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Abstract. In the field of quality assurance of hybrid systems, Platzer’s
differential dynamic logic (dL) is widely recognized as a deductive veri-
fication method with solid mathematical foundations and sophisticated
tool support. Motivated by case studies provided by our industry part-
ner, we study a relational extension of dL, aiming to formally prove
statements such as “an earlier engagement of the emergency brake yields
a smaller collision speed.” A main technical challenge is to combine two
dynamics, so that the powerful inference rules of dL (such as the differ-
ential invariant rules) can be applied to such relational reasoning, yet in
such a way that we relate two different time points. Our contributions
are a semantical theory of time stretching, and the resulting synchroniza-
tion rule that expresses time stretching by the syntactic operation of Lie
derivative. We implemented this rule as an extension of KeYmaera X,
by which we successfully verified relational properties of a few models
taken from the automotive domain.

Keywords: hybrid system · cyber-physical system · formal verification
· theorem proving · dynamic logic.

1 Introduction

Hybrid Systems Cyber-physical systems (CPSs) have been studied as a sub-
ject in their own right for over a decade, but the rise of automated driving in
the last few years has created a panoply of challenges in the quality assurance of
these systems. In the foreseeable future, millions of cars will be driving on streets
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(No. JPMJER1603), JST. I.H. is supported by Grant-in-Aid No. 15KT0012, JSPS.
J.D. is supported by Grant-in-aid No. 19K20215, JSPS. The work was done during
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with unprecedented degrees of automation; ensuring the safety and reliability of
these automated driving systems is a pressing social and economic challenge.

The hybridity of cyber-physical systems, the combination of continuous phys-
ical dynamics and discrete digital control, poses unique scientific challenges. To
address these challenges, two communities have naturally joined forces: control
theory whose traditional application domain is continuous dynamics and formal
methods that have mainly focused on the analysis of software systems. This has
been a fruitful cross-pollination: techniques from formal methods such as bisim-
ilarity [10] and temporal logic specification [9] have been imported to control
theory, and conversely, control theory notions such as Lyapunov functions have
been used in formal methods [26].

Deductive Verification of Hybrid Systems In the formal methods com-
munity, two major classes of techniques are model checking (usually automata-
based and automatic) and deductive verification (based on logic and can be
automated or interactive). Model checking techniques rely on exhaustive search
in state spaces and therefore cannot be applied per se to hybrid systems with
infinite state spaces. This has led to the active study of discrete abstraction of
hybrid dynamics; see e.g. [10].

In contrast, nothing immediately rules out the use of the deductive approach
for hybrid systems. Finitely many variables in logical formulas can represent
infinitely many states, and proofs in suitably designed logics are valid even when
the semantic domain is uncountable. That said, designing such a logic, proving
the soundness of its rules, and showing that logics is actually useful in hybrid
system verification is a difficult task.

Platzer’s differential dynamic logic dL [21] is a remarkable success in this di-
rection. Its syntax is systematic and intuitive, extending the classic formalism of
dynamic logic [11] with differential equations as programs. Its proof rules encap-
sulate several essential proof principles about differential equations, including a
differential invariant (DI) rule for universal properties and side deduction for
existential properties. The logic dL has served as a general platform that accom-
modates a variety of techniques, including those which come from real algebraic
geometry [22]. Furthermore, dL comes with sophisticated tool support: the latest
tool KeYmaera X [17] comes with graphical interface for interactive proving
and a number of automation heuristics.

Relational Reasoning on Hybrid Systems In this work, we introduce
proof-based techniques for relational reasoning to the deductive verification of
hybrid systems. In particular, we aim to provide logical support for reasoning
about differences in outcomes between similar scenarios based on some known
differences in their parameters. As a simple example, consider the following ex-
ample distilled from our collaboration with an industrial partner.

Example 1 (leading example: collision speed). Consider two cars C and
C, whose positions and velocities are real numbers denoted by x, x and v, v,
respectively. Their dynamics are governed by the following differential equations:

ẋ = v, v̇ = 1; ẋ = v, v̇ = 2. (1)



Relational Differential Dynamic Logic 3

1
√
2

√
2

2

v̇ = 2

v̇ = 1

t

v

The two hatched areas designate the trav-
eled distances (x = x = 1). We can compute
the collision speeds (v =

√
2 and v = 2)

via the closed-form solutions of the differ-
ential equations (1), concluding v ≤ v when
x = x = 1.

Fig. 1. An ad-hoc proof for Example 1

Both cars start at the same position at rest (x = x = 0 ∧ v = v = 0), and
both drive towards a wall at position 1. We consider this question: which car is
traveling faster when it hits the wall?

The second car, C, has strictly greater acceleration all the time, so we can
imagine that C hits the wall harder. This hypothesis turns out to be correct, but
we are more interested in how this claim could be proven.

A simple proof would be to solve the differential equation exactly and notice
C has greater velocity at the end of its run. However, it is known that closed-form
solutions are scarce for ODEs—we want a proof method that is more general.

