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In this paper, earlier dissolutive wetting models describing the dynamics of an axisymmetric alloy drop spreading on pure metal substrate are extended to describe reactive wetting and subsequent joint formation in brazing processes. A two-dimensional time-dependent problem is formulated, and the model equations are nondimensionalized, revealing the possibilities for asymptotic mode! reduction. Whilst the numerical solution of the time-dependent problem, which contains two moving contact lines and would not in general be amenable to lubrication theory, is relegated to future work, the steady-state problem is analyzed in detail. The analysis offers an arguably more transparent alternative to an earlier energy minimization approach for finding the location of the meniscus, which ultimately constitutes the joint. The results of the present mode! are found to compare favourably to those of earlier experimental and theoretical work.

Introduction

In the controlled atmosphere brazing (CAB) process, separate parts are assembled by being submitted to a thermal cycle during which a cladding consisting of a low melting temperature alloy becomes liquid and forms the necessary joints by capillarity. After a time allocated for joint formation, the assembly is cooled so that the joints solidify. For manufacturing aluminium heat exchangers, the parts to be assembled are plates and fins made of an essentially binary Al-Mn alloy. Sorne of these parts are clad with an essentially binary Al-Si alloy that has a liquidus 4�50 K below the solidus of the Al-Mn alloy. Proper joint formation requires that enough liquid is made available to form the joints, but not too much as this may lead to unexpected deformations of the assemblies and other potential defects. Accordingly, the brazing cycles are designed with a maximum temperature close to the clad alloy liquidus, slightly lower to minimize deformations or slightly higher if more liquid is needed.

Since the very beginning of development of the CAB process, the materials and process parameters have been tested using an inverted tee-joint configuration, wherein a plate stands vertically on a horizontal plate [START_REF] Terrill | Diffusion of silicon in aluminum brazing sheet[END_REF][START_REF] Woods | Flow of aluminum dip brazing filler metals[END_REF][START_REF] Zhao | Analysis of fin-tube joints in a compact heat exchanger[END_REF]. A theoretical prediction of the brazed joint shape to be formed during manufacturing can be performed using a joint shape modelling advocated in [START_REF] Sekulic | Prediction of the fillet mass and topology of aluminum brazed joints[END_REF]. Recent studies of some relatively simple brazed joint configurations [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF], and more complex two-dimensional (2D) and three-dimensional (3D) geometries [START_REF] Zellmer | Numerical modelling and experimental verification of the formation of 2D and 3D brazed joints[END_REF][START_REF] Sekulic | Influence of joint topology on the formation of brazed joints[END_REF], have convincingly demonstrated that a minimization of potential energy of the molten metal free surface at the onset of cladding solidification may efficiently be utilized for joint topology predictions. A summary of these approaches is given in [START_REF] Sekulic | Modeling of the sequence of phenomena in brazing[END_REF].

Nevertheless, the modelling of brazing should be amenable to an even more fundamental approach, such as that which has been applied to reactive wetting in metal-metal systems [START_REF] Warren | Modeling reactive wetting[END_REF][START_REF] Su | Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate[END_REF][START_REF] Villanueva | Multicomponent and multiphase modeling and simulation of reactive wetting[END_REF][START_REF] Villanueva | Effect of phase change and solute diffusion on spreading on a dissolving substrate[END_REF][START_REF] Villanueva | A diffuse-interface model of reactive wetting with intermetallic formation[END_REF]. Thus, rather than appealing to energy minimization so as to find, for example, the final equilibrium meniscus shape, it should be possible to formulate time-dependent conservation equations that describe how the final state is reached. One reason this approach has not been adopted for brazing is that it has been proven difficult to obtain solutions for real parameters in solder systems [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF][START_REF] Braun | Lubrication theory for reactive spreading of a thin drop[END_REF]. Hence, one of the aims of this paper is to apply the concepts previously used for reactive wetting to the modelling of microscale phenomena in brazing. Moreover, this approach should serve to complement the energy minimization approach: for example, it is already a well-accepted concept in physics that the shape that a fluid meniscus adopts is the same as that required to minimize the energy of the system [START_REF] Racz | A general statement of the problem and description of a proposed method of calculation for some meniscus problems in materials processing[END_REF].

To fix ideas, we focus on the inverted tee-joint configuration considered in [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF], as it is not only the simplest one to consider geometrically, but there are also experimental data to compare with. The structure of the paper is as follows. In Sect. 2, we motivate the modelling approach to be used. In Sect. 3, we formulate the problem mathematically, and in Sect. 4, we nondimensionalize the equations. The main body of the analysis is in Sect. 5, which considers the time-dependent equations from a qualitative perspective and the solution of the steady-state equations. Results are given in Sect. 6, and conclusions are drawn in Sect. 7. Finally, auxiliary results are given in four appendices.

Modelling considerations

Compared to the modelling of reactive spreading of an axisymmetric droplet of a molten metallic alloy on a metal substrate [START_REF] Warren | Modeling reactive wetting[END_REF][START_REF] Su | Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate[END_REF][START_REF] Villanueva | Multicomponent and multiphase modeling and simulation of reactive wetting[END_REF][START_REF] Villanueva | Effect of phase change and solute diffusion on spreading on a dissolving substrate[END_REF][START_REF] Villanueva | A diffuse-interface model of reactive wetting with intermetallic formation[END_REF], the modelling of brazing is substantially more complex, since the clad, which will ultimately flow and cause the dissolution of the core, is initially solid. Moreover, once the heating of the core-clad assembly starts, solid-state diffusion of the silicon in the clad occurs; also, it may be the case that heating is not isothermal, with different parts of the clad and the core reaching a certain temperature at different times. In particular, this will mean that some parts of the clad will reach the solidus temperature sooner than others; thus, these parts would in principle be available for flow sooner than others. However, if there is no solid-state diffusion from the clad to the core and if the final holding temperature is lower than the liquidus temperature corresponding to the initial composition of Si in the clad, then not all of the clad will melt; on the other hand, if there is solid-state diffusion, then even this holding temperature might not be high enough to melt the clad, and an even higher temperature would be required to do so. Furthermore, once melting has begun, capillary forces can be expected to disrupt the initial planar configuration of the clad, leading to the formation of a moving meniscus, at which point coupled two-phase momentum, i.e. heat and solute transfers will be occurring. A more complete description of these stages can be found in [START_REF] Lacaze | Numerical simulation of brazing aluminium alloys with Al-Si alloys[END_REF].

