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On the modelling of joint formation in dissolutive brazing 
processes 

M. Vynnycky(9 • J. Lacaze

Abstract In this paper, earlier dissolutive wetting models describing the dynamics of an axisymmetric alloy 
drop spreading on pure metal substrate are extended to describe reactive wetting and subsequent joint formation 
in brazing processes. A two-dimensional time-dependent problem is formulated, and the model equations are 
nondimensionalized, revealing the possibilities for asymptotic mode! reduction. Whilst the numerical solution of 
the time-dependent problem, which contains two moving contact lines and would not in general be amenable to 
lubrication theory, is relegated to future work, the steady-state problem is analyzed in detail. The analysis offers 
an arguably more transparent alternative to an earlier energy minimization approach for finding the location of the 
meniscus, which ultimately constitutes the joint. The results of the present mode! are found to compare favourably 
to those of earlier experimental and theoretical work. 

Keywords Asymptotic analysis • Dissolution • Wetting 

1 Introduction 

In the controlled atmosphere brazing (CAB) process, separate parts are assembled by being submitted to a 
thermal cycle during which a cladding consisting of a low melting temperature alloy becomes liquid and forms the 
necessary joints by capillarity. After a time allocated for joint formation, the assembly is cooled so that the 
joints solidify. For manufacturing aluminium heat exchangers, the parts to be assembled are plates and fins made 
of an essentially binary Al-Mn alloy. Sorne of these parts are clad with an essentially binary Al-Si alloy that has 
a liquidus 4�50 K below the solidus of the Al-Mn alloy. Proper joint formation requires that enough liquid is 
made available to form the joints, but not too much as this may lead to unexpected deformations of the assemblies 
and other potential 
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defects. Accordingly, the brazing cycles are designed with a maximum temperature close to the clad alloy liquidus, 
slightly lower to minimize deformations or slightly higher if more liquid is needed.

Since the very beginning of development of the CAB process, the materials and process parameters have been 
tested using an inverted tee-joint configuration, wherein a plate stands vertically on a horizontal plate [1–3]. A 
theoretical prediction of the brazed joint shape to be formed during manufacturing can be performed using a joint 
shape modelling advocated in [4]. Recent studies of some relatively simple brazed joint configurations [5], and more 
complex two-dimensional (2D) and three-dimensional (3D) geometries [6,7], have convincingly demonstrated that 
a minimization of potential energy of the molten metal free surface at the onset of cladding solidification may 
efficiently be utilized for joint topology predictions. A summary of these approaches is given in [8].

Nevertheless, the modelling of brazing should be amenable to an even more fundamental approach, such as that 
which has been applied to reactive wetting in metal–metal systems [9–13]. Thus, rather than appealing to energy 
minimization so as to find, for example, the final equilibrium meniscus shape, it should be possible to formulate 
time-dependent conservation equations that describe how the final state is reached. One reason this approach has 
not been adopted for brazing is that it has been proven difficult to obtain solutions for real parameters in solder 
systems [5,14]. Hence, one of the aims of this paper is to apply the concepts previously used for reactive wetting 
to the modelling of microscale phenomena in brazing. Moreover, this approach should serve to complement the 
energy minimization approach: for example, it is already a well-accepted concept in physics that the shape that a 
fluid meniscus adopts is the same as that required to minimize the energy of the system [15].

To fix ideas, we focus on the inverted tee-joint configuration considered in [5], as it is not only the simplest 
one to consider geometrically, but there are also experimental data to compare with. The structure of the paper 
is as follows. In Sect. 2, we motivate the modelling approach to be used. In Sect. 3, we formulate the problem 
mathematically, and in Sect. 4, we nondimensionalize the equations. The main body of the analysis is in Sect. 5, 
which considers the time-dependent equations from a qualitative perspective and the solution of the steady-state 
equations. Results are given in Sect. 6, and conclusions are drawn in Sect. 7. Finally, auxiliary results are given in 
four appendices.

2 Modelling considerations

Compared to the modelling of reactive spreading of an axisymmetric droplet of a molten metallic alloy on a metal 
substrate [9–13], the modelling of brazing is substantially more complex, since the clad, which will ultimately 
flow and cause the dissolution of the core, is initially solid. Moreover, once the heating of the core–clad assembly 
starts, solid-state diffusion of the silicon in the clad occurs; also, it may be the case that heating is not isothermal, 
with different parts of the clad and the core reaching a certain temperature at different times. In particular, this 
will mean that some parts of the clad will reach the solidus temperature sooner than others; thus, these parts would 
in principle be available for flow sooner than others. However, if there is no solid-state diffusion from the clad 
to the core and if the final holding temperature is lower than the liquidus temperature corresponding to the initial 
composition of Si in the clad, then not all of the clad will melt; on the other hand, if there is solid-state diffusion, 
then even this holding temperature might not be high enough to melt the clad, and an even higher temperature would 
be required to do so. Furthermore, once melting has begun, capillary forces can be expected to disrupt the initial 
planar configuration of the clad, leading to the formation of a moving meniscus, at which point coupled two-phase 
momentum, i.e. heat and solute transfers will be occurring. A more complete description of these stages can be 
found in [16].

Therefore, in order to avoid getting bogged down in these details, and to be able to focus on reactive spreading, 
we will simply assume that the clad is initially molten and at a uniform temperature that is greater than the liquidus 
temperature for the clad; furthermore, we will also assume that the core is at the same uniform temperature as the 
clad. In fact, these assumptions should not affect what will be the main body of the results in this paper, i.e. the 
determination at steady state of the joint shape and of the dissolved region.



3 Mode) formulation 

3.1 Goveming equations 

Assume all of the clad, of composition co, has reached the temperature T, where T > Tliq(co) and occupies 
0 � x � wo, 0 � y � ho, as shown in Fig. 1, which depicts the right-hand half of an inverted tee joint. Here, 
Î!iq denotes the liquidus curve in the Al-Si phase diagram and is a fonction of the Si concentration, c, as shown in 
Fig. 2a; however, in what follows, we approximate Tliq by 

Î!iq = Tm - me, (3.1) 

where Tm denotes the melting temperature of pure aluminium and-mis the slope of the liquidus curve, which is 
now assumed straight, as is shown in Fig. 2b. Thus, T > Tliq(co) implies that the clad is assumed to be completely 
molten initially. Note also that we implicitly assume that the horizontal core and clad are initially in contact, so that 
the clad immediately proceeds to wet the core; clearly, in practice, this contact may be limited or sporadic along 
the length of the joint, leading to possible variations along the axis perpendicular to the x-y plane that we consider. 
Thereafter, the molten clad begins to move and at time t, it will occupy O � x � x1 (t), 0 � y � h (x, t), as 
shown in Fig. 3. At the same time, the core which occupies x < 0 and y < 0 will dissolve, with the limit of the 