Another possible argument is based on the relationship between the accel-
erations. Since the second car’s acceleration is greater at every point in time,
we might be tempted to conclude that the second car’s velocity must always
be greater than the first car’s, based on the monotonicity of integration: a(t) ≤
a(t)⇒ v(t) =

∫ T
0
a(t) dt ≤

∫ T
0
a(t) dt = v(t). However, this reasoning has a flaw.

C reaches the wall at an earlier point in time than C, and therefore C has more

time to accelerate. In the end, we have to compare
∫ T
0
a(t) dt and

∫ T
0
a(t) dt

where a(t) ≤ a(t) for all t ∈ [0, T ] but T > T , as depicted in figure 1.
Our solution, roughly stated, is to compare the two cars at the same points

in space by reparametrizing time for one of the two cars. This parametrization
is specially chosen to ensure the two cars pass through the same points in space
at the same points in time.

Our current work is about a logical infrastructure needed to support this
kind of relational reasoning comparing two different dynamics, based on dL.
Our semantical theory, as well as the resulting syntactic extension of dL by what
we call the synchronization rule, generalizes the kind of reasoning in Example 1
using the notion of time stretching.

Technical Contributions We make the following technical contributions.
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1. Formulation of relational reasoning in dL. We find that relational prop-
erties are expressible in dL, using disjoint variables in a sequential composi-
tion. This representation, however, does not allow the use of the rich logical
infrastructure of dL (such as the (DI) rule).

2. Time stretching, semantically and syntactically. To abbreviate this
difficulty, we first develop the theory of time stretching, so that we can com-
pare two dynamics at different timepoints (cf. Example 1). Accommodating
this semantical notion in dL and KeYmaera X is not possible per se. We in-
troduce an indirect syntactic alternative, which turns out to be better suited
in fact to many case studies (where we compare the two dynamics at the
same “position,” much like in Example 1). The resulting synchronization
rule in dL has a clean presentation (Theorem 24), owing to the syntactic Lie
derivative operator in dL.

3. Implementation and case studies. We implemented the new synchro-
nization rule as an extension of KeYmaera X. We used it successfully for
establishing nontrivial relational properties in case studies taken from the
automotive domain.

Relational Reasoning in Practice We contend relational reasoning has
practical significance based on our collaboration with an industry partner. Rela-
tional properties, especially with an aspect of monotonicity, abound in real-world
examples. In particular, we have often encountered situations where we have a
parametrized model M(p) and need to show a property like:

p1 < p2 implies M(p2) is less safe than M(p1). (2)

These properties occur especially in the context of product lines, where the same
model can come in many slight variants. Example 1 is such a situation.

Relational statements (such as monotonicity) are easy to state and interpret.
Intuitions about the direction of the change in a behavior of a system resulting
from the change of a parameter are more often valid than intuitions about the
amount of such a change. These kinds of simple statements are often used by
engineers to establish the basic credibility of a model. Qualitative, relational
properties also tend to be easier to prove than exact, quantitative properties.

Finally, monotonicity can serve as a powerful technique in test-case reduction.
If a safety property is too complex to be deductively verified, one usually turns
to testing. It is often still possible to establish a simple monotonicity property
of the form (2). This can still powerfully boost testing efforts: one can focus
exclusively on establishing safety for the extreme case M(pmax).

Related Work Since this work is about its relational extension, the works
we mentioned on dL are naturally relevant. We discuss other related works here.

Simulink (Mathworks, Inc.) is an industry standard in modeling hybrid sys-
tems, but unfortunately Simulink models do not come with rigorously defined se-
mantics. Therefore, while integration with Simulink is highly desirable any qual-
ity assurance methods for hybrid systems, formal verification methods require
some work to set up the semantics for Simulink models. The recent work [14]
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tackles this problem, identifying a fragment of Simulink, and devising a trans-
lator from Simulink models to dL programs. Their translation is ingenious, and
their tool is capable of proving rather complicated properties when used in com-
bination with KeYmaera X [17].

Relational extensions of the Floyd–Hoare logic—which can be thought of as
a discrete-time version of dL—have been energetically pursued especially in the
context of differential privacy [6,4,5].

In deductive verification of hybrid systems, an approach alternative to dL
uses nonstandard analysis [23] and regards continuous dynamics as if they were
discrete due to the existence of infinitesimal elements [24,25]. The logic used in
that framework is exactly the same as the classic Floyd–Hoare logic, and the
soundness of the logic in the hybrid setting is shown by a model-theoretic result
called the transfer principle. Its tool support has been pursued as well [12].