Therefore, in order to avoid getting bogged down in these details, and to be able to focus on reactive spreading, we will simply assume that the clad is initially molten and at a uniform temperature that is greater than the liquidus temperature for the clad; furthermore, we will also assume that the core is at the same uniform temperature as the clad. In fact, these assumptions should not affect what will be the main body of the results in this paper, i.e. the determination at steady state of the joint shape and of the dissolved region.

Mode) formulation

Goveming equations

Assume all of the clad, of composition co, has reached the temperature T, where T > Tliq(co) and occupies 0 � x � wo, 0 � y � ho, as shown in Fig. 1, which depicts the right-hand half of an inverted tee joint. Here, Î! i q denotes the liquidus curve in the Al-Si phase diagram and is a fonction of the Si concentration, c, as shown in Fig. 2a; however, in what follows, we approximate Tliq by Î! i q = Tmme, (3.1) where Tm denotes the melting temperature of pure aluminium and-mis the slope of the liquidus curve, which is now assumed straight, as is shown in Fig. 2b. Thus, T > Tliq(co) implies that the clad is assumed to be completely molten initially. Note also that we implicitly assume that the horizontal core and clad are initially in contact, so that the clad immediately proceeds to wet the core; clearly, in practice, this contact may be limited or sporadic along the length of the joint, leading to possible variations along the axis perpendicular to the x-y plane that we consider. Thereafter, the molten clad begins to move and at time t, it will occupy O � x � x 1 (t), 0 � y � h (x, t), as shown in Fig. 3. At the same time, the core which occupies x < 0 and y < 0 will dissolve, with the limit of the where p and µ, are, respectively, the density and viscosity of molten clad; these will be assumed to be constant. In addition, u and v are the velocity components in the xand y-directions respectively, pis the pressure and gis the gravitational acceleration. Moreover, conservation of solute is given by f (x, t) � y � h (x, t), (3.5) where c is the solute concentration and D is the diffusion coefficient for Si. Also, by conservation of mass for the clad, we must have

{ XI (f) l o h (x, t) dx = woho.

Bound ary conditions

At y = h (x, t) , we have zero tangential stress, given by ( av au )
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ay ax ay ax

X (3.6) (3.7)
and a normal stress condition, given by

p a -p + 2μ 1 + h 2 x ∂u ∂ x h 2 x + ∂v ∂ y - ∂u ∂ y + ∂v ∂ x h 2 x = σ fs K, ( 3.8) 
where σ fs denotes the interfacial tension between the molten clad and the surroundings, p a is the pressure of the surroundings and K is the curvature of the meniscus, given by

K = h x x 1 + h 2 x 3/2 .
(3.9)

In addition to (3.7) and (3.8), which are called dynamic conditions, there is a kinematic condition for the motion of the meniscus, given by

v = h t + uh x . (3.10)
Also, there is no normal flux of solute at the meniscus, and hence

n h • ∇c = 0, (3.11) 
where n h is the unit normal vector to y = h (x, t), and is given by

n h = 1 1 + h 2 x (-h x , 1) . ( 3.12) 
At the dissolution front, y = f (x, t) , we will have

v = f t + u f x , (3.13) u + v f x = 0, (3.14) c = c E (T ) + Γ κ, (3.15) c 1 + f 2 x ∂ f ∂t = (cu -D∇c) • n f , ( 3.16) 
where u = (u, v) , n f is the unit normal vector to y = f (x, t) , and is given by

n f = 1 1 + f 2 x (-f x , 1) , ( 3.17) 
and κ denotes the curvature and is given by

κ = f x x 1 + f 2 x 3/2 . (3.18)
Note that - (3.15) expresses local equilibrium at the liquid-solid interface including the Gibbs-Thomson effect [START_REF] Warren | Modeling reactive wetting[END_REF][START_REF] Su | Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate[END_REF], with c E (T ) as the equilibrium concentration of Si at the brazing temperature, T, as given by the phase diagram and Γ as the normalized liquid-solid surface energy or solute capillary length, which is assumed to be constant; -in (3.16), we have neglected any solid-state diffusion in the core; -applying the Reynolds transport theorem [START_REF] Leal | Advanced transport phenomena: fluid mechanics and convective transport processes[END_REF] to Eq. (3.5), we find, with the help of (3.11) and (3.16) that

Ω(t)
c (x, y, t) dy dx = w 0 h 0 c 0 , (3.19) where Ω denotes the liquid region, i.e. solute is conserved.

Furthermore, conditions are required at the contact lines, which are at (x 1 (t) , 0) and (0, y 1 (t)) . It seems reasonable to generalize the condition derived by Warren et al. [START_REF] Warren | Modeling reactive wetting[END_REF], and later used by Su et al. [START_REF] Su | Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate[END_REF] and Singler et al. [START_REF] Singler | Modeling and experiments in dissolutive wetting: a review[END_REF], for the contact line of an axisymmetric droplet during reactive spreading on a horizontal substrate. Warren et al. [START_REF] Warren | Modeling reactive wetting[END_REF] assume that the contact line remains at the initial level of the substrate and that the total angle between the meniscus and the liquid-solid interface, θ L , remains constant; in the present context, and with reference to Fig. 3,

θ b,x 1 + θ t,x 1 = θ L , θ b,y 1 + θ t,y 1 = θ L . (3.20)
However, since there is a discontinuity in the slope between the liquid surface and the liquid-solid interface, there will arise an additional restriction from the requirement that the liquid concentration must be well-defined and differentiable at the triple junction. The resulting expressions for the velocities of the contact lines, ẋ1 and ẏ1 , are

ẋ1 = -D tan θ b,x 1 + tan θ t,x 1 c tan θ b,x 1 ∂c ∂ x (x 1 (t),0) = -DΓ tan θ L c tan θ b,x 1 ∂κ ∂ x (x 1 (t),0) , (3.21) ẏ1 = -D tan θ b,y 1 + tan θ t,y 1 c tan θ b,y 1 ∂c ∂ y (0,y 1 (t)) = -DΓ tan θ L c tan θ b,y 1 ∂κ ∂ y (0,y 1 (t)) , (3.22) 
where the dots denote differentiation with respect to time.

