

shift to some peculiar type of prey, although this needs further confirmation. The 

presence of a large odontophore suggests that radulae with solid recurved marginal 

teeth are primarily used as an entire organ (probably for tearing and rasping the prey). 

In contrast, Terebridae with this type of radula (Taylor, 1990) have a broad distribution 

in the Indo-Pacific – species are found from South Africa to Japan, including the 

Solomon Islands and Oman, and some species have a broad Indo-Pacific distribution. 

They lack a proboscis and venom gland and probably are more general feeders, 

involving their long labial tube in prey capture. 

Flat marginal teeth have also been considered as a prototype for the duplex teeth 

(Taylor et al., 1993) and were found in some Drilliidae (among the genera used in our 

analysis in Agladrillia, Splendrillia and Cerodrillia). The analysis demonstrates that this 

condition is autapomorphic and this type of tooth most probably originated by 

simplification of the duplex teeth, the presence of which is the plesiomorphic state for 

the entire clade B and Drilliidae in particular. 

Within the most common duplex type of marginal teeth many different 

morphologies can be recognized (Figs. 16-21, 34-42), although they are very similar in 

mode of formation. Kantor & Taylor (2000) studied maturing teeth along the radular 

membrane and showed that they develop from a flat plate by thickening of the tooth 

edges and elevation of the posterior edge (additional limb) from the membrane. This 

thickening of the margins of duplex teeth, folding along the length and partial enrolling 

(in the semi-enrolled teeth) can be explained as features that provide mechanical 

strength. In mechanical terms, a simple flat plate is less stiff and more likely to buckle 

when subject to a compressive force, than one with thickened edges or a hollow 

cylinder (Wainwright et al., 1976). Teeth used at the proboscis tip need to be rigid to 

pierce the prey’s integument. 

Although marginal tooth shape appeared to be rather homoplastic, it is 

characteristic for some of the well defined clades. For example, in Cochlespiridae the 

accessory limb is large, nearly equal in size to the major limb. Therefore the tooth 

appears to be folded lengthwise with a solid tip. Clavatulidae also possess rather 
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distinctive duplex teeth with a sharp-edged major limb and a deep socket where an 

accessory limb is inserted, often with angulation distal to the socket. The well-supported 

clade including genera Pilsbryspira, Zonulispira, and Pyrgospira is characterized by 

semi-enrolled teeth with a similar shape and was previously considered a separate 

subfamily Zonulispirinae. In some duplex teeth (eg. in Funa and Cheungbeia) the 

secondary limb is minute, nearly obsolete. Kantor & Taylor (2000) suggested, based on 

a morphological tree, that this is a derived state. The current analysis confirms this 

hypothesis. 

In the single genus Toxiclionella Powell, 1966 (not present in our analysis), 

referred to Clavatulidae and that still possesses an odontophore, the teeth are hardly 

distinguishable from true hypodermic teeth (Fig. 32) having two barbs at the tip and a 

subterminally opening tooth canal. The marginal teeth are attached to the membrane 

along most of their length, similarly to other species of clade B. 

 

Transformations of the central radular segment (Clade B) 

 

The peculiar feeding mechanism of Conoidea is associated with the anatomy of 

the foregut. In all Conoidea the buccal mass with the radular diverticulum (and 

odontophore with muscles in clade B) is situated at the proboscis base and often behind 

proboscis in its contracted state. The odontophore cannot be protruded through the 

mouth and therefore the radula has limited function as an integrated whole organ in 

most conoideans. A few exceptions occur sporadically in different clades. In these 

groups the buccal mass is secondarily shifted anteriorly or is able to evert through the 

mouth along with the walls of the buccal tube (eg in Funa latisinuata – Taylor et al., 

1993, fig. 14). 

The limited functioning of the radula as an integrated organ in adults is indirectly 

confirmed our not observing traces of worn teeth (marginal, and central or laterals when 

present) in radulae examined by us (except Drilliidae, see below). Thus the central and 

lateral teeth are hardly functional in Conoidea (while the marginals detached from the 

membrane are used individually at the proboscis tip) and therefore the adaptive value of 

their morphological transformations may be reduced. This may explain the high 

variability of the morphology of the central segment of the radula that includes the 

central and lateral teeth. 

In general the evolutionary transformation of the central (and lateral teeth) in clade 

B is complicated. Analysis of the morphology of the central tooth with unordered 
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character states produced a shorter tree, but suggested initial reduction of the tooth in 

the entire Conoidea and subsequent multiple (eight in our dataset) independent re-

appearances in different clades, that is multiple reversions (Fig. 5). This is not highly 

parsimonious and it is especially difficult to explain these reversions from a functional 

point of view due to the limited functions of the central and lateral teeth. On the contrary, 

non-functionality of the central segment seems to be congruent with reduction and 

complete loss of the central segment in different lineages as was suggested by the 

stepmatrix analysis (Fig. 6). 

Similarly we found the numerous losses of the lateral teeth (stepmatrix analysis – 

Fig. 27) more probable (although less parsimonious) than initial reduction of the teeth in 

the entire Conoidea and independent re-appearance in five clades (analysis with 

unordered character states). Only in Drilliidae do the lateral teeth seem to be functional 

(see below), while in other clades they are very weak plate-like structures, sometimes 

appearing only as inconspicuous thickenings of the subradular membrane (eg in 

Pusionella compacta – Fig. 29, vlt).  