This is not the first time that relational reasoning—in a general sense—
has been pursued in dL. Specifically, Loos and Platzer introduce the refinement
primitive β ≤ α, which asserts a refinement relation between two hybrid dy-
namics, meaning the set of successor states of β is included in that of α [16].
This kind of relation is inspired by the software engineering paradigm of incre-
mental modeling (supported by languages and tools such as Event-B [3,7]); the
result is a rigorous deductive framework for refining an abstract model (with
more nondeterminism) into a more concrete one (with less nondeterminism). In
contrast, we compare one concrete model (not necessarily with nondeterminism)
with another. Thus, our notion of relational reasoning builds more on relational
extensions of the Floyd–Hoare logic [6,4,5] than on Event-B. Combining these
two orthogonal kinds of relational extensions of dL is important future work.

Organization In Section 2, we recall some basics of differential dynamic logic
dL: its syntax, semantics and some proof rules. Our main goal, relational reason-
ing, is formulated in Section 3, where we identify difficulties in doing so in the
original dL. In Section 4 we introduce the semantical notion of time stretching,
and turn its theory into the new synchronization rule. After introducing our
implementation in Section 5, we describe our three case studies in Section 6.

Some proofs and details are deferred to the appendix. It is found at http:

//group-mmm.org/~ayamada/rddl_tacas_2020/.

2 Preliminaries: Syntax and Semantics of the Logic dL

We recall some of the basics of differential dynamic logic (dL). The interested
reader is referred to [18,20] for full details.

Definition 2 (language). We fix a set V of variables, denoted by x, y, . . . . The
set of terms is defined by the following grammar:

e, f, g, . . . ::= x | n | −e | e+ f | e ·f | e/f
where x ∈ V and n ∈ N. First-order formulas are defined by

P,Q, . . . ::= e ≤ f | ¬P | P ∧Q | ∀x. P

http://group-mmm.org/~ayamada/rddl_tacas_2020/
http://group-mmm.org/~ayamada/rddl_tacas_2020/
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A state is a function sending each variable to a real number, ω : V → R.
We denote the set of all states by RV . Given a state, each term has a valua-
tion in the reals, and each formula has a valuation in Booleans defined by the
usual induction. We denote these by

q
e
y
ω ∈ R and

q
P

y
ω ∈ {true, false},

respectively. The models of a first-order formula P are the states satisfying P ,q
P

y
:= {ω ∈ RV |

q
P

y
ω = true}.

We use classical shorthands, including e = f := e ≤ f ∧ f ≤ e, P ∨
Q := ¬(¬P ∧ ¬Q), ∃x. P := ¬(∀x.¬P ), and > := 0 ≤ 0. We denote a vector
(e1, . . . , en) of terms (or variables) by e when the length n is irrelevant or clear
from the context.

We now introduce the syntax of hybrid programs.

Definition 3 (hybrid programs). The set HP(V) of hybrid programs over
variables V is given by the following grammar:

α1, α2, . . . ::= ?P | x := e | ẋ1 = e1, . . . , ẋn = en &Q | α1;α2 | α1 ∪ α2 | α∗

We may also abbreviate ẋ1 = e1, . . . , ẋn = en by ẋ = e. Hybrid programs
of the form ẋ = e & Q are especially important in this work. We call such a
program differential dynamics, where ẋ = e is its differential equation and the
first-order formula Q is its evolution domain constraint. The intuitive meaning
of such a program is that the values of the variables x evolve continuously in
time according to ẋ = e, as long as Q is satisfied at the current value of x. If we
see differential dynamics as a continuous analog of loops, then Q plays the role
of guard and ẋ = e plays the role of body.5 We write ẋ = e instead of ẋ = e&>.

Definition 4 (solutions). A mapping ψ : [0, T )→ RV with T ∈ [0,∞] is called
a solution of a differential equation ẋ1 = e1, . . . , ẋn = en if ψ is differentiable
in [0, T ) and, whenever t ∈ [0, T ), ψ̇(t)(xi) =

q
ei

y
ψ(t) for i ∈ {1, . . . , n} and

ψ̇(t)(y) = 0 for any y ∈ V \ {x1, . . . , xn}.

According to the Picard–Lindelöf theorem [15], for each differential equation
ẋ = e and each state ω, there is a unique maximal solution ψω : [0, Tω) → RV
of the differential equation satisfying ψω(0) = ω.

Definition 5 (semantics of hybrid programs). The semantics of a hybrid
program α is a relation −

q
α
y
→ ⊆ RV × RV on states, defined by:

1. −
q
?P

y
→ = {(ω, ω) | ω ∈

q
P

y
},

2. −
q
x := e

y
→ = {(ω, ω′) | ω′(x) =

q
e
y
ω

and ω′(y) = ω(y) for all y 6= x},
3. −

q
ẋ = e &Q

y
→ = {(ω, ψω(t)) | ω ∈ RV , t ∈ [0, Tω), ψω([0, t]) ⊆

q
Q

y
},

4. −
q
α1 ∪ α2

y
→ = −

q
α1

y
→ ∪−

q
α2

y
→,

5. −
q
α1;α2

y
→ = −

q
α1

y
→;−

q
α2

y
→ where ; denotes relation composition, and

6. −
q
α∗

y
→= (−

q
α
y
→)∗ where ∗ denotes the reflexive transitive closure.