In the model, θ L is a prescribed constant-and has to be determined experimentally-but θ b,x 1 , θ t,x 1 , θ b,y 1 and θ t,y 1 are all functions of time and must all be determined. Equation (3.20) can then be written in terms of f and h as

h x (0, t) -f x (0, t) 1 + h x (0, t) f x (0, t) = tan θ L , (3.23) h x (x 1 , t) -f x (x 1 , t) 1 + h x (x 1 , t) f x (x 1 , t) = -tan θ L , ( 3.24) 
and further conditions are

f (0, t) = h (0, t) , (3.25) f (x 1 , t) = 0, (3.26) h (x 1 , t) = 0. (3.27)
Equations (3.25)-(3.27) are perhaps worthy of further explanation, as they are not obvious. In general, one would expect f (x 1 , t) = h (x 1 , t) , so that both the x-and y-locations of the contact are not known and have to be determined. However, Warren et al. [START_REF] Warren | Modeling reactive wetting[END_REF]take f (x 1 , t) = 0, h (x 1 , t) = 0, which at least leads to a well-posed mathematical problem. On the other hand, Villanueva et al. [START_REF] Villanueva | Multicomponent and multiphase modeling and simulation of reactive wetting[END_REF] treat a similar problem using phase-field methods and obtain an elevation of the contact line relative to the y = 0 level, which is apparently qualitatively similar to the experimental observations of Saiz et al. [START_REF] Saiz | Reactive spreading: adsorption, ridging and compound formation[END_REF][START_REF] Saiz | Ridging effects on wetting and spreading of liquids on solids[END_REF]; nevertheless, the elevation is small compared to the maximum height of the droplet, which suggests that (3.26) and (3.27) can be a suitable approximation. Thus, having adopted this approximation at the horizontal boundary, we may adopt it at the vertical one also, giving Eq. (3.25). Note that although it is written as one equation, it may be thought of as two if we write

f -1 (y 1 (t) , t) = 0, h -1 (y 1 (t) , t) = 0, (3.28) 
where f -1 and h -1 denote the inverse functions of f and h, respectively.

The initial conditions at t = 0 should be

u = 0, v = 0, c = c 0 for 0 < x < w 0 , 0 < y < h 0 , (3.29) h -1 (y, 0) = w 0 , 0 ≤ y ≤ h 0 , h (x, 0) = h 0 , 0 ≤ x ≤ w 0 , (3.30) f -1 (y, 0) = 0, 0 ≤ y ≤ h 0 , f (x, 0) = 0, 0 ≤ x ≤ w 0 . (3.31)
The last of these implies that none of the cores has dissolved.

Nondimensionalization

The relevant length scale that should appear is the capillary length scale for the meniscus, l = σ f s /ρg. Thus, we nondimensionalize with

X = x l , Y = y l , U = u [u] , V = v [u] , P = p -p a √ ρgσ f s , τ = t [t] , H = h l , F = f l ,
where [u] is a velocity scale to be determined and [t] = l/ [u]; in fact, it turns out to be appropriate to take [u] = D/l, whence [t] = l 2 /D, although we discuss the selection of [u] in Appendix A. Also, for the time being, we set

X 1 = x 1 l , Y 1 = y 1 l . (4.1)
We obtain, from (3.2)-(3.5),

∂U ∂ X + ∂ V ∂Y = 0, (4.2) 
Re ∂U ∂τ + U ∂U ∂ X + V ∂U ∂Y = - 1 Ca ∂ P ∂ X + ∂ 2 U ∂ X 2 + ∂ 2 U ∂Y 2 , (4.3) Re ∂ V ∂τ + U ∂ V ∂ X + V ∂ V ∂Y = - 1 Ca ∂ P ∂Y + ∂ 2 V ∂ X 2 + ∂ 2 V ∂Y 2 - 1 Ca , ( 4.4 
)

∂c ∂τ + U ∂c ∂ X + V ∂c ∂Y = ∂ 2 c ∂ X 2 + ∂ 2 c ∂Y 2 , ( 4.5) 
where

Ca = μ [u] σ f s , Re = ρ [u] l μ ; (4.6)
these are, respectively, the capillary and Reynolds numbers. Also, conservation of mass for the clad gives

X 1 (τ ) 0 H (X, τ ) dX = W 0 H 0 , ( 4.7) 
where W 0 = w 0 /l, H 0 = h 0 /l, whereas conservation of solute for the liquid region gives 

X 1 (τ ) 0 H (X,τ ) F(X,τ ) c (X, Y, τ ) dY dX = W 0 H 0 c 0 . ( 4 
2 ∂ V ∂Y - ∂U ∂ X H X + ∂U ∂Y + ∂ V ∂ X 1 -H 2 X = 0, (4.9) 
-P + 2Ca 1 + H 2 X ∂U ∂ X H 2 X + ∂ V ∂Y - ∂U ∂Y + ∂ V ∂ X H 2 X = H X X 1 + H 2 X 3/2 , (4.10) V = H τ + U H X , ( 4.11 
)

n H • ∇c = 0, (4.12) 
respectively, where

n H = 1 1 + H 2 X (-H X , 1) . (4.13) Equations (3.13)-(3.16) give, at Y = F (X, τ ) , V = F τ + U F X , (4.14) U + V F X = 0, (4.15) c = c E (T ) + δ F X X 1 + F 2 X 3/2 , (4.16) c 1 + F 2 X ∂ F ∂τ = n F • (cU -∇c) , ( 4.17) 
respectively, where U = (U, V ) , δ = Γ /l and

n F = 1 1 + F 2 X (-F X , 1) . (4.18)
At the contact lines, (3.21) and (3.22) become, respectively, 

Ẋ1 = - tan θ b,x 1 + tan θ t,x 1 c tan θ b,x 1 ∂c ∂ X (X 1 (τ ),0) = - δ tan θ L c tan θ b,x 1 F X X 1 + F 2 X 3/2 X (X 1 (τ ),0) , (4.19) Ẏ1 = - tan θ b,y 1 + tan θ t,y 1 c tan θ b,y 1 ∂c ∂Y (0,Y 1 (τ )) = - δ tan θ L cF X tan θ b,y 1 F X X 1 + F 2 X 3/2 X (0,Y 1 (τ )) , ( 4 
H X (0, τ ) -F X (0, τ ) 1 + H X (0, τ ) F X (0, τ ) = tan θ L , (4.21) H X (X 1 , τ ) -F X (X 1 , τ ) 1 + H X (X 1 , τ ) F X (X 1 , τ ) = -tan θ L , (4.22) F (0, τ ) = H (0, τ ) , (4.23) F (X 1 , τ ) = 0, (4.24) H (X 1 , τ ) = 0. (4.25)
Lastly, the initial conditions at τ = 0 are