The central tooth is a highly variable structure in Conoidea, ranging from very 

narrow unicuspid to broad with a large cusp and well developed lateral flaps. Kantor & 

Sysoev (1991) and Taylor et al. (1993) suggested that the broad central tooth in some 

groups may be the result of fusion of paired lateral teeth with the narrow unicuspid 

central tooth. In some species, attributed here to Pseudomelatomidae (Crassiclava 

turricula – Figs. 19-20, Antiplanes sanctiioannis (Smith, 1875) – Kantor & Sysoev, 1991, 

figs. 27-28; Comitas onokeana vivens Dell, 1956 – Fig. 15), clearly separate plate-

shaped lateral teeth without cusps were found. In these species the central tooth (cusp) 

is absent. In Comitas Finlay, 1926 and the related genus Knefastia Dall, 1919 

intermediate stages can be found. In K. tuberculifera in addition to a very weak and 

reduced central tooth (Fig. 18, ct) vestigial lateral plates (teeth) can be observed (vlt); in 

Comitas pachycercus Sysoev et Bouchet, 2001, Comitas murrawolga (Garrard, 1961) 

and Comitas sp. (Figs. 16-17) the central structure looks like a well defined central tooth 

with a narrow cusp and broad lateral flaps. This transition row in closely related species 

suggests a composite structure of the “central tooth” in this group, formed by fusion of 

the central narrow tooth with cuspless laterals. Kantor (2006), after examination of the 

radula of 64 species from 7 genera of Turrinae (= Turridae in the current classification), 

confirmed the composite structure of the "central" tooth, which is formed by the fusion of 

central and lateral teeth and suggested calling this structure the “central formation”. In 

Turridae transitional conditions ranging from a clearly tripartite structure with a gap 
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between the cusp (=central tooth) and the lateral flaps (=lateral teeth) to a seemingly 

solid central tooth occur, sometimes within a single genus. This range can be illustrated 

by the different species of Turridrupa Hedley, 1922 (see Kantor, 2006, fig. 4) or 

Gemmula (herein, Fig. 58-63). In Gemmula unilineata Powell, 1967 the central tooth is 

well separated from the narrow laterals (Figs. 58-59); in Gemmula sp. 3 (sensu Kantor 

2006) the lateral teeth are close to the central tooth, but separated by gaps (indicated 

by arrows on Fig. 63), and finally in Gemmula rarimaculata the lateral and central teeth 

are fused (Figs. 60-61). Finally in three clades – in Cochlespiridae, in that combining 

Pseudomelatoma and Tiariturris (Pseudomelatomidae sensu Taylor et al., 1993), and in 

Gemmuloborsonia there is no indication that the central tooth has a composite origin. 

The posterior margin, bearing the cusp is equally developed along its width and 

elevated over the radular membrane. Without further information we conclude that these 

groups possess the broad unicuspid central tooth, while the lateral teeth are absent. 

This conclusion could be rebutted by observations of embryonic development of the 

radula, that may demonstrate a composite structure of the central teeth. 

One of the unexpected results of our analysis is the possible secondary origin of 

the multi-cuspidate separate and well formed lateral teeth in Drilliidae. Previously this 

type of the tooth was considered prototypic for turrids (Powell, 1966; Kantor, Sysoev, 

1991), and this hypothesis was the rationale for placing the Drilliidae as a separate 

family from the other Turridae sensu Taylor et al. 1993. According to the analysis, the 

multicuspid lateral teeth may be the ancestral state for clade B; they then disappeared 

and re-appeared again in the Drilliidae plus Pseudomelatomidae clade, though 

multicuspid teeth are present only in the former family. However, different runs of the 

analysis with different coding of radular character states in the outgroups suggested 

different most parsimonious plesiomorphic conditions in clade B, but in none of the runs 

were multicuspid teeth the single plesiomorphic state. One of the reasons for these 

inconclusive results may be the fact that the homology of different teeth in 

Neogastropoda (including outgroups) is not yet finally established and the relationships 

within the entire Neogastropoda are far from resolved. 

From a general point of view it seems more probable that well pronounced 

multicuspid lateral teeth in Drilliidae is the plesiomorphic condition in Conoidea, retained 

due to peculiarities of their feeding mechanism. Unfortunately there is practically no 

information on the diet and radula functioning of drilliids. The only published record is 

that of Maes (1983) of the gut content of Drillia cydia (Bartsch, 1943). Finding intact 

prey (sipunculid) in the posterior oesophagus suggested that the radula is used for 
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gripping and/or piercing, not rasping or tearing. Drilliidae studied by us possess large 

and powerful odontophores, which may suggest active use of the radula as an 

intgegrated whole organ. To confirm this we carefully examined the bending plane of 

the radulae. In many species the laterals and even the central teeth were badly 

damaged (Fig. 12 – broken parts of the teeth are marked by small arrows); damage on 

the marginal teeth in the same specimens was not observed. These observations 

suggest that lateral (and even small central) teeth are functional, but without additional 

data on feeding in this group it is impossible to draw any final conclusions about the 

mode of functioning. 

One important question remains: why in clade B conoideans, which possess in 

general the same feeding mechanism as clade A species, are the odontophore and its 

musculature retained? The odontophore varies in size from large in Drilliidae and some 

Pseudomelatomidae (Pseudomelatoma) (Taylor et al., 1993) to very small or nearly 

obsolete (eg. in some Hindsiclava, Pseudomelatomidae – Kantor et al., 1997). There 

are no data that explain this phenomenon. From what has been said above it is clear 

that the functioning of the radula as an ingtegrated organ may be limited, possibly to 

transferring the swallowed prey from the buccal cavity, situated at the proboscis base, 

further to oesophagus. Only in very few conoideans is the buccal cavity plus radula 

either shifted to the proboscis tip or able to evert through the mouth (for details see 

Taylor et al., 1993). From the point of view of speciation, clade A conoideans are more 

diverse, including 202 genera (not counting 82 genera recognized in the Conidae, the 

phylogeny and taxonomy of which is not yet finally revised) versus 180 genera in clade 

B. Thus absence of the odontophore does not seem to limit prey capture and feeding. 

Moreover, clade A conoideans seem to have a broader prey range, including other 

gastropods (numerous Conus species) and bivalves (Phymorhynchus, Raphitomidae – 

Fujikura et al., 2004) and even fish (several species of Conus). 