5 This analogy is not perfect: a typical while loop can only exit when its guard is false,
whereas a hybrid program can exit the differential dynamics while Q is satisfied.
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Definition 6 (dL formulas). Modal formulas extend first-order formulas and
are defined by the following grammar:

ϕ,ϕ1, ϕ2, . . . ::= e ≤ f | ¬ϕ | ϕ1 ∧ ϕ2 | ∀x. ϕ |
[
α
]
ϕ.

As usual, we write 〈α〉ϕ to abbreviate ¬
[
α
]
¬ϕ. We will also call modal for-

mulas “dL formulas” since these are the widest class of formulas in dL.
The Boolean valuation

q
ϕ
y
ω

of a modal formula ϕ in a state ω is defined

the same way as for first-order formulas, with the addition of
q[
α
]
ϕ
y
ω

= true

if and only if
q
ϕ
y
ω′ = true for all ω′ such that ω −

q
α
y
→ ω′.

We take the sequent-calculus style proof system for dL, following [22]. It has
judgments of the form Γ ` ϕ, where Γ is a set of modal formulas and ϕ is a
single modal formula. One of the most fundamental axiom is[

ẋ = e &Q
]
φ⇐⇒ ∀t ≥ 0. (∀v ∈ [0, u]. [x := f(v)]Q)⇒ [x := f(u)]φ (solve)

where f(t) is a term with a fresh variable t such that
q
f
y

is a solution of ẋ = e

and
q
f(0)

y
= id.

Some other rules of dL, such as the differential invariant rule (DI) that is
central in many proofs, are introduced later in Definition 13.

3 Relational Differential Dynamic Logic

Intuitively, we want a way to describe two dynamics that are executed in parallel,
and compare their outputs. In terms of (nondeterministic) transition systems,
parallel composition is available via tensor products.

Definition 7 (tensor product). Given two transition systems (S,R) and (S′, R′),
their tensor product (S×S′, R⊗R′) is defined to be the transition system whose
transition relation is given by

R⊗R′ := {(s, s′), (t, t′) | (s, t) ∈ S, (s′, t′) ∈ R′}.

No extension of the dL syntax is needed to model tensor products: disjointness
of the variables of the two systems suffices. From now on we split variables into
two disjoint sets: V = V ] V. We denote variables in V by x, y, . . . and those
in V by x, y, . . . . Terms in T (V), first-order formulas in Fml(V), and programs

in HP(V) are denoted by e, f , . . . , P ,Q, . . . , and α, β, . . . , and similarly for the
corresponding constructs with V.

An easy proof of the following fact can be found in the appendix.

Proposition 8. −
q
α
y
→ ⊗−

q
α
y
→ = −

q
α;α

y
→ ut

Scenarios with two parallel differential dynamics are the main focus of this
work. We formalize an assertion relating two dynamics using the following for-
mat. It is a syntactic counterpart of Proposition 8.
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Definition 9 (relational differential dynamics). We call hybrid programs
of the following form relational differential dynamics (RDD)

ẋ = e &Q ; ẋ = e &Q (3)

Now that we have ways to express separate systems evolving in parallel, we
turn to the construction of proofs which reason about their relationships.

Example 10. Using RDD, the problem in Example 1 is expressed as ΓC `[
δC ; δC

]
φC where δC :=

(
ẋ = v, v̇ = 1

)
, δC := (ẋ = v, v̇ = 2), ΓC := {x = x =

0, v = v = 0} is the precondition, and φC := (x = x = 1 ⇒ v ≤ v) is the
postcondition.

Let us prove, in KeYmaera X, the RDD sequent ΓC `
[
δC ; δC

]
φC . In KeY-

maera X, the only applicable rule to this sequent turns it into ΓC `
[
δC
][
δC
]
φC .

We then explicitly “solve” the second dynamics, yielding the following goal:

ΓC `
[
δC
]
∀t ≥ 0.

(
x =

(
x+ v ·t+ t2

)
= 1⇒ v ≤ (v + t)

)
(4)

where x and v in φC are replaced by their explicit solutions with respect to the
freshly introduced time variable t. Again differential invariant rules do not apply
to (4), so one must solve the first dynamics, too, yielding

ΓC ` ∀t ≥ 0.∀t ≥ 0.
((
x+ v ·t+ t

2
/2
)

=
(
x+ v ·t+ t2

)
= 1⇒ (v + t) ≤ (v + t)

)
Since this goal is first order, the quantifier elimination, a central proof technique
in KeYmaera X [19], proves the goal.

The above example worked out since it admits explicit solutions expressible
in dL. This is not always the case as the following example demonstrates.

Example 11. We consider two objects moving through fluids subjected to dif-
ferent kinds of drag. One object moves through a viscous fluid and is therefore
subject to linear drag; its dynamics are δF := (ẋ = v, v̇ = −v).