U = 0, V = 0, c = c 0 for 0 < X < W 0 , 0 < Y < H 0 , (4.26) H -1 (Y, 0) = W 0 , 0 ≤ Y ≤ H 0 , H (X, 0) = H 0 , 0 ≤ X ≤ W 0 , (4.27) F -1 (Y, 0) = 0, 0 ≤ Y ≤ H 0 , F (X, 0) = 0, 0 ≤ X ≤ W 0 . (4.28)

Analysis

In this section, we consider first in Sect. 5.1 the qualitative behaviour of the transient solution; then, in Sect. 5.2, we compute steady-state solutions.

Transient behaviour

Using the parameters in Table 1, we find that l ≈ 5 mm, which will give

Ca = μD lσ f s ∼ 10 -10 , Re = ρ D μ ∼ 10 -3 , δ ∼ 10 -7 .
We observe now that Ca, Re 1, and we can consider the equations at leading order in Ca. Equations (4.3) and (4.4) reduce to just 

∂ P ∂ X = 0, (5.1) 
∂ P ∂Y = -1, (5.2) 
giving

P = P * (τ ) -Y, ( 5.3) 
where P * is a function of τ to be determined. The only other place in the problem formulation where Ca appears is in (4.10), which, on using (5.3) gives, at leading order in Ca,

H X X 1 + H 2 X 3/2 = H -P * (τ ) .
(5.4)

Although the governing equation for H appears to decouple from the rest of the formulation, this is not so significant for the transient problem, since (5.4) requires boundary conditions at X = 0 and X = X 1 (τ ) which will depend on the solutions for U, V and c, to which we turn next. We may as well now set P = (P * (τ ) -Y ) + Ca P 1 , so that (4.2)-(4.5) become

∂U ∂ X + ∂ V ∂Y = 0, (5.5 
)

Re ∂U ∂τ + U ∂U ∂ X + V ∂U ∂Y = - ∂ P 1 ∂ X + ∂ 2 U ∂ X 2 + ∂ 2 U ∂Y 2 , ( 5.6 
)

Re ∂ V ∂τ + U ∂ V ∂ X + V ∂ V ∂Y = - ∂ P 1 ∂Y + ∂ 2 V ∂ X 2 + ∂ 2 V ∂Y 2 , ( 5.7 
)

∂c ∂τ + U ∂c ∂ X + V ∂c ∂Y = ∂ 2 c ∂ X 2 + ∂ 2 c ∂Y 2 . ( 5.8) 
The boundary and initial conditions, (4.9)-(4.28), are unchanged, apart from (4.10), which becomes

-P 1 + 2 1 + H 2 X ∂U ∂ X H 2 X + ∂ V ∂Y - ∂U ∂Y + ∂ V ∂ X H 2 X = 0.
(5.9)

Note that since δ 1, we can expect from (4. [START_REF] Saiz | Reactive spreading: adsorption, ridging and compound formation[END_REF]) and (4.20) that X ˙ 1 ≈ 0, Y ˙1 ≈ 0, respectively, and then that the problem for U, V, P 1 would have the trivial solution, but for the fact that F τ = 0atY = F (X,τ) ; thus, the movement of the reaction front drives the velocity field in the melt via the boundary condition at Y = F (X,τ) . Whilst this is true for intermediate times, prior to the steady state which we shall consider shortly, there is an additional complication concerning (4. [START_REF] Saiz | Reactive spreading: adsorption, ridging and compound formation[END_REF]) and (4.20). Since θ b,x 1 and θ b,y 1 are initially zero, it is clear that the simplification that X ˙ 1 ≈ 0, Y ˙1 ≈ 0 will only become valid once θ b,x 1 ,θ b,y 1 δ; further analysis would be required to determine a time scale for when this happens, and we do not consider it any further here. Moreover, since X ˙ 1 and Y ˙1 are initially very large, i.e. when θ b,x 1 ,θ b,y 1 δ, this stage is often identified in droplet spreading situations as that of the initial fast hydrodynamic spreading of the liquid, during which very little dissolution takes place [START_REF] Warren | Modeling reactive wetting[END_REF]. Another interesting point is that once X ˙ 1 ≈ 0, Y ˙1 ≈ 0, the two contact lines stop moving; thereafter, the meniscus adjusts its profile in order that (4.21) and (4.22) are satisfied, but its endpoints are fixed.

Recalling that l 2 /D was determined in Sect. 4 as the timescale for the dissolution problem, we can now attempt to infer the order of magnitude of the time required to reach steady state. Using the parameters from Table 1, l 2 /D would correspond to around 25,000 s, i.e. around 7 h. Nevertheless, it needs to be emphasized that this value may be a severe overestimation. For example, if the meniscus has equal extents of O (L) in x-and y-directions, then we should have L 2 ∼ w 0 h 0 , and the relevant time scale will be L 2 /D. With L ∼ (w 0 h 0 ) 1/2 ∼ 900 µm, we would obtain L ∼ 750 s, which compares well with the length of about 5 minutes of the dwell time during an optimized brazing cycle, e.g. see Fig. 3 in [START_REF] Sekulic | Prediction of the fillet mass and topology of aluminum brazed joints[END_REF]. In practice, a full numerical simulation would be necessary to determine when the transient model reaches a steady state.