In some species of Conus there are ontogenetic changes of radular teeth probably 

related to changes in diet (summarized by Nybakken, 1990) and therefore in prey 

capture mechanism. We may imagine that similar changes can occur in clade B and 

that the prey capture and feeding mechanisms may differ between young individuals 

and adults and that at some ontogenetic stage the odontophore may be fully 

operational. This supposition needs careful research to detect any ontogenetic radular 

and foregut anatomy changes. 
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Transformation of the hypodermic marginal teeth 

 

Hypodermic marginal teeth are found in clade A and some Terebridae. The 

morphology of the hypodermic teeth is extremely variable and was traditionally used for 

taxonomy. Some hypodermic teeth are very simple, semi-enrolled. Such teeth are found 

among Mangeliidae (eg. Mangelia – Fig. 50). Unfortunately none of these species is 

present in our molecular tree. 

The hypodermic teeth of Conidae s.s. have been described in great detail and 

correlation between tooth morphology and diet has been demonstrated (eg. Nybbaken, 

1990). The representation of genera in our data matrix is relatively sparse and therefore 

we could only trace a limited number of characters of the hypodermic teeth. It appeared 

that the spurs and barbs of the teeth are homoplasic and evolved independently several 

times. No clear trends were obvious, possibly due to the incompleteness of our dataset. 

 

Terebridae radiation 

 

One of the most remarkable findings of the molecular analysis (Puillandre et al., 

2008, 2011) is that the Terebridae do not represent a totally separate lineage, but are 

included in clade B and are probably sister to the Turridae. Consequently, the 

evolutionary history of radular transformation is rather different from that traditionally 

accepted. 

Common among all terebrids is complete loss of the central and lateral teeth. In 

our analysis the first taxon to diverge among the Terebridae is Euterebra tristis 

(Deshayes, 1859), characterized by the solid recurved teeth, superficially similar to that 

in Pseudomelatoma and related genera (Pseudomelatomidae). Our analysis was not 

able to resolve the most parsimonious ancestral state for Terebridae. Before the 

molecular analysis of all Conoidea was performed (Puillandre et al., 2011), more 

detailed analysis of Terebridae has been conducted (Holford et al., 2009). Among other 

things it revealed that Pellifronia jungii (Lai, 2001) might be sister group to all the other 

Terebridae (recent analyses confirm that P. jungi, E. tristis and all the other Terebridae 

represent three distinct lineages, among which P. jungi is sister-group of a clade 

including E. tristis and all the other Terebridae – Castelin unpublished results). The 

radula of P. jungi appeared to have a new type of marginal teeth for the family, similar in 

general arrangement to the duplex teeth of other families in clade B (Fig. 46). The 

species possess a venom gland with a muscular bulb proboscis and small odontophore. 
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Thus within the Terebridae the entire transition can be found from species with 

duplex teeth with a strong subradular membrane (and an odontophore) through solid 

recurved teeth to species with typical hypodermic teeth, attached only by their bases to 

a vestigial membrane (similar to the arrangement of the marginal teeth in clade A and 

similarly lacking an odontophore). There are some species (not included in our analysis, 

but whose position was inferred in the molecular phylogeny of Holford et al. 2009), eg. 

Impages hectica (Linnaeus, 1758), that possess hypodermic teeth (penetrated by 

numerous holes – Fig. 49) that are attached to a rather strong membrane along their 

length, a condition similar to that in Toxiclionella (Clavatulidae). 

Within this single clade the radula transformation repeats the evolution of the 

radular apparatus within the entire Conoidea. This is a remarkable example of the 

radular evolvability in Conoidea. 
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Table 1. List of characters states used in the analysis 

 
Number 

of 

character 

Charater 

description 

Character states 

0 1 2 3 4 

1 morphology of 

central tooth 

absent multicuspid 

of 

caenogastro

pod type 

multicuspid 

of 

neogastropo

d type 

unicuspid 

narrow 

unicuspid 

broad 

2 morphology of 

the lateral teeth 

absent cuspidate of 

caenogastro

pod type 

cuspidate of 

neogastropo

d type 

unicuspid of 

neogastropo

d type 

plate-like 

3 morphology of 

the marginal 

teeth 

absent non-duplex 

(flat) 

duplex or 

semi-

enrolled 

solid, 

recurved 

hypodermic 

4 duplex marginal 

teeth 

marginal 

teeth absent 

teeth with 

unequal 

limbs 

teeth with 

subequal 

limbs 

teeth of 

Comitas 

type 

semi-

enrolled 

5 details of 

hypodermic 

marginal teeth - 

spur 

absent present hypodermic 

teeth absent 

  

6 details of 

hypodermic 

marginal teeth – 

barbs 

absent one barb 

present 

two barbs 

present 

three or 

more barbs 

present 

hypodermic 

teeth absent 

7 details of 

hypodermic 

marginal teeth - 

blade 

absent present hypodermic 

teeth absent 

  

8 details of 

hypodermic 

marginal teeth – 

ligament 

absent present hypodermic 

teeth absent 

  

9 use of marginal 

teeth at 

proboscis tip 

separate 

tooth used 

at the 

proboscis tip 

separate 

tooth not 

used at the 

proboscis tip 

marginal 

teeth absent 
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Table 2. List of specimens (+ -- data available, - -- data unavailable) 
 

Family Genus species Institutional registration 
number Expedition/locality, station and depth Radula preparation, or source of 

information 

Borsoniidae 

Bathytoma neocaledonica Puillandre, et al., 2010 MNHN IM200717857 EBISCO, CP2551, 21°060'S, 158°350'E, 637-650m + 
Borsonia sp. MNHN IM200717932 Salomon 2, CP2197,8°24.40'S, 159°22.50'E, 897-1057 + 