The other object moves through a less viscous fluid and is subject to turbulent
drag; its dynamics are δF := (ẋ = v, v̇ = −v2). Our goal is to show that
the latter has higher speed when both objects reach a certain point in space
(x = x = l).

The following functions v∗, x∗, v∗ and x∗ are solutions of the dynamics.

v∗(t) = v0 · e−t x∗(t) = x0 + v0 ·(1− e−t)

v∗(t) =
v0

1 + v0 ·t
x∗(t) = x0 + log(1 + v0 ·t)

where v0 etc. denote the initial values. Unfortunately, we cannot express expo-
nentiations and logarithms in KeYmaera X, and thus the “solve” rule that we
used in Example 10 cannot be applied here.
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One obvious solution to this would be to add support for exponentiations
and logarithms in KeYmaera X, but this would break the decidability of the
underlying first order logic, which is a major feature of dL [19]. In fact, the same
issue occurs even in standard use cases of KeYmaera X, and motivated the
introduction of proof rules which do not demand explicit solutions to differential
dynamics [20,22] using the Lie derivative.

Definition 12 (formal Lie derivative in dL from [20,22]). The formal Lie
derivative of a term f along dynamics δ ≡ (ẋ = e & Q) of dimension n is a dL
term Lδ f ∈ T (V) given by6

Lδ f := ∂
∂x1

f · e1 + · · ·+ ∂
∂xn

f · en
Definition 13 (proof rules from [20,22]). The following rules are sound:

Γ,Q ` f ∼ 0 Γ `
[
δ
]
Lδ f ' 0

Γ `
[
δ
]
f ∼ 0

DI
Γ ` p ∼ 0 Q ` Lδ p ' g · p

Γ `
[
δ
]
p ∼ 0

Dbx

where δ ≡ (ẋ = e & Q), (∼,') ∈ { (=,=), (>,≥), (≥,≥) }, and g is any term
without division.

The differential invariant rule (DI) is the central rule for proving safety proper-
ties [20,22]: it reduces a global property of the dynamics to local reasoning by
means of Lie derivatives. The Darboux inequality rule (Dbx) is derived from real
algebraic geometry; see e.g. [22].

Example 14. Consider an example differential dynamics in one variable, ẋ = 2.
Suppose we want to show that x ≥ 0 holds after following these dynamics for
any amount of time, starting from x = 1. One way to do this is to show that (1)
this predicate holds initially (1 ≥ 0) and (2) the time derivative of x is always
nonnegative. These are precisely the two premises of the (DI) rule: to show the
sequent x = 1 ` [ẋ = 2]x ≥ 0 (DI) requires us to prove (1) x = 1 ` x ≥ 0 and
(2) x = 1 ` [ẋ = 2]Lẋ=2 x ≥ 0, where Lẋ=2 x = 2. Note that we give an initial
condition x = 1 in the precedent of this sequent.

4 Synchronizing Dynamics

The intuitive explanation of the RDD construction of Definition 9 is a “serial-
ization” of two dynamics. This construction however does not match the (DI)
and (Dbx) rules, as they accept only one dynamics followed by a comparison. In
order to make use of these rules in our relational reasoning, we introduce another
proof method. It “synchronizes” two dynamics.

After some theoretical preparations we define the new rule and prove its
soundness. We will illustrate the usefulness of this rule in Section 6, through
some case studies that are inspired by our collaboration with the industry.

6 It is easy to see that the derivative of a term t ∈ T (V) with respect to x ∈ V can be
given as a dL term ∂

∂x
e ∈ T (V) such that

q
∂
∂x

e
y

= ∂
∂x

q
e
y

. The definition of ∂
∂x

e is
inductive with respect to the term e.
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4.1 Time Stretching

A key theoretical tool towards the soundness of our synchronization rule is called
time stretching. Its idea is very much like the technique of time-reparametrization
for ODEs [8].

Definition 15 (time stretch function). Let T ∈ R≥0. A functionK : [0, T ]→
R≥0 is a time stretch function if K(0) = 0, K is continuously differentiable and

K̇(t) > 0 for each t ∈ [0, T ].

Remark 16. The condition K̇(t) > 0 ensures that K is strictly increasing and is
a bijection from [0, T ] to [0,K(T )]. The inverse of K is K−1 : [0,K(T )]→ [0, T ],
and it is straightforward to check K−1 is another time stretch function.

The next results tell us how to turn an ODE into another, given a time
stretching function K, so that a time-stretch ψ◦K of a solution ψ of one becomes
a solution of the other.

Lemma 17. Suppose f : RV → RV is a vector field and K : [0, T ] → [0,K(T )]
is a time stretch function. If ψ : [0,K(T )) → RV satisfies ψ̇(s) = f(ψ(s))
for all s ∈ [0,K(T )), then the function ρ = ψ ◦ K : [0, T ) → RV satisfies
ρ̇(t) = K̇(t) · f(ρ(t)) for all t ∈ [0, T ).