Steady state

Having identified how the transient problem as a whole operates qualitatively, we proceed to determine the steady state quantitatively. First, we note that, at steady state, U, V, P 1 ≡ 0 and c is constant, so that (5.5)-(5.8) are satisfied automatically, as are boundary conditions (4.9), (4.11), (4.12), (4.14), (4.15), (4.17), (4. [START_REF] Saiz | Reactive spreading: adsorption, ridging and compound formation[END_REF]) and (4.20). We recall that boundary condition (4.10) resulted in Eq. (5.4), so that if we now set C 1 = -P * (∞) , where C 1 is a constant whose value will need to determine, we will have

H X X 1 + H 2 X 3/2 = H + C 1 .
(5.10) Also, boundary condition (4.16) gives

δ F X X 1 + F 2 X 3/2 = C * 2 -c E (T ) , ( 5.11) 
where C * 2 is the constant steady-state value of c, which is as yet unknown; note here that even though δ 1, whereas c E (T ) is nominally O (1) , the term on the right-hand side of (5. (5.12)

C * 2 X * 0 (H (X ) -F (X )) dX = c 0 A, ( 5.13) 
H (0) = Y * , (5.14) H X (0) -F X (0) 1 + H X (0) F X (0) = tan θ L , ( 5.15) 
H (X * ) = 0, (5.16)

F (X * ) = 0, (5.17) H X (X * ) -F X (X * ) 1 + H X (X * ) F X (X * ) = -tan θ L , ( 5.18) 
where

A = ρgw 0 h 0 σ f s , (5.19) also, X * = X 1 (∞) , Y * = Y 1 (∞).
The equations can be simplified further by recalling that δ 1, so that

C * 2 = c E (T ) + O(δ). Setting C * 2 = c E (T ) + δC 2 + O δ 2 , ( 5.20) 
we see that (5.11) becomes

F X X 1 + F 2 X 3/2 = C 2 , ( 5.21) 
whereas (5.13) simplifies to

X * 0 F (X ) dX = c E (T ) -c 0 c E (T ) A. (5.22)
At this stage, we have

H X X 1 + H 2 X 3/2 = H + C 1 , (5.23) F X X 1 + F 2 X 3/2 = C 2 , ( 5.24) 
subject to

H (0) = F (0) , (5.25) H X (0) -F X (0) 1 + H X (0) F X (0) = tan θ L , (5.26) 
H (X * ) = 0, (5.27)

F (X * ) = 0, (5.28) H X (X * ) -F X (X * ) 1 + H X (X * ) F X (X * ) = -tan θ L , (5.29) X * 0 H (X ) dX = A, (5.30) X * 0 F (X ) dX = c E (T ) -c 0 c E (T ) A.
(5.31)

We observe that (5.24) implies that the curvature of the curve describing the dissolved zone is constant, and it is tempting to infer that F will describe the arc of a circle in the core from (0, Y * ) to (X * , 0) . However, it will be shown that this cannot in general be the case. The easiest way to see this is to consider what happens when

ε := (c 0 -c E (T )) /c E (T )
1, although this is relegated to Appendix B; in addition, in Appendix C, it is shown that, even in the general case when ε ∼ O (1) , there cannot be a circular arc from (0, Y * ) to (X * , 0) . Instead, the only resolution appears to be that there are two circular arcs, one starting at (0, Y * ) and the other at (X * , 0) , both of which pass through (0,0) and have the same radius. Thence, we append We consider the circles (5.33)

F (0) = 0 (5.
(5.34) 

(X -X + ) 2 + (Y -Y + ) 2 = R 2 , (X -X -) 2 + (Y -Y -) 2 = R 2 ,

X. X

where X+, Y+, X_, Y_ and R must be determined; we will later set Y= F. Equation (5.33) will represent a circle of radius Rand having its centre at (X + , Y+) that passes through (0,0) and (0,Y.), whereas Eq. ( 5.34) will represent a circle of radius R and having its centre at (X_, f_) that passes through (0,0) and (X*, 0); this is summarized schematically in Fig. 4. From (5.25),(5.28) and (5.32) twice, we must have

xi+ cr. -r+> 2 = R 2 , ex. -x_) 2 + r.: = R 2 ,
Xi+ Y;= R 2 , X:.+ Y.:= R 2 , respectively; note that (5.32) is used twice since both circular arcs must satisfy it. We quickly see that Y;= (Y* -f+) 2 , X:.= (X* -X_) 2 , and hence

x _ = x ., where

tan θ + = Y + X + , tan θ -= X - Y - . (5.44) So, R 2 (θ + + θ -) -X + Y + -X -Y -= εA, (5.45) i.e. R 2 tan -1 Y * 4R 2 -Y 2 * 1/2 + tan -1 4R 2 -X 2 * 1/2 X * - Y * 2 R 2 - Y 2 * 4 1/2 - X * 2 R 2 - X 2 * 4 1/2 = εA, (5.46)
which is a relation for R in terms of X * and Y * . We use (5.33) and ( 5.34) to simplify (5.26) and (5.29). First, we see from differentiating (5.33) that

(X -X + ) + (Y -Y + ) dY dX = 0, (5.47)
whence, on setting Y = F (X ) , we obtain

F X (0) = 2X + Y * .
(5.48) From (5.34),

(X -X -) + (Y -Y -) dY dX = 0, (5.49)
whence, similarly,

F X (X * ) = X * 2Y - .
(5.50)

Now, we can re-arrange (5.26) and (5.29) to obtain

H X (0) = F X (0) + tan θ L 1 -F X (0) tan θ L , (5.51) H X (X * ) = F X (X * ) -tan θ L 1 + F X (X * ) tan θ L , (5.52)
respectively, and hence

H X (0) = 2X + + Y * tan θ L Y * -2X + tan θ L , (5.53) H X (X * ) = X * -2Y -tan θ L 2Y -+ X * tan θ L , ( 5.54) 
where

X + = R 2 - Y 2 * 4 1/2 , Y -= R 2 - X 2 * 4 1/2 , (5.55)
and with R given by the solution to Eq. (5.46). A further interesting observation in relation to earlier work concerns the function H, rather than F. Terrill [START_REF] Terrill | Diffusion of silicon in aluminum brazing sheet[END_REF] approximated the meniscus of a tee joint with a quarter of a circle. This would mean neglecting the term in H on the right-hand side of (5.23), leaving us with an equation that is qualitatively similar to (5.24), with the end result being just a meniscus having constant curvature. However, it is clear from the analysis that the term in H is a leading-order term in the model, and should therefore not be neglected.

Model summary and numerical solution

The model equations have been reduced to just one nonlinear second-order ordinary differential equation, (5.23), subject to (5.27), (5.30), (5.46), (5.53) and (5.54), with the unknowns being H ,R, X * and C 1 ; there are thus five constraints for five unknowns, with the latter being R, X * , C 1 and the two constants of integration from (5.23). Once, these are determined, X + , Y + , Y * and C 2 can be found.