Borsoniidae gen. 1 sp. MNHN IM200717911 Panglao 2005, CP2333, 9°38.20'N, 123°43.50'E, 584-596m + 
Genota mitriformis (Wood, 1828) MNHN IM200742293 Angola, AF7, Pta. Das Lagostas + 

Microdrillia  cf. optima (Thiele, 1925) MNHN IM200717887 Panglao 2004, T36, 9°29.30'N, 123°51.50'E, 95-128m - 
Tomopleura reevii (C.B. Adams, 1850) MNHN IM200717875 Panglao 2004, T26,9°43.30'N, 123°48.80'E, 123-135m - 

Typhlomangelia (cf.) sp. MNHN IM200717931 Salomon 2, CP2269, 7°45.10'S, 156°56.30'E, 768-890m - 
Zemacies excelsa Sysoev & Bouchet, 2001 MNHN IM200911056 Musorstom 4, DW226, 22°47'S, 167°22'E, 395m Radula-less species 

Clathurellidae 
Clathurella nigrotincta (Montrouzier, 1872) MNHN IM200742607 Santo 2006, VM53, 15°31'S, 167°09'E, intertidal + 

Etrema cf. tenera (Hedley, 1899) MNHN IM200717869 Panglao 2004, S21,9°41.70'N, 123°50.90'E, 4-12m - 
Nannodiella ravella (Hedley, 1922) MNHN IM200717904 Panglao 2004, T9, 9°33.5 'N, 123°49.50'E, 97-120m + 

Clavatulidae 

Clavatula xanteni Nolf & Verstraeten, 2006 MNHN IM200717829 Angola, AF1, 8°780'S, 13°230'E, 40-60m + 
Gemmuloborsonia colorata (Sysoev & Bouchet, 2001) MNHN IM200717849 EBISCO, DW2619, 20°060'S, 160°230'E, 490-550m + 

Perrona subspirata (von Martens, 1902) MNHN IM200717833 Angola, AF10, 15°140'S, 12°290'E, 50m + 
Pusionella compacta Strebel, 1914 MNHN IM200717830 Angola, AF3, 10°510'S, 14°230'E, 5-10m + 

Surcula nelliae spurius (Hedley, 1922) NHMUK MOEA 20100552 Off southern Hong Kong, South China Sea + 

Cochlespiridae Cochlespira pulchella (Schepman, 1913) MNHN IM200717920 Panglao 2005, CP2340,9°29.40'N, 123°44.40'E, 271-318m + 
Sibogasyrinx sp. MNHN IM200717701 BOA1, CP2432, 14°59.70'S, 166°55.00'E, 630-705m + 

Conidae 

Californiconus californicus (Hinds, 1844)  Monterey, California Tucker & Tenorio, 2009 
Conasprella pagoda (Kiener, 1845) MNHN IM200717914 Panglao 2005, CP2380, 8°41.30'N, 123°17.80'E, 150-163m Tucker & Tenorio, 2009 

Conus consors Sowerby I, 1833 MNHN IM200717939 Santo 2006, AT87,15°32.10'S, 167°16.10'E, 235-271m Tucker & Tenorio, 2009 
Profundiconus teramachii (Kuroda, 1956)  Philippines Tucker & Tenorio, 2009 
Taranteconus chiangi Azuma, 1972  Philippines Tucker & Tenorio, 2009 

Conorbidae Benthofascis lozoueti Sysoev & Bouchet, 2001 MNHN IM200742331 Norfolk 2, DW2147,22°50'S, 167°16'E, 496m + 

Drilliidae 

Agladrillia pudica (Hinds, 1843) NHMUK MOEA 20100543 Gulf of Panama, JTD-00-51, 08°36.41'N, 79°09.70'W, 73m McLean, 1971 
Calliclava sp. NHMUK MOEA 20100546 Gulf of Panama, JTD-00-47, 08°31.83'N, 79°05.09'W, 21m McLean, 1971 
Cerodrillia cybele(Pilsbry & Lowe, 1932) NHMUK MOEA 20100548 Gulf of Panama, JTD-00-18, 08°19.50'N, 78°47.71'W, 25-32m McLean, 1971 

Clathrodrillia walteri (M. Smith, 1946) NHMUK MOEA 20100549 Gulf of Panama, JTD-00-46, 08°31.37'N, 79°05.79'W, 24-25m - 
Clavus canalicularis (Roeding, 1798) MNHN IM200717858 Panglao 2004, S12, 9°29.40'N, 123°56.00'E, 6-8m + 

Conopleura striata Hinds, 1844 MNHN IM200717889 Panglao 2004, T41, 9°29.70'N, 123°50.20'E, 110-112m - 
Cruziturricula arcuata (Reeve, 1843) NHMUK MOEA 20100541 Gulf of Panama, JTD-00-34, 08°26.24'N, 79°09.14'W, 66-68m + 

Drillia clavata (Sowerby III, 1870) NHMUK MOEA 20100550 Gulf of Panama, JTD-00-18, 08°19.50'N, 78°47.71'W, 25-32m McLean, 1971 
Fusiturricula enae (Bartsch, 1934) INVEMAR MOL-1929 Colombia, E-73, 09°57.53'N, 79°07.71'W, 268-270m  - 

Imaclava unimaculata (Sowerby I, 1834) NHMUK MOEA 20100527 Gulf of Panama, JTD-00-46, 08°31.37'N, 79°05.79'W, 24-25m Shimek, Kohn, 1981 
Iredalea pupoidea (H. Adams, 1872) MNHN IM200742556 Santo 2006, DB25, 15°37.7'S, 167°11.3'E, 10m + 

Splendrillia sp. MNHN IM200717847 EBISCO, DW2617, 20°060'S, 160°220'E, 427-505m + 