Fig. 1 Initial configuration 
for an inverted tee joint 
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Fig. 3 Schematic of the 
molten clad and dissolved 
region during dissolution 
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dissolved region defined by y= f (x, t). Also, we have the equation of continuity and the x- and y-components

of the Navier-Stokes equation, for f (x, t) � y � h (x, t),

(3.2) 

(3.3) 

(3.4) 

where p and µ, are, respectively, the density and viscosity of molten clad; these will be assumed to be constant. In 

addition, u and v are the velocity components in the x- and y-directions respectively, pis the pressure and gis the 
gravitational acceleration. Moreover, conservation of solute is given by 

f (x, t) � y � h (x, t), (3.5) 

where c is the solute concentration and D is the diffusion coefficient for Si. Also, by conservation of mass for the

clad, we must have 

{XI (f) 

lo 
h (x, t) dx = woho. 

3.2 Boundary conditions 

At y = h (x, t) , we have zero tangential stress, given by

(av au) (au av) { 2}2µ, - - - hx + µ, - + - 1 - h = 0, ay ax ay ax X 

(3.6) 

(3.7) 



and a normal stress condition, given by

pa − p + 2μ

1 + h2x

{
∂u

∂x
h2x + ∂v

∂y
−

(
∂u

∂y
+ ∂v

∂x

)
h2x = σfsK, (3.8)

where σfs denotes the interfacial tension between the molten clad and the surroundings, pa is the pressure of the
surroundings and K is the curvature of the meniscus, given by

K = hxx

1 + h2x
3/2 . (3.9)

In addition to (3.7) and (3.8), which are called dynamic conditions, there is a kinematic condition for the motion of
the meniscus, given by

v = ht + uhx . (3.10)

Also, there is no normal flux of solute at the meniscus, and hence

nh · ∇c = 0, (3.11)

where nh is the unit normal vector to y = h (x, t), and is given by

nh = 1√
1 + h2x

(−hx , 1) . (3.12)

At the dissolution front, y = f (x, t) , we will have

v = ft + u fx , (3.13)

u + v fx = 0, (3.14)

c = cE (T ) + Γ κ, (3.15)

c√
1 + f 2x

∂ f

∂t
= (cu − D∇c) · n f , (3.16)

where u = (u, v) , n f is the unit normal vector to y = f (x, t) , and is given by

n f = 1√
1 + f 2x

(− fx , 1) , (3.17)

and κ denotes the curvature and is given by

κ = fxx

1 + f 2x
3/2 . (3.18)

Note that

– (3.15) expresses local equilibrium at the liquid–solid interface including the Gibbs–Thomson effect [9,10], with
cE (T ) as the equilibrium concentration of Si at the brazing temperature, T, as given by the phase diagram and
Γ as the normalized liquid–solid surface energy or solute capillary length, which is assumed to be constant;

– in (3.16), we have neglected any solid-state diffusion in the core;



– applying the Reynolds transport theorem [17] to Eq. (3.5), we find, with the help of (3.11) and (3.16) that

∫∫
Ω(t)

c (x, y, t) dy dx = w0h0c0, (3.19)

where Ω denotes the liquid region, i.e. solute is conserved.

Furthermore, conditions are required at the contact lines, which are at (x1 (t) , 0) and (0, y1 (t)) . It seems
reasonable to generalize the condition derived by Warren et al. [9], and later used by Su et al. [10] and Singler et
al. [18], for the contact line of an axisymmetric droplet during reactive spreading on a horizontal substrate. Warren
et al. [9] assume that the contact line remains at the initial level of the substrate and that the total angle between the
meniscus and the liquid–solid interface, θL , remains constant; in the present context, and with reference to Fig. 3,

θb,x1 + θt,x1 = θL , θb,y1 + θt,y1 = θL . (3.20)

However, since there is a discontinuity in the slope between the liquid surface and the liquid–solid interface, there
will arise an additional restriction from the requirement that the liquid concentration must be well-defined and
differentiable at the triple junction. The resulting expressions for the velocities of the contact lines, ẋ1 and ẏ1, are

ẋ1 = −D

(
tan θb,x1 + tan θt,x1

c tan θb,x1

∂c

∂x

)∣∣∣∣
(x1(t),0)

= −DΓ

(
tan θL

c tan θb,x1

∂κ

∂x

)∣∣∣∣
(x1(t),0)

, (3.21)

ẏ1 = −D

(
tan θb,y1 + tan θt,y1

c tan θb,y1

∂c

∂y

)∣∣
(0,y1(t))

= −DΓ

(
tan θL

c tan θb,y1

∂κ

∂y

)∣∣
(0,y1(t))

, (3.22)

where the dots denote differentiation with respect to time.
In the model, θL is a prescribed constant—and has to be determined experimentally—but θb,x1 , θt,x1 , θb,y1 and

θt,y1 are all functions of time and must all be determined. Equation (3.20) can then be written in terms of f and h as

hx (0, t) − fx (0, t)

1 + hx (0, t) fx (0, t)
= tan θL , (3.23)

hx (x1, t) − fx (x1, t)

1 + hx (x1, t) fx (x1, t)
= − tan θL , (3.24)

and further conditions are

f (0, t) = h (0, t) , (3.25)

f (x1, t) = 0, (3.26)

h (x1, t) = 0. (3.27)

Equations (3.25)–(3.27) are perhaps worthy of further explanation, as they are not obvious. In general, one would 
expect f (x1, t) = h (x1, t) , so that both the x- and y-locations of the contact are not known and have to be 
determined. However, Warren et al. [9] take  f (x1, t) = 0, h (x1, t) = 0, which at least leads to a well-posed 
mathematical problem. On the other hand, Villanueva et al. [11] treat a similar problem using phase-field methods 
and obtain an elevation of the contact line relative to the y = 0 level, which is apparently qualitatively similar to 
the experimental observations of Saiz et al. [19,20]; nevertheless, the elevation is small compared to the maximum 
height of the droplet, which suggests that (3.26) and (3.27) can be a suitable approximation. Thus, having adopted 
this approximation at the horizontal boundary, we may adopt it at the vertical one also, giving Eq. (3.25). Note that 
although it is written as one equation, it may be thought of as two if we write



f −1 (y1 (t) , t) = 0, h−1 (y1 (t) , t) = 0, (3.28)

where f −1 and h−1 denote the inverse functions of f and h, respectively.
The initial conditions at t = 0 should be

u = 0, v = 0, c = c0 for 0 < x < w0, 0 < y < h0, (3.29){
h−1 (y, 0) = w0, 0 ≤ y ≤ h0,
h (x, 0) = h0, 0 ≤ x ≤ w0,

(3.30)

{
f −1 (y, 0) = 0, 0 ≤ y ≤ h0,
f (x, 0) = 0, 0 ≤ x ≤ w0.