Although it is a computationally inexpensive task to solve these equations, some care is necessary in finding a suitable initial guess for H ,R, X * and C 1 ; a poor guess leads to the square root of negative numbers in (5.46). Thereafter, once a solution is found for one (θ L , ε)-combination, it can be used as the initial guess for finding solutions for other combinations by parameter stepping. Moreover, although what we have is a boundary-value problem, the location of one of the boundaries, X = X * , is not known beforehand. It is therefore convenient to use boundary immobilization, and this is done by introducing the variables X and Ĥ , which are given by X = X * X , H = X * Ĥ , (5.56) leading to, for 0 ≤ X ≤ 1,

Ĥ X X 1 + Ĥ 2 X 3/2 = X * X * Ĥ + C 1 , (5.57) subject to Ĥ (1) = 0, (5.58) X 2 * X * 0 Ĥ (X ) dX = A, (5.59) Ĥ X (0) = 2X + + Y * tan θ L Y * -2X + tan θ L , (5.60) Ĥ X (1) = X * -2Y -tan θ L 2Y -+ X * tan θ L , (5.61)
and (5.46), where Y * = X * Ĥ (0) . These equations were solved using the finite element software Comsol Multiphysics, typically using a few hundred elements to discretize the interval 0 ≤ X ≤ 1. It is straightforward to ensure that the results are mesh-independent, and we do not document those calculations here.

To validate the model, data parallelling the experimental details given by Sekulic [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF] were considered. The core alloy consists of AA3003 alloy which is mainly an Al -Mn alloy with 1. E-1.5 wt% Mn and little Fe and Si. The clad alloy is a AA4343 alloy with 8 wt% Si, 0.8 wt% Fe, 0.25 wt%Cu, 0.10 wt% Mn and 0.20 wt% Zn (in wt.%), and has a liquidus of 607 .8 °C, as calculated using the TCAL2 database [23]. The thickness of the clad was wo = 200µ,m.

Heating to the brazing upper temperature and cooling from it were both performed at a rate higher than 50 °C/min, which would be large enough that solid-state diffusion of silicon does not affect the amount of clad available [START_REF] Lacaze | Numerical simulation of brazing aluminium alloys with Al-Si alloys[END_REF].

Although Sekulic [5] indicates an upper brazing temperature of 600 °C for the experiment he reported, he implicitly assumed in his approach that ail the clad had melted. lndeed, brazing for 3003/4343 assemblies may be performed from 600 to 615 °C [START_REF] Gao | Residual clad formation and aluminum brazed joint topology prediction[END_REF], i.e. from slightly below to slightly above the clad liquidus temperature.

In the present modelling approach, the clad alloy is considered as a binary Al -Si alloy, the liquidus temperature of which is estimated as Tmmco, where the values for Tm and mare as given in Table 1. As for co, we note that if we take 8 wt% Si, as indicated above, this would imply a value lower than that of c E at 600 °C, which is 8.8 wt% Si; this would give s < O. On the other hand, if we sum up the non-Al compositions given above and assign this sum to be co, then we obtain 9.4 wt% Si, giving s > O. Since the mode! is only self-consistent ifs ::: 0, we will therefore take co = 9.4 wt%.

At this stage, we still need to prescribe ho and 0L. To calculate ho, we use Fig. 3(b) and(c) from [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF], which indicate the cross-sectional area of the joint to be 7.060x 10-7 m 2 and 6.423x 10-7 m 2 ; using these and the value of wo given above leads to ho = 3.53 x 10-3 m and 3.21 x 10-3 m, respectively. As for 0L, this is a quantity that does not explicitly appear at ail in [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF], where it is argued that the fact that a good brazed joint indicates a very small inclination angle of the joint surface close to the mating surfaces implies that an assumption of a close-to-zero contact angle between the molten metal and the solid substrate at the onset of solidification is plausible indeed.

Here, we will keep 0L as a parameter, the value of which we will vary, thereby seeing what effect it has on the solution.

Moving to the results, Figs. 5 and 6 compare the experimental results from Fig. 3(b) and (c), respectively, in [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF] with our mode! results for 0L = 0.05, 0.07 and 0.09, corresponding to 2.86 °, 4.01 ° and 5.16 °, respectively; for these, s = 0.06. From this, it is notable the all three mode! curves agree reasonably well with the experimental data, although the height of the meniscus is somewhat underpredicted towards x = 0 in Fig. 5; this was also a feature of the mode! results in [START_REF] Sekulic | Molten aluminum equilibrium membrane formed during controlled atmosphere brazing[END_REF]. Also of note is the fact that the predicted profile is insensitive to 0 L as its value is increased from 0.05 to 0.09; consequently, even though we may not have a way to determine 0L, it is not much of consequence.

This may lead us to believe that we should simply set 0L = O. However, an interesting theoretical result that can even be obtained analytically in this case is that the contact line can extend to infinity in the zero-dissolution limit, x[mm] s = 0; this is explained in detail in Appendix O. Moreover, we also found that, in our model, it became no longer possible to obtain converged solutions for values of 0 L lower than around 0.044; this was in spite of the fact that we use the best available initial guesses for the solution at each value of 0 L , This behaviour is no doubt due to the fact that s > 0; there was no problem at ail to find solutions in the limitas 0 L ➔ 0 fors = 0, and indeed there is even an analytical solution in this case, as shown by Eq. (D.12) in Appendix O.

Although the above results might suggest that the solution is more or less independent of 0 L, this is not the case, and its value can affect the meniscus profile. To see this, consider Fig. 7 wherein values have been computed as 0 L = 0.05, 0.45, and 0.85, corresponding, respectively, to 5.16 °, 25.78 ° and 48.70 °, fors= 0.06, and the same cross-sectional area as for Fig. 6; hence, as 0 L is increased, the profile becomes almost linear, and hence far-removed from the experimental observations. Lastly, we consider how varying the value of s affects the solution. Figure 8 shows the profiles for f and h fors = 0.44, 0.74 and 1.04, corresponding to temperatures of 614.8 °C, 622.6 °C and 628.l °C, respectively; 0L = 0.85, corresponding to 48.70 °; and a cross-sectional area of 7.060x 10-7 m 2 . These values of s and 0L have been chosen arbitrarily, and are sufficiently different from the values used for Figs. 5 and 6 so as to illustrate that the model works for a wide range of parameters. In this case, we see that, even though we have chosen a high value of 0 L , the profiles for h are qualitatively reasonable, and do not resemble tihe linear profile in Fig. 7. This is of course in part due to the fact that there is now a significant dissolved region, with the /-profile being responsible for a greater share of 0L than the h-profile.