Horaiclavidae 

Anacithara lita (Mellvill & Standen, 1896) MNHN IM200742614 Santo 2006, DS99, 15°32'S, 167°17'E, 100-105m + 
Anguloclavus sp. MNHN IM200717908 Panglao 2005, CP2332, 9°38.80'N, 123°45.90'E, 396-418m + 

Carinapex minutissima (Garrett, 1873) MNHN IM200717868 Panglao 2004, B19, 9°29.40'N, 123°56.00'E, 17m + 
Ceritoturris pupiformis (Smith, 1884) MNHN IM200717888 Panglao 2004, T36, 9°29.30'N, 123°51.50'E, 95-128m + 

Horaiclavidae gen. 1 sp. (juvenile) MNHN IM200742501 Salomon 2, CP2219, 7°58'S, 157°34'E, 650-836m + 
Horaiclavus splendidus (A.Adams, 1867) MNHN IM200717840 EBISCO, DW2631, 21°030'S, 160°440'E, 372-404m + 
Paradrillia sp. (juvenile) MNHN IM200742475 Panglao 2005, CP2396, 9°36'N, 123°42'E, 609-673m + 

Mangeliidae Anticlinura  sp.  MNHN IM200742513 Salomon 2, CP2182, 8°47'S, 159°38'E, 762-1060m + 

27 
 



Benthomangelia cf. trophonoidea (Schepman, 1913) MNHN IM200717835 BOA1, CP2462, 16°37.50'S, 167°57.40'E, 618-641m + 
Eucithara cf. coronata (Hinds, 1843) MNHN IM200717900 Panglao 2004, B8, 9°37.10'N, 123°46.10'E, 3m + 

Heterocithara sp. MNHN IM200717884 Panglao 2004, L46, 9°30.90'N, 123°41.20'E, 90-110m - 

Mangeliidae gen. 1 sp. MNHN IM200717874 Panglao 2004, T26,9°43.30'N, 123°48.80'E, 123-135m Radula of Mangelia powisiana 
(Dautzenberg, 1887) used 

Mangeliidae gen. 2 sp. MNHN IM200717872 Panglao 2004, S26, 9°41.50'N, 123°51.00'E, 21m - 
Oenopota sp. MNHN IM200742325 Hornsund, Svalbard, 1184-2001,  - 

Toxicochlespira  pagoda Sysoev & Kantor, 1990 MNHN IM200717925 Salomon 2, CP2227, 6 37°20'S, 156°12.70'E, 508-522m + 

Mitromorphidae Lovellona atramentosa (Reeve, 1849) MNHN IM200742552 Santo 2006, NR8, 15°35.7'S, 167°07.4'E, 11m + 
Mitromorpha metula (Hinds, 1843) MNHN IM200717898 Panglao 2004, B8, 9°37.10'N, 123°46.10'E, 3m + 

Pseudomelatomidae 

Carinodrillia dichroaPilsbry & Lowe, 1932 NHMUK MOEA 20100530 Gulf of Panama, JTD-00-18, 08°19.50'N, 78°47.71'W, 25-32m + 
Cheungbeia robusta (Hinds, 1839) NHMUK MOEA 20100556 Off southern Hong Kong, South China Sea, Sta. 70 + 

Comitas sp. MNHN IM200717918 Panglao 2005, CP2388, 9°26.90'N, 123°34.50'E, 762-786m + 
Crassispira quadrilirata (E.A.Smith, 1882) MNHN IM200717755 Panglao 2004, L46, 9°30.90'N, 123°41.20'E, 90-110m + 

Funa incerta (Smith, 1877) NHMUK MOEA 20100533 Off southern Hong Kong, South China Sea, Sta. 70  + 

Hindsiclava alesidota (Dall, 1889) NHMUK MOEA 20100525 Lower Florida Keys, JTD-01-15, 24°33.47'N, 81°07.72'W, 117-
148m + 

Inquisitor sp. MNHN IM200717851 EBISCO, DW2625, 20°050'S, 160°190'E, 627-741m + 

Knefastia tuberculifera (Broderip & Sowerby, 
1829) NHMUK MOEA 20100533 Gulf of Panama, JTD-00-18, 08°19.50'N, 78°47.71'W, 25-32m + 

Leucosyrinx sp. MNHN IM200717846 EBISCO, CP2600, 19°380'S, 158°460'E, 603-630m + 
Otitoma sp. MNHN IM200717905 Panglao 2005, CP2348, 9°29.60'N, 123°52.50'E, 196-216m + 

Pilsbryspira jayana (C. B. Adams, 1850)  USNM 857830 Carrie Bow Cay, Belize, intertidal + 
Pseudomelatoma moesta (Carpenter, 1865)  California Kantor, 1988 

Ptychobela  suturalis (Gray, 1838)  NHMUK MOEA 20100560 Luong SoN, 15km N. Nha Trang, Vietnam  + 
Pyrgospira aenone (Dall, 1919) NHMUK MOEA 20100539 Gulf of Panama, JTD-00-18, 08°19.50'N, 78°47.71'W, 25-32m + 
Tiariturris spectabilis Berry, 1958 NHMUK MOEA 20100540 Gulf of Panama, JTD-00-34, 08°26.24'N, 79 09.14'W, 66-68m + 

Zonulispira sp. NHMUK MOEA 20100536 Gulf of Panama, JTD-00-18, 08°19.50'N, 78°47.71'W, 25-32m + 

Raphitomidae 

Daphnella sp. MNHN IM200717927 Salomon 2, CP2260, 8°03.50'S, 156°54.50'E, 399-427m Radula of Daphnella mitrellaformis 
(Nomura, 1940) used 

Eucyclotoma cymatodes (Hervier, 1899) MNHN IM200717903 Panglao 2004, S12, 9°29.40'N, 123°56.00'E, 6-8m - 
Glyphostomoides 