(3.31)

The last of these implies that none of the cores has dissolved.

4 Nondimensionalization

The relevant length scale that should appear is the capillary length scale for the meniscus, l = √
σ f s/ρg. Thus, we

nondimensionalize with

X = x

l
, Y = y

l
, U = u

[u]
, V = v

[u]
,

P = p − pa√
ρgσ f s

, τ = t

[t]
, H = h

l
, F = f

l
,

where [u] is a velocity scale to be determined and [t] = l/ [u]; in fact, it turns out to be appropriate to take
[u] = D/ l, whence [t] = l2/D, although we discuss the selection of [u] in Appendix A. Also, for the time being,
we set

X1 = x1
l

, Y1 = y1
l

. (4.1)

We obtain, from (3.2)–(3.5),

∂U

∂X
+ ∂V

∂Y
= 0, (4.2)

Re

(
∂U

∂τ
+U

∂U

∂X
+ V

∂U

∂Y

)
= − 1

Ca

∂P

∂X
+ ∂2U

∂X2 + ∂2U

∂Y 2 , (4.3)

Re

(
∂V

∂τ
+U

∂V

∂X
+ V

∂V

∂Y

)
= − 1

Ca

∂P

∂Y
+ ∂2V

∂X2 + ∂2V

∂Y 2 − 1

Ca
, (4.4)

∂c

∂τ
+U

∂c

∂X
+ V

∂c

∂Y
= ∂2c

∂X2 + ∂2c

∂Y 2 , (4.5)

where

Ca = μ [u]

σ f s
, Re = ρ [u] l

μ
; (4.6)

these are, respectively, the capillary and Reynolds numbers. Also, conservation of mass for the clad gives

∫ X1(τ )

0
H (X, τ ) dX = W0H0, (4.7)



where W0 = w0/ l, H0 = h0/ l, whereas conservation of solute for the liquid region gives

∫ X1(τ )

0

∫ H(X,τ )

F(X,τ )

c (X, Y, τ ) dYdX = W0H0c0. (4.8)

4.1 Boundary and initial conditions

Equations (3.7), (3.8), (3.10) and (3.11) give, at Y = H (X, τ ),

2

(
∂V

∂Y
− ∂U

∂X

)
HX +

(
∂U

∂Y
+ ∂V

∂X

) {
1 − H2

X

}
= 0, (4.9)

−P + 2Ca

1 + H2
X

{
∂U

∂X
H2

X + ∂V

∂Y
−

(
∂U

∂Y
+ ∂V

∂X

)
H2
X = HXX

1 + H2
X

3/2 , (4.10)

V = Hτ +UHX , (4.11)

nH · ∇c = 0, (4.12)

respectively, where

nH = 1

1 + H2
X

(−HX , 1) . (4.13)

Equations (3.13)–(3.16) give, at Y = F (X, τ ) ,

V = Fτ +UFX , (4.14)

U + V FX = 0, (4.15)

c = cE (T ) + δFXX

1 + F2
X

3/2 , (4.16)

c

1 + F2
X

∂F

∂τ
= nF · (cU − ∇c) , (4.17)

respectively, where U = (U, V ) , δ = Γ/ l and

nF = 1

1 + F2
X

(−FX , 1) . (4.18)

At the contact lines, (3.21) and (3.22) become, respectively,

Ẋ1 = −
(
tan θb,x1 + tan θt,x1

c tan θb,x1

∂c

∂X

)∣∣∣
(X1(τ ),0)

= −
{

δ tan θL

c tan θb,x1

(
FXX

1 + F2
X

3/2

)

X

}∣∣∣
(X1(τ ),0)

, (4.19)

Ẏ1 = −
(
tan θb,y1 + tan θt,y1

c tan θb,y1

∂c

∂Y

)∣∣
(0,Y1(τ ))

= −
{

δ tan θL

cFX tan θb,y1

(
FXX

1 + F2
X

3/2

)

X

}∣∣∣
(0,Y1(τ ))

, (4.20)

whereas (3.23)–(3.27) give, respectively,



HX (0, τ ) − FX (0, τ )

1 + HX (0, τ ) FX (0, τ )
= tan θL , (4.21)

HX (X1, τ ) − FX (X1, τ )

1 + HX (X1, τ ) FX (X1, τ )
= − tan θL , (4.22)

F (0, τ ) = H (0, τ ) , (4.23)

F (X1, τ ) = 0, (4.24)

H (X1, τ ) = 0. (4.25)

Lastly, the initial conditions at τ = 0 are

U = 0, V = 0, c = c0 for 0 < X < W0, 0 < Y < H0, (4.26){
H−1 (Y, 0) = W0, 0 ≤ Y ≤ H0,

H (X, 0) = H0, 0 ≤ X ≤ W0,
(4.27)

{
F−1 (Y, 0) = 0, 0 ≤ Y ≤ H0,

F (X, 0) = 0, 0 ≤ X ≤ W0.
(4.28)

5 Analysis

In this section, we consider first in Sect. 5.1 the qualitative behaviour of the transient solution; then, in Sect. 5.2,
we compute steady-state solutions.

5.1 Transient behaviour

Using the parameters in Table 1, we find that l ≈ 5 mm, which will give

Ca = μD

lσ f s
∼ 10−10, Re = ρD

μ
∼ 10−3, δ ∼ 10−7.

We observe now that Ca, Re � 1, and we can consider the equations at leading order in Ca. Equations (4.3) and
(4.4) reduce to just

∂P

∂X
= 0, (5.1)

Table 1 Model parameters

Parameter Symbol Value Unit References

Diffusion coefficient D 10−9 m2 s−1 [9]

Gravitational acceleration g 9.81 m s−2 –

Initial clad height h0 1.5×10−4 m [5]

Liquidus slope m 6.80 wt% ◦C−1 –

Al melting temperature Tm 660.3 ◦C –

Initial clad width w0 0.005 m [5]

Solute capillary length Γ 5×10−10 m [9]

Clad viscosity μ 0.001 Pa s [21]

Clad density ρ 2650 kg m−3 [21]

Surface tension σfs 0.65 N m−1 [22]



∂P

∂Y
= −1, (5.2)

giving

P = P∗ (τ ) − Y, (5.3)

where P∗ is a function of τ to be determined. The only other place in the problem formulation where Ca appears
is in (4.10), which, on using (5.3) gives, at leading order in Ca,

HXX

1 + H2
X

3/2 = H − P∗ (τ ) . (5.4)

Although the governing equation for H appears to decouple from the rest of the formulation, this is not so significant
for the transient problem, since (5.4) requires boundary conditions at X = 0 and X = X1 (τ ) which will depend
on the solutions for U, V and c, to which we turn next.