Proof. We have ρ̇(t) = K̇(t)·ψ̇(K(t)) = K̇(t)·f(ψ(K(t))) = K̇(t)·f(ρ(t)), where
the first equality is by the definitions and the chain rule, the second equality is
by the assumption on ψ̇, and the last equality is by the definition of ρ. ut

Since the inverse of a time stretch function is another time stretch function,
we obtain the following corollary of Lemma 17.

Corollary 18. Let K : [0, T ] → [0,K(T )] be a time stretch function. Let ρ :
[0, T )→ RV satisfy ρ̇(t) = K̇(t) · f(ρ(t)) whenever 0 ≤ t < T . Then the function
ψ : [0,K(T )) → RV , defined by ψ(s) := ρ(K−1(s)), satisfies ψ̇(s) = f(ψ(s))
whenever 0 ≤ s < K(T ). ut

4.2 Towards a Syntactic Representation

So far our time-stretch function K has been a semantical object. Here we in-
troduce a syntactic way of reasoning via time-stretch functions. Since a desired
time-stretch function is not necessarily expressible in dL, our syntactic reasoning
uses an indirect method that exploits a pair of functions called a synchronizer.
We will be eventually led to a syntactic reasoning rule (Sync) (Thm. 24).

Given a term g ∈ T (X) and a mapping ψ : [0, T ) → RX , we define gψ :
[0, T )→ R by

gψ(t) :=
q
g
y
ψ(t). (5)

Intuitively, gψ(t) is the value of g at time t when we follow the dynamics whose
solution is ψ.
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Definition 19 (synchronizers). Let (δ, δ) be a pair of dynamics, (ω, ω) ∈
RV × RV be a pair of states, and ψ : [0, T ) → RV and ψ : [0, T ) → RV be the

unique solutions of δ and δ from ω and ω, respectively. We say a pair of dL terms
(g, g) ∈ T (V)× T (V) synchronizes (δ, δ) from (ω, ω) if the following hold.

– gψ(0) = gψ(0)
– The derivatives of gψ and gψ are both strictly positive.

The following lemma ensures that, for any synchronizer, a corresponding time
stretch function exists.

Lemma 20. In the setting of Definition 19, let t ∈ [0, T ) and t ∈ [0, T ) be such
that gψ(t) = gψ(t). Then the function K, defined by K(s) := gψ

−1(gψ(s)), is a

time stretch function from [0, t] to [0, t]. Moreover we have K̇(s) =
˙gψ(s)

˙gψ(K(s)) .

Proof. Since gψ is strictly monotonic on [0, t], it has an inverse gψ
−1 defined

from gψ([0, t]) to [0, t]. By assumption we have gψ(0) = gψ(0), and thus K(0) =

gψ
−1(gψ(0)) = gψ

−1(gψ(0)) = 0. Also since gψ(t) = gψ(t), we see that gψ
−1 is

defined from gψ([0, t]) to [0, t]. Thus K = gψ
−1 ◦ gψ is defined from [0, t] to [0, t].

K̇(s) = ˙gψ(s) · ˙(
gψ−1

)
(gψ(s)) derivative of K = gψ

−1 ◦ gψ

=
˙gψ(s)

ġψ(gψ−1(gψ(s)))
derivative of gψ

−1

=
˙gψ(s)

ġψ(K(s))

whose value is positive by assumptions on the derivatives of gψ and gψ. ut

We remark that time stretch functions we obtain in Lemma 20 are not nec-
essarily expressible as a dL term, as exemplified by the following example.

Example 21. Consider two dynamics δF := (ẋ = v, v̇ = −v2) and δ := (ẋ =
1). Their solutions ψ,ψ : R≥0 → R2 from initial value x = 0, v = 1 are

ψ(s) =
(
log(1 + s), (1 + s)−1

)
ψ(s) = (s, 0)

Now let g = x and g = x. Then gψ(s) = log(1 + s), gψ = gψ
−1 = id and thus

K(s) = gψ
−1(gψ(s)) = log(1 + s). This is not rational and not expressible in dL.

Using the syntactic Lie derivative (Definition 12), we state a sound inference
rule that does not need K to be represented explicitly. We note that there is
strong support for Lie derivatives in the tool KeYmaera X, as a key syntactic
operation behind the differential invariant (DI) rule (Definition 13).
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Definition 22. Let δ :=
(
ẋ = e &Q

)
and δ :=

(
ẋ = e &Q

)
be two dynamics

and let (g, g) ∈ T (V)×T (V) (which is supposed to be a synchronizer). We define

the synchronized dynamics of (δ, δ) with respect to (g, g) as follows:

δ ⊗(g,g) δ :=

(
ẋ = e, ẋ =

Lδ g
Lδ g

· e
)

&
(
Q ∧Q ∧ Lδ g > 0 ∧ Lδ g > 0

)
Lemma 23. Let (g, g) be a synchronizer of (δ, δ) from (ω0, ω0). The following
are equivalent, where the semantical transition relations are from Definition 5.