(cf.) sp. MNHN IM200717892 Panglao 2004, T39, 9°30.10'N, 123°50.40'E, 100-138m - 

Gymnobela sp. MNHN IM200717841 EBISCO, CP2648, 21°320'S, 162°300'E, 750-458m 
radula of Gymnobela yoshidai 

(Kuroda et Habe in Habe, 1962) 
used 

Hemilienardia calcicincta (Melvill & Standen, 1895) MNHN IM200717861 Panglao 2004, B14, 9°38.50'N, 123°49.20'E, 2-4m - 

Kermia  aureotincta (Hervier, 1897) MNHN IM200717878 Panglao 2004, B25, 9°29.40'N, 123°56.10'E, 16m radula of Kermia irretita (Hedley, 
1899) used 

Pleurotomella sp. MNHN IM200717848 EBISCO, DW2625, 20°050'S, 160°190'E, 627-741m - 
Raphitoma rubroapicata (E. A. Smith, 1885) MNHN IM200717890 Panglao 2004, L49, 9°36.50'N, 123°45.30'E, 90m radula of Raphitoma sp. used 

Rimosodaphnella sp. MNHN IM200717836 BOA1, CP2462, 16°37.50'S, 167°57.40'E, 618-641m - 
Taranis sp. MNHN IM200742296 Aurora 07, CP2749, 15°57'N, 121°50'E, 743m Radula-less species 

Teretiopsis cf. hyalina Sysoev & Bouchet, 2001 MNHN IM200717845 EBISCO, CP2651, 21°290'S, 162°360'E, 883-957m Radula-less species 
Thatcheria mirabilis (Angas, 1877) MNHN IM200717924 Salomon 2, CP2184, 8°16.90'S, 159°59.70'E, 464-523m Kantor, Taylor, 2002 

Tritonoturris (cf.) sp. MNHN IM200717891 Panglao 2004, T39, 9°30.10'N, 123°50.40'E, 100-138m - 

Veprecula sp. MNHN IM200717883 Panglao 2004, L46, 9°30.90'N, 123°41.20'E, 90-110m radula of Veprecula vepratica 
(Hedley, 1903) used 

Terebridae Cinguloterebra cf. fenestrata (Hinds, 1844) MNHN IM200716735 Panglao 2005, CP2395, 9°36.2'N, 123°43.8'E, 382-434m + 
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Clathroterebra fortunei (Deshayes, 1857) MNHN IM200730401 Panglao 2005, CP2331, 9°39.2'N, 123°47.5'E, 255-268m Radula-less species 
Euterebra tristis (Deshayes, 1859) MNZ New-Zealand Rudman, 1969 
Hastula strigilata (Linnaeus, 1758) MNHN IM200730420 Santo 2006, VM24, 15°35.2'S, 167°59.4'E, intertidal - 

Hastulopsis amoena (Deshayes, 1859) MNHN IM200730480 Santo 2006, FR10, 15°36.9'S, 167 °10.5'E, 6-33m Radula-less species 
Myurella kilburni (Burch, 1965) MNHN IM200730459 Panglao 2004, S18, 9°35.7'N, 123°44.4'E, 0-2m Radula-less species 
Oxymeris maculatus (Linnaeus, 1758) MNHN IM200730371 Santo 2006, NR5, 15°28.7'S, 167°15.2'E, 19m Radula-less species 

Strioterebrum plumbea (Quoy & Gaimard, 1833) MNHN IM200730558 Santo 2006, ED5, 15°31'S, 167°09'E, intertidal Radula-less species 
Terebra textilis Hinds, 1844 MNHN IM200717938 Santo 2006, LD28, 15°35.40'S, 166°58.70'E, 3-8m Radula-less species 

Terenolla pygmaea (Hinds, 1844) MNHN IM200730449 Panglao 2004, S2, 9°37.4'N, 123°54.5'E, 4-5m Radula-less species 

Turridae 

Gemmula rarimaculata Kuroda & Oyama, 1971 MNHN IM200717838 EBISCO, DW2533, 22°180'S, 159°280'E, 360-370m + 
Iotyrris cingulifera (Lamarck, 1822) MNHN IM200717685 Santo 2006, FS84, 15°33.6'S, 167°16.6', 8-9m + 

Lophiotoma acuta (Perry, 1811) MNHN IM200717860 Panglao 2004, R44, 9°33.30'N, 123°43.90'E, 2m + 
Lucerapex cf. casearia (Hedley & Petterd, 1906) MNHN IM200742448 Panglao 2005, CP2363, 9°06'N, 123°25'E, 437-439m + 

Polystira albida (Perry, 1811)  NHMUK MOEA 
20110066 

S. of Bahia Honda Key, Florida Keys, 24834.24’N; 81816.64’W, 
30–34m Bandel, 1984 

Ptychosyrinx carynae (Haas, 1949) USNM 832922 North Atlantic, 38°0.14'N, 70° 29.28'W, 3188-5300m - 
Turridrupa cf. armillata (Reeve, 1845) MNHN IM200717850 EBISCO, DW2607, 19°330'S, 158°400'E, 400-413m - 

Turris babylonia Linnaeus, 1758 MNHN IM200717754 Panglao 2004, R42, 9°37.10'N, 123°52.60'E, 8-22m  A.E. Fedosov, unpublished 
Xenuroturris legitima Iredale, 1929 MNHN IM200717684 Santo 2006, DR87, 15°38.5'S, 167°15.1'E, 13m + 

Outgroups 

Belomitra sp. MNHN IM200911057 Salomon 2, CP2184, 8°17'S, 160°00'E, 464-523m + 
Harpa kajiyamai Habe et Kosuge, 1970 MNHN IM200740569 Santo 2006, EP22,15°37.3'S, 167°05.8E, 78-91m Hughes & Emerson, 1987 