We may as well now set P = (P∗ (τ ) − Y ) + CaP1, so that (4.2)–(4.5) become

∂U

∂X
+ ∂V

∂Y
= 0, (5.5)

Re

(
∂U

∂τ
+U

∂U

∂X
+ V

∂U

∂Y

)
= −∂P1

∂X
+ ∂2U

∂X2 + ∂2U

∂Y 2 , (5.6)

Re

(
∂V

∂τ
+U

∂V

∂X
+ V

∂V

∂Y

)
= −∂P1

∂Y
+ ∂2V

∂X2 + ∂2V

∂Y 2 , (5.7)

∂c

∂τ
+U

∂c

∂X
+ V

∂c

∂Y
= ∂2c

∂X2 + ∂2c

∂Y 2 . (5.8)

The boundary and initial conditions, (4.9)–(4.28), are unchanged, apart from (4.10), which becomes

−P1 + 2

1 + H2
X

{
∂U

∂X
H2

X + ∂V

∂Y
−

(
∂U

∂Y
+ ∂V

∂X

)
H2
X = 0. (5.9)

Note that since δ � 1, we can expect from (4.19) and (4.20) that Ẋ 1 ≈ 0, Ẏ1 ≈ 0, respectively, and then 
that the problem for U, V, P1 would have the trivial solution, but for the fact that Fτ 
= 0 at Y = F (X, τ ) ; 
thus, the movement of the reaction front drives the velocity field in the melt via the boundary condition at Y = 
F (X, τ ) . Whilst this is true for intermediate times, prior to the steady state which we shall consider shortly, 
there is an additional complication concerning (4.19) and (4.20). Since θb,x1 and θb,y1 are initially zero, it is
clear that the simplification that Ẋ 1 ≈ 0, Ẏ1 ≈ 0 will only become valid once θb,x1 , θb,y1 � δ; further analysis 
would be required to determine a time scale for when this happens, and we do not consider it any further here.
Moreover, since Ẋ 1 and Ẏ1 are initially very large, i.e. when θb,x1 , θb,y1 � δ, this stage is often identified in 
droplet spreading situations as that of the initial fast hydrodynamic spreading of the liquid, during which very 
little dissolution takes place [9]. Another interesting point is that once Ẋ 1 ≈ 0, Ẏ1 ≈ 0, the two contact lines stop 
moving; thereafter, the meniscus adjusts its profile in order that (4.21) and (4.22) are satisfied, but its endpoints are 
fixed.

Recalling that l2/D was determined in Sect. 4 as the timescale for the dissolution problem, we can now attempt 
to infer the order of magnitude of the time required to reach steady state. Using the parameters from Table 1, l2/D 
would correspond to around 25,000 s, i.e. around 7 h. Nevertheless, it needs to be emphasized that this value may 
be a severe overestimation. For example, if the meniscus has equal extents of O (L) in x- and y-directions, then 
we should have L2 ∼ w0h0, and the relevant time scale will be L2/D. With L ∼ (w0h0)1/2 ∼ 900 µm, we would



obtain L ∼ 750 s, which compares well with the length of about 5 minutes of the dwell time during an optimized
brazing cycle, e.g. see Fig. 3 in [4]. In practice, a full numerical simulation would be necessary to determine when
the transient model reaches a steady state.

5.2 Steady state

Having identified how the transient problem as a whole operates qualitatively, we proceed to determine the steady
state quantitatively. First, we note that, at steady state,U, V, P1 ≡ 0 and c is constant, so that (5.5)–(5.8) are satisfied
automatically, as are boundary conditions (4.9), (4.11), (4.12), (4.14), (4.15), (4.17), (4.19) and (4.20). We recall
that boundary condition (4.10) resulted in Eq. (5.4), so that if we now set C1 = −P∗ (∞) , where C1 is a constant
whose value will need to determine, we will have

HXX

1 + H2
X

3/2 = H + C1. (5.10)

Also, boundary condition (4.16) gives

δFXX

1 + F2
X

3/2 = C∗
2 − cE (T ) , (5.11)

where C∗
2 is the constant steady-state value of c, which is as yet unknown; note here that even though δ � 1,

whereas cE (T ) is nominally O (1) , the term on the right-hand side of (5.11) is critical to what follows, and is
therefore not neglected. Equations (5.10) and (5.11) are subject to (4.7), (4.8) and (4.21)–(4.25), which are now,
respectively,
∫ X∗

0
H (X) dX = A, (5.12)

C∗
2

{∫ X∗

0
(H (X) − F (X)) dX = c0A, (5.13)

H (0) = Y∗, (5.14)
HX (0) − FX (0)

1 + HX (0) FX (0)
= tan θL , (5.15)

H (X∗) = 0, (5.16)

F (X∗) = 0, (5.17)
HX (X∗) − FX (X∗)
1 + HX (X∗) FX (X∗)

= − tan θL , (5.18)

where

A = ρgw0h0
σ f s

, (5.19)

also, X∗ = X1 (∞) , Y∗ = Y1 (∞).
The equations can be simplified further by recalling that δ � 1, so that C∗

2 = cE (T ) + O(δ). Setting

C∗
2 = cE (T ) + δC2 + O δ2 , (5.20)



we see that (5.11) becomes

FXX

1 + F2
X

3/2 = C2, (5.21)

whereas (5.13) simplifies to

∫ X∗

0
F (X) dX =

(
cE (T ) − c0

cE (T )

)
A. (5.22)

At this stage, we have

HXX

1 + H2
X

3/2 = H + C1, (5.23)

FXX

1 + F2
X

3/2 = C2, (5.24)

subject to

H (0) = F (0) , (5.25)

HX (0) − FX (0)

1 + HX (0) FX (0)
= tan θL , (5.26)

H (X∗) = 0, (5.27)

F (X∗) = 0, (5.28)

HX (X∗) − FX (X∗)
1 + HX (X∗) FX (X∗)

= − tan θL , (5.29)

∫ X∗

0
H (X) dX = A, (5.30)

∫ X∗

0
F (X) dX =

(
cE (T ) − c0

cE (T )

)
A. (5.31)