1. (ω0, ω0) −
q
δ; δ

y
→ (ω, ω) and (ω, ω) ∈

q
g = g

y

2. (ω0, ω0) −
q
δ ⊗(g,g) δ

y
→ (ω, ω)

Proof. We first prove (1 ⇒ 2). In the proof of Lemma 20, we can observe that
˙gψ(s) =

q
Lδ g

y
ψ(s), and analogously, ġψ(s) =

q
Lδ g

y
ψ(s). Hence we obtain

K̇(s) =

q
Lδ g

y
ψ(s)q

Lδ g
y
ψ(K(s))

=

sLδ g
Lδ g

{

ρ(s)

(6)

where ρ : [0, t)→ RV]V is defined by ρ(s) :=
(
ψ(s), ψ(K(s))

)
.

We note that K : [0, t] → [0,K(t)] is a time-stretch function, and that ψ

is a solution of ẋ = e, that is, ψ̇(u) =
q
e
y
ψ(u) whenever 0 ≤ u < t = K(t).

Combined with Lemma 17, we obtain

˙(
ψ ◦K

)
(s) = K̇(s) ·

q
e
y
ψ(K(s)) = K̇(s) ·

q
e
y
ρ(s) whenever 0 ≤ s < t.

Hence, with the fact that ψ is a solution of ẋ = e, we obtain

ρ̇(s) =
(
ψ̇(s), ˙(

ψ ◦K
)
(s)
)

=
(q

e
y
ρ(s), K̇(s) ·

q
e
y
ρ(s)

)
=

q(
e,
Lδ g
Lδ g

· e
)y

ρ(s)

whenever 0 ≤ s < t. Here the last equality is from (6). This concludes that ρ is
a solution of the dynamics δ ⊗(g,g) δ. It remains to prove that for all τ ∈ [0, t],
q
Q ∧Q ∧ Lδ g > 0 ∧ Lδ g > 0

y
ρ(τ) is true. This is an easy consequence of item 1,

and the fact that (g, g) is a synchronizer of (δ, δ) from (ω0, ω0).

For the direction (2⇒ 1), let (ξ, ξ) : [0, T )→ RV×RV be the unique solution

of δ⊗(g,g) δ from (ω0, ω0). Then there is t ∈ [0, T ) such that (ξ(t), ξ(t)) = (ω, ω).

Let us prove that (ω, ω) ∈
q
g = g

y
. The function h : s ∈ [0, T ) 7→

q
g
y
ξ(s) −q

g
y
ξ(s) is equal to 0 at s = 0 and its derivative is given by:

ḣ(s) =
q
Lδ g

y
ξ(s) −

q
Lδ g

y
ξ(s).

q
Lδ g

y
ξ(s)q

Lδ g
y
ξ(s)

= 0

Consequently, h is the constant function equal to 0, which implies that (ω, ω) ∈q
g = g

y
. By definition, ξ is a solution of δ, so ω0 −

q
δ
y
→ ω. Furthermore, by

Corollary 18, ξ ◦K−1 is a solution of δ. Thus ω0 −
q
δ
y
→ ω and

(ω0, ω0) −
q
δ; δ

y
→ (ω, ω). ut
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The above lemma is a key observation in the current work. It allows us to
turn the relational dynamics δ; δ—expressed as a sequential composition in dL—
into a combined dynamics δ ⊗(g,g) δ. Moreover, we can do so in a way that
the two dynamics are synchronized in a reparametrized manner, as specified
by (g, g). Such combination of two dynamics is crucial in exploiting the logical
infrastructure of dL and KeYmaera X—we emphasize again that the (DI) rule
does not support invariant reasoning about the relationship between δ and δ,
when the relational dynamics is expressed in the original form δ; δ.

The following is an incarnation of Lemma 23 as a proof rule. We assume that
a postcondition is a conditional form E ⇒ ϕ; E is called an exit condition. By
assuming that E implies g = g, we enforce the second condition (ω, ω) ∈

q
g = g

y

in item 1 of Lemma 23. The first three premises are there to ensure that (g, g)
is a synchronizer. Under these premises (the first four), the rule allows one to
transform its conclusion (about δ; δ) into one about the combined dynamics
δ ⊗(g,g) δ, which is amenable to application of the (DI) rule, for example.

Theorem 24 (synchronization rule). The following inference rule is sound:

Γ ` [δ]Lδ g > 0 Γ ` g = g

Γ ` [δ]Lδ g > 0 E ` g = g Γ ` [δ ⊗(g,g) δ](E ⇒ ϕ)

Γ ` [δ; δ](E ⇒ ϕ)
(Sync)

Recall the definition of δ ⊗(g,g) δ (Definition 22), where time stretching for the
second dynamics δ is expressed syntactically by Lie derivatives. We call the
for premises Γ ` g = g, E ` g = g, Γ ` [δ]Lδ g > 0, and Γ ` [δ]Lδ g > 0
the synchronizability conditions. These obligations are usually easy to discharge.
The last premise, which we call the synchronized formula, is typically the core
remaining obligation.