Laevistrombus guidoi (Man in't Veld & De Turck, 1998) MNHN IM200911060 Santo 2006, LR3, 15°35.8'S, 167°06.1'E Bandel, 1984 
Turrilatirus turritus (Gmelin , 1791) MNHN IM200911059 Santo 2006, FB52, 15°42.7'S, 167°15.1'E, 7m Radula of Latirus sp. used 
Vexillum costatum (Gmelin , 1791) MNHN IM200911058 Santo 2006, DR64, 15°27.6'S, 167°14.3'E, 6-35m + 

Xenophora solarioides (Reeve, 1845) MNHN IM200911061 Santo 2006, AT55, 15°36.2'S, 167°02.5'E, 80-82m Bandel, 1984 
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Figure captions 
 

Figs. 1-4. Diagrammatic sections through the anterior foregut of Conoidea. 1. Anterior foregut 

of the Conoidea with non-hypodermic marginal radular teeth and odontophore 

(generalized representative of the clade B). A duplex marginal tooth detached from the 

subradular membrane is used at the proboscis tip for stabbing and envenomating the 

prey. 2. Section of the tip of the proboscis with the duplex marginal tooth held by 

sphincters of the buccal tube (actual specimen of Aforia kupriyanovi Sysoev & Kantor, 

1988 – Cochlespiridae). 3. Anterior foregut of the Conoidea with hypodermic marginal 

radular teeth and lacking odontophore (generalized representative of clade A). A 

hypodermic marginal tooth detached from the subradular membrane is used at the 

proboscis tip. 4. Section of the tip of the proboscis with the hypodermic marginal tooth 

held by a sphincter of the buccal tube (actual specimen of Phymorhynchus wareni 

Sysoev & Kantor, 1995 – Raphitomidae). 

Abbreviations: bts – buccal tube sphincter; dmt – duplex marginal tooth at the proboscis tip; 

hmt – hypodermic marginal tooth at the proboscis tip; mb – muscular bulb of the venom 

gland; oe – oesophagus; pr – proboscis; rhs – rhynchostomal sphincter; rs – radular sac 

without odontophore; rsod – radular sac with odontophore; vg – venom gland. 

Fig. 5. Evolution of the central radular tooth morphology (character 1) mapped on the 

conoidean molecular phylogeny (Puillandre et al., 2011). Character states are treated as 

unordered. The different shading and tiling of the branches corresponds to the most 

parsimonious ancestral state for the corresponding clade. The mixed shading and/or 

tiling of the branch indicates that analysis was not able to resolve the single most 

parsimonious state. 

Fig. 6. Evolution of the central radular tooth morphology mapped on the conoidean molecular 

phylogeny (character 1). A stepmatrix parsimony model was used, interdicting reversion 

of the character states. Since central teeth are absent in the entire clade A, only clade B 

is illustrated. 

Figs. 7-13. Radulae of Drilliidae. If not otherwise mentioned, data for the specimens are given 

in Table 2. 7-8. Splendrillia sp., MNHN IM200717847. 9. Clavus exasperatus (Reeve, 

1843), MNHN, New-Caledonia, LIFOU 2000, st. 1420, 20°47.7'S, 167°09.35'E, 4-5m. 

10. Imaclava pilsbryi (Bartsch, 1950), after Kantor and Taylor, 2000. 11. Cruziturricula 

arcuata (Reeve, 1843), NHMUK MOEA 20100541. Semi-enrolled marginal teeth. 12-13. 

Clavus sp. 3, MNHN uncataloged, BATHUS 2, DW714; 12 – bending plane of the 
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radula, arrows indicate strong wear of the teeth; 13 – central part of the same radula, 

showing intact central and lateral teeth. 

Abbreviations: ct – central tooth; lt – lateral tooth, mt – marginal tooth. 

Figs. 14-26. Radulae of Pseudomelatomidae. If not otherwise mentioned, data for the 

specimens are given in Table 2. 14. Tiariturris spectabilis Berry, 1958, NHMUK MOEA 

20100540. Radula with solid recurved marginal teeth and broad central teeth. 15. 

Comitas onokeana vivens Dell, 1956, MNHN, New-Caledonia, MONTROUZIER, st. 

1269, after Kantor and Taylor, 2000. Radula with paired plate-like lateral teeth. 16-
17.Comitas sp., MNHN IM200717918. 17 – enlarged central segment of the radula. 18. 

Knefastia tuberculifera (Broderip & Sowerby, 1829), NHMUK MOEA 20100533. 

Enlarged central segment of the radula. 19-20. Crassiclava turricula (Sowerby, 1834). 

Costa Rica, Off Nacascola, West side of Bahia Culebra, after Kantor et al., 1997. 

Radula with paired plate-like lateral teeth. 21. Zonulispira sp., NHMUK MOEA 

20100536. Radula with semi-enrolled marginal teeth. 22. Ptychobela suturalis (Gray, 

1838), NHMUK MOEA 20100560. Radula with semi-enrolled marginal teeth. 23-26. 

Diagrammatic transverse sections of different duplex marginal teeth. Black horizontal 

line represents the subradular membrane. 23 – Comitas-type; 24 – typical duplex tooth; 

25 – semienrolled tooth of Zonulispira; 26 – semienrolled tooth of Ptychobela. 

Abbreviations: al – accessory limb; ct – central tooth; lt – lateral tooth; ml – major limb; vlt – 

vestigial lateral tooth. 

Fig. 27. Evolution of the lateral radular tooth morphology (character 2) mapped on the 

conoidean molecular phylogeny (Puillandre et al., 2011). A stepmatrix parsimony model 

was used, interdicting reversion of the character states. 