We observe that (5.24) implies that the curvature of the curve describing the dissolved zone is constant, and it
is tempting to infer that F will describe the arc of a circle in the core from (0, Y∗) to (X∗, 0) . However, it will
be shown that this cannot in general be the case. The easiest way to see this is to consider what happens when
ε := (c0 − cE (T )) /cE (T ) � 1, although this is relegated to Appendix B; in addition, in Appendix C, it is shown
that, even in the general case when ε ∼ O (1) , there cannot be a circular arc from (0, Y∗) to (X∗, 0) . Instead, the
only resolution appears to be that there are two circular arcs, one starting at (0, Y∗) and the other at (X∗, 0) , both
of which pass through (0,0) and have the same radius. Thence, we append

F (0) = 0 (5.32)

to Eqs. (5.25)–(5.31) and proceed by considering the case ε ∼ O (1).
We consider the circles

(5.33)

(5.34)

(X − X+)2 + (Y − Y+)2 = R2,

(X − X−)2 + (Y − Y−)2 = R2,



 

Fig. 4 Schematic for 
determining the extent of 
the dissolved region by 
finding the centres and radii 
of two circles 

y 

Y. 

X. X

where X+, Y+, X_, Y_ and R must be determined; we will later set Y= F. Equation (5.33) will represent a circle
of radius Rand having its centre at (X+ , Y+) that passes through (0,0) and (0,Y.), whereas Eq. (5.34) will represent
a circle of radius R and having its centre at (X_, f_) that passes through (0,0) and (X*, 0); this is summarized 

schematically in Fig. 4. From (5.25),(5.28) and (5.32) twice, we must have 

xi+ cr. - r+>
2 

= R2
, 

ex. - x_)2 
+ r.: = R2 , 

Xi+ Y;= R2
, 

X:.+ Y.:= R2
, 

respectively; note that (5.32) is used twice since both circular arcs must satisfy it. We quickly see that 

Y;= (Y* - f+)2
, X:.= (X* - X_)2 ,

and hence 

x_ = 
x.,
2 

Also, 

y* 
Y+=-. 

2 

but with X+, y_ and R still unknown. A further relation cornes from (5.31), which gives

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 



where

tan θ+ = Y+
X+

, tan θ− = X−
Y−

. (5.44)

So,

R2 (θ+ + θ−) − X+Y+ − X−Y− = εA, (5.45)

i.e.

R2

(
tan−1

(
Y∗

4R2 − Y 2∗
1/2

)
+ tan−1

((
4R2 − X2∗

1/2

X∗

))

−Y∗
2

(
R2 − Y 2∗

4

)1/2

− X∗
2

(
R2 − X2∗

4

)1/2

= εA, (5.46)

which is a relation for R in terms of X∗ and Y∗.
We use (5.33) and (5.34) to simplify (5.26) and (5.29). First, we see from differentiating (5.33) that

(X − X+) + (Y − Y+)
dY

dX
= 0, (5.47)

whence, on setting Y = F (X) , we obtain

FX (0) = 2X+
Y∗

. (5.48)

From (5.34),

(X − X−) + (Y − Y−)
dY

dX
= 0, (5.49)

whence, similarly,

FX (X∗) = X∗
2Y−

. (5.50)

Now, we can re-arrange (5.26) and (5.29) to obtain

HX (0) = FX (0) + tan θL

1 − FX (0) tan θL
, (5.51)

HX (X∗) = FX (X∗) − tan θL

1 + FX (X∗) tan θL
, (5.52)

respectively, and hence

HX (0) = 2X+ + Y∗ tan θL

Y ∗ − 2X+ tan θL
, (5.53)

HX (X∗) = X∗ − 2Y− tan θL

2Y− + X∗ tan θL
, (5.54)



where

X+ =
(
R2 − Y 2∗

4

)1/2

, Y− =
(
R2 − X2∗

4

)1/2

, (5.55)

and with R given by the solution to Eq. (5.46).
A further interesting observation in relation to earlier work concerns the function H, rather than F. Terrill [1]

approximated the meniscus of a tee joint with a quarter of a circle. This would mean neglecting the term in H
on the right-hand side of (5.23), leaving us with an equation that is qualitatively similar to (5.24), with the end
result being just a meniscus having constant curvature. However, it is clear from the analysis that the term in H is
a leading-order term in the model, and should therefore not be neglected.

5.3 Model summary and numerical solution

The model equations have been reduced to just one nonlinear second-order ordinary differential equation, (5.23),
subject to (5.27), (5.30), (5.46), (5.53) and (5.54), with the unknowns being H ,R, X∗ and C1; there are thus five
constraints for five unknowns, with the latter being R, X∗, C1 and the two constants of integration from (5.23).
Once, these are determined, X+, Y+, Y∗ and C2 can be found.

Although it is a computationally inexpensive task to solve these equations, some care is necessary in finding
a suitable initial guess for H ,R, X∗ and C1; a poor guess leads to the square root of negative numbers in (5.46).
Thereafter, once a solution is found for one (θL , ε)-combination, it can be used as the initial guess for finding
solutions for other combinations by parameter stepping. Moreover, although what we have is a boundary-value
problem, the location of one of the boundaries, X = X∗, is not known beforehand. It is therefore convenient to use
boundary immobilization, and this is done by introducing the variables X̂ and Ĥ , which are given by

X = X∗ X̂ , H = X∗ Ĥ , (5.56)

leading to, for 0 ≤ X̂ ≤ 1,

ĤX̂ X̂(
1 + Ĥ2

X̂

)3/2 = X∗
(
X∗ Ĥ + C1

)
, (5.57)

subject to

Ĥ (1) = 0, (5.58)

X2∗
∫ X∗

0
Ĥ (X) dX = A, (5.59)

ĤX̂ (0) = 2X+ + Y∗ tan θL

Y∗ − 2X+ tan θL
, (5.60)

ĤX̂ (1) = X∗ − 2Y− tan θL

2Y− + X∗ tan θL
, (5.61)

and (5.46), where Y∗ = X∗ Ĥ (0) . These equations were solved using the finite element software Comsol Multi-
physics, typically using a few hundred elements to discretize the interval 0 ≤ X̂ ≤ 1. It is straightforward to ensure
that the results are mesh-independent, and we do not document those calculations here.



6 Results 

To validate the model, data parallelling the experimental details given by Sekulic [5] were considered. The core 

alloy consists of AA3003 alloy which is mainly an Al-Mn alloy with 1. E-1.5 wt% Mn and little Fe and Si. The clad

alloy is a AA4343 alloy with 8 wt% Si, 0.8 wt% Fe, 0.25 wt%Cu, 0.10 wt% Mn and 0.20 wt% Zn (in wt.%), and has 

a liquidus of 607 .8 °C, as calculated using the TCAL2 database [23]. The thickness of the clad was wo = 200µ,m. 