In this paper, we have considered a framework for the mathematical modelling of reactive wetting during brazing; more specifically, a simplified 2D inverted tee-joint geometry consisting of an unclad horizontal plate and a vertical plate with cladding was considered. The key points are as follows: l. Once the clad is molten, the problem bears some similarity to those of the reactive wetting that occurs during the spread of a molten drop let, as bas been considered by others [START_REF] Warren | Modeling reactive wetting[END_REF][START_REF] Su | Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate[END_REF][START_REF] Singler | Modeling and experiments in dissolutive wetting: a review[END_REF]. 2. Although it is a challenging mathematical problem to determine the lime evolution of the molten clad meniscus and the dissolution front that forms, it is much easier to determine the theoretical steady state, and this was done here; the standout plot for this is Fig. 8, which shows the steady-state profiles for the meniscus and dissolved region for three different brazing temperatures, assuming a prescribed value for the angle, 0L, between the meniscus and the dissolution front. This constitutes the maximum possible spatial extent of the dissolved zone. 3. Moreover, there exists a simple approximate relation between the area of the dissolved zone (Adiss ), the initial amount of clad (woho), the equilibrium concentration of Si at the brazing temperature (cE (T)) and the initial composition of the clad, co :

Adiss = woho ( c o T -1) . CE ( ) (7.l) 
Possible directions for further modelling work would involve the following:

-computation of the time evolution of the meniscus and the dissolved region towards a steady state. The problem of a T-joint is considerably more complicated than that of the spreading droplet because there are two contact lines to consider and the use of so-called "lubrication theory" that is highlighted in [START_REF] Warren | Modeling reactive wetting[END_REF][START_REF] Su | Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate[END_REF][START_REF] Singler | Modeling and experiments in dissolutive wetting: a review[END_REF] is no longer strictly speaking valid since the aspect ratio of the molten region is not small. Another possibility, although computationally more challenging, is the use of a phase-field approach [l l-13], which involves the use of a particular type of diffuse-interface model that is based on the free energy as a function of state variables; this bas the benefit, at least, that the force singularity which arises in the classical model of moving contact lines, first pointed out by Huh and Scriven [START_REF] Huh | Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[END_REF], is no longer present due to mass transfer across the interface [START_REF] Seppecher | Moving contact lines in the Cahn-Hilliard theory[END_REF]. In this context, we can note that the model we have presented here would indeed lead to such a singularity, although it could be alleviated by introducing a slip coefficient into the no-slip boundary condition, as bas previously been done by many others, e.g. [START_REF] Ehrhard | Nonisothermal spreading of liquid-drops on horizontal plates[END_REF]. Yet another possibility is to use a sharp-interface method via an Arbitrary .. ,. , where Xo, Yo and R are to be determined; then we would need ,,,,.

/ /\• 1/' /, \ i I \ i I \� .. , •� 11 -�� � \ '.},� \. \ -�).
��-•-•••••••• •• •••••••• • / 5 ..... _, _ ---- 10 X [m]
X5+(Y*-Yo) 2 =R 2 , (X*-Xo) 2 +YJ=R 2 . Also, since dY (X -Xo) + (Y -Yo) -= 0,
-5 '------'----'-----'------'----' -5 where

θ = π 2 + tan -1 Y * -Y 0 X 0 tan -1 X * -X 0 Y 0 ; (C.10)
here, (C.9) comes from Eq. (5.31), i.e. the conservation of solute condition. Numerical experimentation to determine f and h indicated that there are not only great difficulties in finding a numerical solution, but also difficulties in finding a good initial guess; it is necessary to find this because the governing equations are nonlinear. Moreover, it is not even known if a solution exists. Thus, it turns out to be more worthwhile to consider what would be the properties of such a solution, if it exists. We know that we must have

H X (0) = X 0 + (Y * -Y 0 ) tan θ L Y * -Y 0 -X 0 tan θ L , (C.11) H X (X * ) = X * -X 0 -Y 0 tan θ L Y 0 + (X * -X 0 ) tan θ L , (C.12)
which we can rewrite as ' ' • 0 0 ',, 0.5 is ever zero or not. Here, the idea is that we solve (5.10), subject to (5.12), (5. where a and f3 are the angles that the curve Y = H (X) makes with the Y-and X-axes, respectively; note that this computation is independent of 0L, and that we merely sweep over ail values of a and /3, where O < a, f3 < n/2.

X 0 + (Y * -Y 0 ) tan θ L = (Y * -Y 0 -X 0 tan θ L ) H X (0) , (C.13) X * -X 0 -Y 0 tan θ L = (Y 0 + (X * -X 0 ) tan θ L )
Each computation generates values for X ,.. and Y ,.. , which are then used in (C.25). If it is found that </> is never zero, then this is an indication that X o and Yo cannot be found, and hence the sought-after circle does not exist. Numerical experimentation suggests that this indeed is the case. As an example, Fig. 11 which leads to

H ∼ 1 2 C 1 (X * -X ) 2 .
(D.10) However, note that if C 1 < 0, which is clearly possible from (D.7) if A > 1, then H < 0, which would be physically unrealistic. On the other hand, if C 1 = 0, i.e. A = 1, we have, instead of (D.9), H 2 X ∼ H 2 , (D.11)

which would give H ∼ e ±X . It is clear that only the behaviour with the minus sign is of relevance here. Taking this one, we see that an alternative to (D.10) is the possibility that the contact line extends to infinity with H ∼ e -X as X → ∞. In fact, for this case, there is an analytical solution for the meniscus given by [30-32]