Figs. 28-33. Radulae of Clavatulidae. If not otherwise mentioned, data for the specimens are 

given in Table 2. 28-29. Pusionella compacta Strebel, 1914, MNHN IM200717830. 29 – 

enlarged central segment of the radula with vestigial lateral teeth. 30-31. Clavatula 

xanteni Nolf & Verstraeten, 2006, MNHN IM200717829. 31 – enlarged central segment 

of the radula. Arrow indicates the narrow central tooth. 32. Toxiclionella tumida 

(Sowerby, 1870), South Africa, after Kantor, Taylor (2000). Semi-enrolled marginal 

teeth. Left upper corner – diagrammatic section of the tooth. 33. Gemmuloborsonia 

colorata (Sysoev & Bouchet, 2001), MNHN IM200717849. 

Abbreviations: vlt – vestigial lateral teeth; ct – central tooth. 

Figs. 34-42. Radulae of Turridae (34-35), Pseudomelatomidae (36-39), and Cochlespiridae 

(40-42) with different duplex marginal teeth. If not otherwise mentioned, data for the 
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specimens are given in Table 2. 34. Xenuroturris legitima Iredale, 1929, MNHN 

IM200717684. 35. Turridrupa acutigemmata (E. A. Smith, 1877), MNHN uncataloged, 

New Caledonia. Radula with narrow central and plate-like lateral teeth. 36. Carinodrillia 

dichroa Pilsbry & Lowe, 1932, NHMUK MOEA 20100530. 37. Funa incerta (Smith, 

1877), NHMUK MOEA 20100554. 38. Cheungbeia robusta (Hinds, 1839), NHMUK 

MOEA 20100557. 39. Inquisitor sp., MNHN IM200717851. 40-41. Cochlespira radiata 

(Dall, 1889), MNHN, SE Brazil, after Kantor and Taylor, 2000. 42. Sibogasyrinx sp., 

MNHN IM200717701. 

Abbreviations: al – accessory limb of the marginal duplex tooth; ct – central tooth; lt –lateral 

tooth; ml – major limb of the marginal duplex tooth. 

Fig. 43. Evolution of marginal tooth morphology (character 3) mapped on the conoidean 

molecular phylogeny (Puillandre et al., 2011). Character states are treated as 

unordered. 

Fig. 44. Evolutionary transformations of duplex marginal tooth morphology (character 4) 

mapped on the conoidean molecular phylogeny (Puillandre et al., 2011). Character 

states are treated as unordered. Since duplex marginal teeth are absent in the entire 

clade A, only clade B is illustrated. 

Fig. 45. Presence or absence of a spur on marginal teeth (character 5) mapped on the 

conoidean molecular phylogeny (Puillandre et al., 2011). Character states are treated as 

unordered. The spur is absent in most of clade B, except some Terebridae. Therefore 

for clarity only Terebridae from clade B are shown. 

Figs. 46-53. Radula of Terebridae (46-49) and various hypodermic teeth from species of 

clade A (50-53). If not otherwise mentioned, data for the specimens are given in Table 

2. 46. Pellifronia jungi (Lai, 2001), MNHN 30591, Salomon 2, CP2195. 47. 

Cinguloterebra cf. fenestrata Hinds, 1844, MNHN 30565, Panglao 05, st. CP2340. 48. 

Duplicaria bernardi (Deshayes, 1857), Venus Bank, off NE end of Moreton Island, 

Moreton Bay, Queensland, Australia, 27 º02'069" S, 153º19'00" E, 3.5-4.8 m, leg. 

Glover, Taylor, 2008. 49. Impages hectica (Linnaeus, 1758), MNHN, uncataloged, 

Philippines, Panglao Island, Alona Beach, intertidal, 2004. 50. Mangelia powisiana 

(Dautzenberg, 1887). Plymouth, England, after Taylor et al. (1993). 51. Bathytoma 

neocaledonica Puillandre et al., 2010, MNHN IM200717857. 52. Genota mitriformis 

(Wood, 1828), MNHN IM200742293. 53. Benthomangelia trophonoidea (Schepman, 

1913), MNHN IM200717835. 
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Fig. 54. Presence or absence of barbs on marginal teeth (character 6) mapped on the 

conoidean molecular phylogeny (Puillandre et al., 2011). Character states are treated as 

unordered. The barb(s) are present only in clade A and therefore clade B is omitted. 

Fig. 55. Presence or absence of blade on marginal teeth (character 7) mapped on the 

conoidean molecular phylogeny (Puillandre et al., 2011). Character states are treated as 

unordered. The blade is absent in most of clade B, except some Terebridae. Therefore 

for clarity only Terebridae from clade B are shown.  

Fig. 56. Presence or absence of ligament of marginal teeth (character 8) mapped on the 

conoidean molecular phylogeny (Puillandre et al., 2011). Character states are treated as 

unordered. The ligament is present only in clade A and therefore clade B is omitted. 

Fig. 57. Presence or absence of use of the separate marginal teeth on the proboscis tip 

(character 9) mapped on the conoidean molecular phylogeny (Puillandre et al., 2011). 

Character states are treated as unordered 

Fig. 58-63. Radula of Gemmula Weinkauff, 1875, demonstrating different degree of fusion of 

central and lateral teeth and the appearance of the “central formation”. 58-59. Gemmula 

unilineata Powell, 1967, MNHN uncataloged, NORFOLK 2, New Caledonia, sta. DW 

2097, bank Kaimon Maru, 24°44’S, 168°06’E, 580-583 m. 60-61. Gemmula rarimaculata 

Kuroda et Oyama in Kuroda et al., 1971, MNHN uncataloged, MUSORSTOM 5, Coral 

Sea, sta. DW263, 25°21’S, 159°46’E, 150-225 m. 62-63. Gemmula sp. 3, MNHN 

uncataloged, MUSORSTOM 10, Fiji, sta. CP1354, 17°42.6’S, 178°55.0’E, 959-963 m. 
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