Heating to the brazing upper temperature and cooling from it were both performed at a rate higher than 50 °C/min, 

which would be large enough that solid-state diffusion of silicon does not affect the amount of clad available [16]. 

Although Sekulic [5] indicates an upper brazing temperature of 600 °C for the experiment he reported, he implicitly 

assumed in his approach that ail the clad had melted. lndeed, brazing for 3003/4343 assemblies may be performed 

from 600 to 615 °C [24], i.e. from slightly below to slightly above the clad liquidus temperature. 

In the present modelling approach, the clad alloy is considered as a binary Al-Si alloy, the liquidus temperature

of which is estimated as Tm - mco, where the values for Tm and mare as given in Table 1. As for co, we note that 

if we take 8 wt% Si, as indicated above, this would imply a value lower than that of c E at 600 °C, which is 8.8 wt% 

Si; this would give s < O. On the other hand, if we sum up the non-Al compositions given above and assign this 

sum to be co, then we obtain 9.4 wt% Si, giving s > O. Since the mode! is only self-consistent ifs ::: 0, we will

therefore take co = 9.4 wt%. 

At this stage, we still need to prescribe ho and 0L. To calculate ho, we use Fig. 3(b) and (c) from [5], which 

indicate the cross-sectional area of the joint to be 7.060x 10-7 m2 and 6.423x 10-7 m2; using these and the value

of wo given above leads to ho = 3.53 x 10-3 m and 3.21 x 10-3 m, respectively. As for 0L, this is a quantity

that does not explicitly appear at ail in [5], where it is argued that the fact that a good brazed joint indicates a very 

small inclination angle of the joint surface close to the mating surfaces implies that an assumption of a close-to-zero 

contact angle between the molten metal and the solid substrate at the onset of solidification is plausible indeed. 

Here, we will keep 0L as a parameter, the value of which we will vary, thereby seeing what effect it has on the 

solution. 

Moving to the results, Figs. 5 and 6 compare the experimental results from Fig. 3(b) and (c), respectively, in [5] 

with our mode! results for 0L = 0.05, 0.07 and 0.09, corresponding to 2.86°, 4.01° and 5.16°, respectively; for 

these, s = 0.06. From this, it is notable the all three mode! curves agree reasonably well with the experimental data, 

although the height of the meniscus is somewhat underpredicted towards x = 0 in Fig. 5; this was also a feature of 

the mode! results in [5]. Also of note is the fact that the predicted profile is insensitive to 0 L as its value is increased 

from 0.05 to 0.09; consequently, even though we may not have a way to determine 0L, it is not much of consequence. 

This may lead us to believe that we should simply set 0L = O. However, an interesting theoretical result that can 

even be obtained analytically in this case is that the contact line can extend to infinity in the zero-dissolution limit, 
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s = 0; this is explained in detail in Appendix O. Moreover, we also found that, in our model, it became no longer 

possible to obtain converged solutions for values of 0L lower than around 0.044; this was in spite of the fact that 

we use the best available initial guesses for the solution at each value of 0L , This behaviour is no doubt due to the 

fact that s > 0; there was no problem at ail to find solutions in the limitas 0L ➔ 0 fors = 0, and indeed there is 

even an analytical solution in this case, as shown by Eq. (D.12) in Appendix O. 

Although the above results might suggest that the solution is more or less independent of 0 L, this is not the case, 

and its value can affect the meniscus profile. To see this, consider Fig. 7 wherein values have been computed as 

0L = 0.05, 0.45, and 0.85, corresponding, respectively, to 5.16° , 25.78° and 48.70° , fors= 0.06, and the same 

cross-sectional area as for Fig. 6; hence, as 0L is increased, the profile becomes almost linear, and hence far-removed 

from the experimental observations. 

Lastly, we consider how varying the value of s affects the solution. Figure 8 shows the profiles for f and h 

fors = 0.44, 0.74 and 1.04, corresponding to temperatures of 614.8 °C, 622.6 °C and 628.l °C, respectively; 

0L = 0.85, corresponding to 48.70°; and a cross-sectional area of 7.060x 10-7 m2. These values of s and 0L have

been chosen arbitrarily, and are sufficiently different from the values used for Figs. 5 and 6 so as to illustrate that the 

model works for a wide range of parameters. In this case, we see that, even though we have chosen a high value of 

0L , the profiles for h are qualitatively reasonable, and do not resemble tihe linear profile in Fig. 7. This is of course 

in part due to the fact that there is now a significant dissolved region, with the /-profile being responsible for a 

greater share of 0L than the h-profile. 



7 Conclusions 

In this paper, we have considered a framework for the mathematical modelling of reactive wetting during brazing; 

more specifically, a simplified 2D inverted tee-joint geometry consisting of an unclad horizontal plate and a vertical 

plate with cladding was considered. The key points are as follows: 

l. Once the clad is molten, the problem bears some similarity to those of the reactive wetting that occurs during

the spread of a molten drop let, as bas been considered by others [9, 10, 18].

2. Although it is a challenging mathematical problem to determine the lime evolution of the molten clad meniscus

and the dissolution front that forms, it is much easier to determine the theoretical steady state, and this was done

here; the standout plot for this is Fig. 8, which shows the steady-state profiles for the meniscus and dissolved

region for three different brazing temperatures, assuming a prescribed value for the angle, 0L, between the

meniscus and the dissolution front. This constitutes the maximum possible spatial extent of the dissolved zone.

3. Moreover, there exists a simple approximate relation between the area of the dissolved zone (Adiss ), the initial

amount of clad (woho), the equilibrium concentration of Si at the brazing temperature (cE (T)) and the initial

composition of the clad, co :

Adiss = woho ( co
T - 1) . 

CE ( ) 
(7.l) 

Possible directions for further modelling work would involve the following: 

- computation of the time evolution of the meniscus and the dissolved region towards a steady state. The problem

of a T-joint is considerably more complicated than that of the spreading droplet because there are two contact

lines to consider and the use of so-called "lubrication theory" that is highlighted in [9, 10, 18] is no longer

strictly speaking valid since the aspect ratio of the molten region is not small. Another possibility, although

computationally more challenging, is the use of a phase-field approach [l l-13], which involves the use of a

particular type of diffuse-interface model that is based on the free energy as a function of state variables; this bas

the benefit, at least, that the force singularity which arises in the classical model of moving contact lines, first

pointed out by Huh and Scriven [25], is no longer present due to mass transfer across the interface [26]. In this

context, we can note that the model we have presented here would indeed lead to such a singularity, although

it could be alleviated by introducing a slip coefficient into the no-slip boundary condition, as bas previously

been done by many others, e.g. [27]. Yet another possibility is to use a sharp-interface method via an Arbitrary
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assumption that e « 1 

]: 
.. 

x10
_. 