X = √ 2 -ln 1 + √ 2 -4 -H 2 + ln 2 + √ 4 -H 2 H . (D.12)
Finally, it is worth noting that, from the data in Table 1 and the values for h 0 and w 0 used in this paper, A ≈ 0.02, indicating that the relevant behaviour is that given by Eq. (D.10).
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 576 Fig.5 Comparison of experimental data from Fig. 3(b) in [5] with the meniscus profile, h, computed using the current mode) with 0L = 0.05, 0.01, 0.09 and e = 0.06. Note that the curvesfor 0L = 0.05, 0.01, 0.09 are literally on top of each other
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  [START_REF] Lacaze | Numerical simulation of brazing aluminium alloys with Al-Si alloys[END_REF] andHx (0) = -tan(n/2-a) , Hx (X ,.. )= -tan {3,
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 521 shows</> vs. a for 0L = 0, n /4, n /2, for f3 = n /3, indicating that </> is never zero, no matter what value of 0L is tried. Similar graphs were also obtained for other values of f3. Appendix D: 8L = 0, s = 0 When s = 0, we have F = 0, and Eqs. (5.23)-(5.31) reduce to just Hxx Hx (X*)= -tan0L, fo x * H (X) dX = A. Multiplying (D.1) by H X , integrating with respect to X and applying (D.3) and (D.4) cos θ L . (D.6) Alternatively, integrating (D.1) with respect to X and applying (D.2), (D.4) and (D.5) gives cos θ Lsin θ L = A + C 1 X * (D.7)Now, consider the behaviour of H near X = X * when θ L = 0. Since H, H X 1, we have, from (D.6),

Table 1

 1 Model parameters

	Parameter	Symbol	Value	Unit	References
	Diffusion coefficient	D	10 -9	m 2 s -1	[9]
	Gravitational acceleration	g	9.81	m s -2	-
	Initial clad height	h 0	1.5×10 -4	m	[ 5]
	Liquidus slope	m	6.80	wt% • C -1	-
	Al melting temperature	T m	660.3	• C	-
	Initial clad width	w 0	0.005	m	[5]
	Solute capillary length	Γ	5×10 -10	m	[ 9]
	Clad viscosity	μ	0.001	Pa s	[21]
	Clad density	ρ	2650	kg m -3	[21]
	Surface tension	σ fs	0.65	N m -1	[22]
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Lagrangian Eulerian (ALE) formulation; interestingly, ALE also appears to have been used by others [START_REF] Singler | Modeling and experiments in dissolutive wetting: a review[END_REF][START_REF] Su | The development of computational models for studying wetting, evaporation and thermal transport for electronics packaging applications[END_REF]. There do exist even simpler models based around the Noyes-Whitney equation [START_REF] Yang | Evolution of the interfacial shape in dissolutive wetting: coupling of wetting and dissolution[END_REF].

-consideration of how the model differs if the brazing temperature T is such that T < T mmc 0 . In this case, the clad is only partly molten, and therefore not all of it is available for flow. Hence, there will be a mushy zone and a Darcy-law term needs to be added to the Navier-Stokes equation. Moreover, it is evident that, although ε > 0 when all of the clad is molten, we will now have ε < 0. When ε > 0, it is clear that it gives a characteristic scale for the extent of the dissolved region; on the other hand, if ε < 0, the interpretation is far less straightforward, since not all of the clad will have melted.

Appendix A: Determining the velocity scale, [u]

In addition to [u] = D/l, another possibility is to take [u] = DΓ /l 2 . In this case, we have

and (4. [START_REF] Saiz | Reactive spreading: adsorption, ridging and compound formation[END_REF]) and (4.20) become

respectively. Also, (4.5) and (4.17) become

respectively. It is now convenient to refer to Table 1, which contains the model parameters. Now, since δ 1, (A.4) and (A.5) reduce to

i.e. this is already the steady state. Also, from (A.1), we would obtain [t] ∼ 10 10 s, and it is clear that we must have taken the wrong choice for [u] .

Appendix B: ε 1

In this case, the F and H problems decouple in an interesting way. From (5.31), and assuming that A ∼ O (1) , we now expect that

Considering the first case, if F = ε F, with the expectation that F is an O (1) function, implies that (5.24) becomes, at leading order in ε,

where C 2 = C2 /ε, with C2 an O (1) constant, whereas (5.28) and (5.29) reduce to

respectively. For the second case, we set X = ε X , so that (5.24) becomes

with (5.26) reducing to

Note that, at this stage, (B.2) and (B.5) are consistent with each other, and the implication is that the radius of curvature of F, which is in effect 1/C 2 , is small. Also, we can note that the problem for H has now decoupled from that for F. More specifically, we have, for H, Eq. (5.23) subject to 

Each of these problems is clearly missing a boundary condition, and hence two more conditions would be required. One would hope for continuity of F and its derivative, so that the two problems would "join up", in the sense that F and dF/dX as computed by the two problems should be continuous at some value of X that would have to be determined. However, it is impossible to achieve this, whilst at the same time ensuring that the curvature of F is constant. Thus, the only apparent possibility is that

and hence that

which abandons the requirement that dF/dX is continuous. In this case, dissolution does not start at all from the point (0,0). Note that (B.15) will mean that F is multivalued at X = 0, and indeed for X < 0.

The remaining problem for F is (B.11), subject to (B.12) and (B. [START_REF] Lacaze | Numerical simulation of brazing aluminium alloys with Al-Si alloys[END_REF]), and we obtain

The remaining problem for F is (B.13), subject to (B.14) and (B.15). To solve, it is easier to rewrite the problem as

subject to

which leads to the solution A preliminary result for f and h is given in Fig. 9 using 0L = 0.1 (5.71 °) and T = 615 °C, corresponding to s = 0.445. Note that the sum of the area in y < 0 and x < 0 should be 0.445 that in x, y,> O.

Furthermore, Fig. 10 shows the extent of the dissolution zone for T = 595 °C, 615 °C and 625 °C. Note that the curve for T = 595 °C is literally on top of the xand y-axes. For this s. « 1 analysis, these curves are calculated using the results from the O (1) problem for H; thus, X * and Y* are the same for ail of these curves.

Appendix C: A one-circle dissolution zone fore « 1?

It was seen in Appendix B that if s « 1, then it is not possible that a single circular arc will join the two contact lines. However, it is not yet clear that this is the case ifs. is larger, as will be the case when the difference between co and CE (T) is large, or CE (T) is sufficiently small. Thus, we now consider this situation.

Suppose that such a circular arc exists and that it is part of the circle (X -Xo) 2 + (Y -Y 0 ) 2 = R 2 , (C.l )