15 

10 

5 

0 

5 
5 

,., 
/ /\• 

1/' 
/, \ 

i I \ 
i I \� .. , ·� 
11 -��
� \ '.},� 
\. \ -�). 

\ 1 .... , 
\\ ............. 

'\� ''�•!;!•�·-�.--.--.. ,,,� 
'-·.;:-: - - - - - - -

0 

'·':._·::��-·-··················· 
/ 

5 

..... _,_ -- -

-

10 

X [m] 

1 5  20 

x10
_. 



Lagrangian Eulerian (ALE) formulation; interestingly, ALE also appears to have been used by others [18,28].
There do exist even simpler models based around the Noyes–Whitney equation [29].

– consideration of how the model differs if the brazing temperature T is such that T < Tm −mc0. In this case, the
clad is only partly molten, and therefore not all of it is available for flow. Hence, there will be a mushy zone and
a Darcy-law term needs to be added to the Navier–Stokes equation. Moreover, it is evident that, although ε > 0
when all of the clad is molten, we will now have ε < 0.When ε > 0, it is clear that it gives a characteristic scale
for the extent of the dissolved region; on the other hand, if ε < 0, the interpretation is far less straightforward,
since not all of the clad will have melted.
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Appendix A: Determining the velocity scale, [u]

In addition to [u] = D/ l, another possibility is to take [u] = DΓ/ l2. In this case, we have

[t] = l

[u]
= l3

DΓ
, (A.1)

and (4.19) and (4.20) become

Ẋ1 = −
{

tan θL

c tan θb,x1

(
FXX

1 + F2
X

3/2

)

X

}∣∣∣∣∣
(X1(τ ),0)

, (A.2)

Ẏ1 = −
{

tan θL

c tan θb,y1

(
FXX

1 + F2
X

3/2

)

X

}∣∣∣
(0,Y1(τ ))

, (A.3)

respectively. Also, (4.5) and (4.17) become

∂c

∂τ
+U

∂c

∂X
+ V

∂c

∂Y
= 1

δ

(
∂2c

∂X2 + ∂2c

∂Y 2

)
, (A.4)

δc

1 + F2
X

∂F

∂τ
= nF · (cu − D∇c) at Y = F (X, τ ) , (A.5)

respectively. It is now convenient to refer to Table 1, which contains the model parameters. Now, since δ � 1,
(A.4) and (A.5) reduce to

∂2c

∂X2 + ∂2c

∂Y 2 ≈ 0, (A.6)

nF · ∇c ≈ 0 at Y = F (X, τ ) ; (A.7)

i.e. this is already the steady state. Also, from (A.1), we would obtain [t] ∼ 1010 s, and it is clear that we must have
taken the wrong choice for [u] .



Appendix B: ε � 1

In this case, the F and H problems decouple in an interesting way. From (5.31), and assuming that A ∼ O (1) ,

we now expect that

∫ X∗

0
F (X) dX ∼ O (ε) . (B.1)

For Y < 0, this should mean that X ∼ O (1) , F ∼ O (ε) , whereas for Y > 0, we expect F ∼ O (1) when
X ∼ O (ε).

Considering the first case, if F = ε F̄, with the expectation that F̄ is an O (1) function, implies that (5.24)
becomes, at leading order in ε,

d2 F̄

dX2 = C̄2, (B.2)

where C2 = C̄2/ε, with C̄2 an O (1) constant, whereas (5.28) and (5.29) reduce to

F̄ (X∗) = 0, (B.3)

HX (X∗) = − tan θL , (B.4)

respectively. For the second case, we set X = ε X̄ , so that (5.24) becomes

d2F

d X̄2
= C̄2

(
dF

d X̄

)3

, (B.5)

with (5.26) reducing to

HX (0) = − cot θL . (B.6)

Note that, at this stage, (B.2) and (B.5) are consistent with each other, and the implication is that the radius of
curvature of F, which is in effect 1/C2, is small. Also, we can note that the problem for H has now decoupled from
that for F. More specifically, we have, for H, Eq. (5.23) subject to

HX (0) = − cot θL , (B.7)

H (X∗) = 0, (B.8)

HX (X∗) = − tan θL , (B.9)∫ X∗

0
H (X) dX = A; (B.10)

so, there are enough constraints to determine H, C1 and X∗, and thus H (0) .

Returning to the problem for F, we have

d2 F̄

dX2 = C̄2, (B.11)



subject to

F̄ (X∗) = 0, (B.12)

and

d2F

d X̄2
= C̄2

(
dF

d X̄

)3

, (B.13)

subject to

F (0) = H (0) . (B.14)

Each of these problems is clearly missing a boundary condition, and hence two more conditions would be required.
One would hope for continuity of F and its derivative, so that the two problems would “join up”, in the sense that
F and dF/dX as computed by the two problems should be continuous at some value of X that would have to be
determined. However, it is impossible to achieve this, whilst at the same time ensuring that the curvature of F is
constant. Thus, the only apparent possibility is that

F (0) = 0, (B.15)

and hence that

F̄ (0) = 0, (B.16)

which abandons the requirement that dF/dX is continuous. In this case, dissolution does not start at all from the
point (0,0). Note that (B.15) will mean that F is multivalued at X = 0, and indeed for X < 0.

The remaining problem for F̄ is (B.11), subject to (B.12) and (B.16), and we obtain

F̄ = 1

2
C̄2X (X − X∗) . (B.17)

The remaining problem for F is (B.13), subject to (B.14) and (B.15). To solve, it is easier to rewrite the problem as

d2 X̄

dF2 = C̄2, (B.18)

subject to

X̄ (0) = 0, (B.19)

X̄ (Y∗) = 0, (B.20)

which leads to the solution

X̄ = −1

2
C̄2F (F − Y∗) . (B.21)
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Finally, ë2 will be given from (5.31) by 

1 {X* 1 {y* 
2c2 lo X (X* - X)dX + 2c2 lo F (Y* - F)dF = A, 

leading to 
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A preliminary result for f and h is given in Fig. 9 using 0L = 0.1 (5.71° ) and T = 615 °C, corresponding to 
s = 0.445. Note that the sum of the area in y < 0 and x < 0 should be 0.445 that in x, y,> O. 

Furthermore, Fig. 10 shows the extent of the dissolution zone for T = 595 °C, 615 °C and 625 °C. Note that the 
curve for T = 595 °C is literally on top of the x- and y-axes. For this s. « 1 analysis, these curves are calculated 
using the results from the O (1) problem for H; thus, X* and Y* are the same for ail of these curves. 

Appendix C: A one-circle dissolution zone fore « 1? 

It was seen in Appendix B that if s « 1, then it is not possible that a single circular arc will join the two contact 
lines. However, it is not yet clear that this is the case ifs. is larger, as will be the case when the difference between 
co and CE (T) is large, or CE (T) is sufficiently small. Thus, we now consider this situation. 

Suppose that such a circular arc exists and that it is part of the circle 

(X - Xo)2 
+ (Y - Y0)2 = R2 , (C.l ) 



 

Fig. 10 f (0L = 0.1, 
T = 595 °C, 615 °C, 
625 °C), obtained using the 
assumption that e « 1 

where Xo, Yo and R are to be determined; then we would need

X5+(Y*-Yo)2 =R2
, 

(X*-Xo)2 +YJ=R2
. 

Also, since 

dY 
(X - Xo) + (Y - Yo) - = 0, 

dX 

we have 

Xo X*-Xo Fx (0) = --, Fx (X*)= ---.
Y* - Yo Yo 

We observe that 

which gives 
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(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

(C.9) 



where

θ = π

2
+ tan−1

(
Y∗ − Y0

X0

)
+ tan−1

(
X∗ − X0

Y0

)
; (C.10)

here, (C.9) comes from Eq. (5.31), i.e. the conservation of solute condition.
Numerical experimentation to determine f and h indicated that there are not only great difficulties in finding

a numerical solution, but also difficulties in finding a good initial guess; it is necessary to find this because the
governing equations are nonlinear. Moreover, it is not even known if a solution exists. Thus, it turns out to be more
worthwhile to consider what would be the properties of such a solution, if it exists. We know that we must have

HX (0) = X0 + (Y∗ − Y0) tan θL

Y∗ − Y0 − X0 tan θL
, (C.11)

HX (X∗) = X∗ − X0 − Y0 tan θL

Y0 + (X∗ − X0) tan θL
, (C.12)

which we can rewrite as

X0 + (Y∗ − Y0) tan θL = (Y∗ − Y0 − X0 tan θL) HX (0) , (C.13)

X∗ − X0 − Y0 tan θL = (Y0 + (X∗ − X0) tan θL) HX (X∗) , (C.14)

i.e.

(
a b
c d

) (
X0

Y0

)
=

(
e
f

)
, (C.15)

where

a = 1 + HX (0) tan θL , (C.16)

b = HX (0) − tan θL , (C.17)

c = HX (X∗) tan θL − 1, (C.18)

d = −HX (X∗) − tan θL , (C.19)

e = Y∗ (HX (0) − tan θL) , (C.20)

f = X∗ (HX (X∗) tan θL − 1) , (C.21)

so that

(
X0

Y0

)
= 1

ad − bc

(
de − b f

−ce + a f

)
. (C.22)

Now, since

2Y∗Y0 = Y 2∗ − X2∗ + 2X∗X0, (C.23)

from (C.8) we have

2Y∗ (a f − ce) =
(
Y 2∗ − X2∗

)
(ad − bc) + 2X∗ (de − b f ) , (C.24)



 

Fig. 11 </> vs. œ for 
0L = 0, 1r/4, 1r/3 
(/3 = 1r/3) 

and we need to consider whether 

i:). 

</> := 2Y,.. (af - ce) - (r;- x;) (ad - be) - 2X,.. (de - bf)

14 

1
2 

10 

8 ! 

6 

4 1 

2
,l 

1 .

''· 
00 ',, 0.5 

is ever zero or not. Here, the idea is that we solve (5.10), subject to (5.12), (5.16) and 

Hx (0) = -tan(n/2-a) , 

Hx (X,..)= -tan {3,

Ct 

1.5 

(C.25) 

(C.26) 

(C.27) 

where a and f3 are the angles that the curve Y = H (X) makes with the Y- and X-axes, respectively; note that this 
computation is independent of 0L, and that we merely sweep over ail values of a and /3, where O < a, f3 < n/2.

Each computation generates values for X,.. and Y,.. , which are then used in (C.25). If it is found that </> is never zero, 
then this is an indication that X o and Yo cannot be found, and hence the sought-after circle does not exist. Numerical 
experimentation suggests that this indeed is the case. As an example, Fig. 11 shows</> vs. a for 0L = 0, n /4, n /2, 
for f3 = n /3, indicating that </> is never zero, no matter what value of 0L is tried. Similar graphs were also obtained 
for other values of f3.

Appendix D: 8L = 0, s = 0 

When s = 0, we have F = 0, and Eqs. (5.23)-(5.31) reduce to just 

Hxx 
312 = H +C1,

(1 + Hi) 

subject to 

Hx (0) = - cot0L, 

H (X.)= 0, 
Hx (X*)= -tan0L, 

fo
x

* H (X) dX = A.

(D.l) 

(D.2) 

(D.3) 

(D.4) 

(D.5) 



Multiplying (D.1) by HX , integrating with respect to X and applying (D.3) and (D.4)

− 1

1 + H2
X

1/2 = 1

2
H2 + C1H − cos θL . (D.6)

Alternatively, integrating (D.1) with respect to X and applying (D.2), (D.4) and (D.5) gives

cos θL − sin θL = A + C1X∗ (D.7)

Now, consider the behaviour of H near X = X∗ when θL = 0. Since H, HX � 1, we have, from (D.6),

H2
X

2
∼ H2

2
+ C1H. (D.8)

If C1 
= 0, we have just

H2
X

2
∼ C1H, (D.9)

which leads to

H ∼ 1

2
C1 (X∗ − X)2 . (D.10)

However, note that if C1 < 0,which is clearly possible from (D.7) ifA > 1, then H < 0,whichwould be physically
unrealistic. On the other hand, if C1 = 0, i.e. A = 1, we have, instead of (D.9),

H2
X ∼ H2, (D.11)

which would give H ∼ e±X . It is clear that only the behaviour with the minus sign is of relevance here. Taking this
one, we see that an alternative to (D.10) is the possibility that the contact line extends to infinity with H ∼ e−X as
X → ∞. In fact, for this case, there is an analytical solution for the meniscus given by [30–32]

X = √
2 − ln

(
1 + √

2
)

−
√
4 − H2 + ln

(
2 + √

4 − H2

H

)
. (D.12)

Finally, it is worth noting that, from the data in Table 1 and the values for h0 andw0 used in this paper,A ≈ 0.02,
indicating that the relevant behaviour is that given by Eq. (D.10).
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