Remark 25 (choice of (g, g)). In applying the (Sync) rule, one still has to
find a suitable synchronizer (g, g). This turns out to be straightforward in many
examples. In all the case studies in Section 6 and in Example 1, the exit condition
E is of the form x = x = C where C is a constant. This suggests the use of g = x,
g = x. Indeed, all our proofs use this choice of (g, g).

5 Implementation

KeYmaera X [2] is an interactive theorem prover based on the sequent calculus
formulation of dL. It is implemented in Scala, replacing its former system KeY-
maera [1]. It has a web-based GUI environment, and a support of automated
theorem proving using computer algebra systems such as Mathematica [13].

For the formalization of case studies in Section 6, we extended KeYmaera X ver-
sion 4.7 (available at [2]) with the (Sync) rule. This extension of KeYmaera
X, together with our proofs in case studies, are currently available at http:

//group-mmm.org/~ayamada/rddl_tacas_2020/.

http://group-mmm.org/~ayamada/rddl_tacas_2020/
http://group-mmm.org/~ayamada/rddl_tacas_2020/
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The KeYmaera X implementation is structured in a flexible manner, from
which we benefited. To add a rule to KeYmaera X, one has to implement a
Scala program that take the conclusion of the rule and generate the premises of
the rule as subgoals. The fact that any Scala program is allowed here enabled
us to implement complex algorithms, such as inductive translation of formulas.

In implementing the (Sync) rule, the functions in KeYmaera X called
helpers helped us, such as in the Lie derivative computation and the functional-
ity to simplify formulas into equivalent ones. The bulk of our effort regarded the
⊗(g,g) operator. There we did a bit more general than we stated in the paper: not
only taking dynamics of form ẋ = e & Q, we also allow sequences of dynamics
possibly interleaved by guards and nondeterministic choices. This feature was
utilized in the case study that will be described in Section 6.3.

6 Case Studies

We describe three case studies where we proved relational properties of hybrid
dynamics. We did so formally in our extension of KeYmaera X described in
Section 5. In all the examples, we apply the (Sync) rule as a main proof step,
in conjunction with the existing rules in dL. Below, we describe our example
systems and outline the important steps in the formal proofs.

6.1 Collision Speed with Constant Acceleration

In this section we apply the (Sync) rule to the running Example 1. For this exam-
ple we consider two dynamics δC :=

(
ẋ = v, v̇ = a

)
and δC := (ẋ = v, v̇ = a).

Both dynamics represent a car with constant acceleration. Our claim is that if
acceleration is larger in the first system, then the first car is necessarily faster
than the second car after traveling the same distance l; formally,

Γ `
[
δC ; δC

]
(x = l ∧ x = l⇒ v ≤ v) (7)

where

Γ := {0 = x = x, 0 < v = v0, v = v0, v0 ≤ v0, 0 ≤ a ≤ a}

We apply the (Sync) rule, where g := x and g := x. The first two synchro-
nizability conditions are Γ ` x = x and x = l, x = l ` x = x, which are trivial.
The last two synchronizability conditions are

Γ `
[
δC
]
LδC g = v > 0 Γ `

[
δC
]
LδC g = v > 0

which are proved using differential invariants (DI).
The synchronized formula is

Γ `
[
δC , ẋ = v ·(v/v), v̇ = a ·(v/v) & v > 0 ∧ v > 0

]
(x = l ∧ x = l⇒ v ≤ v)

One might try to show the inequality v − v ≥ 0 by the differential invariant
(DI) rule, but the Lie derivative of the term v − v is a− a · (v/v), which is not
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obviously nonnegative. Instead, a trickier expression a·(v2−v20)−a·(v2−v20) = 0
turns out to be an invariant. Its Lie derivative is a · (2v) · a · (v/v)− a · (2v) · a,
which is clearly 0, since we also know v > 0.

We do not have an intuitive explanation for this invariant, but it was found
by a template-based search, like many other invariants in dL. By positing the
existence of a polynomial invariant of a certain degree, we can find conditions on
the coefficients by requiring its Lie derivative and initial value are zero. Solving
these conditions for a second-degree invariant on the velocities in the system
yielded the invariant above.

After finding our invariant, we additionally have to show the invariant entails
our desired result, v ≤ v. This can be shown with a standard monotonicity
property of modal logics: from φ ` ψ and Γ ` [α]φ, we can conclude Γ ` [α]ψ,
where φ states the expression above is an invariant and the velocities are always
greater than their initial value, and ψ is our goal: v ≤ v.

6.2 Collision Speed with Different Kinds of Friction

Here we continue Example 11, where we consider two dynamics δF ≡ (ẋ = v, v̇ =
−v2) and δF ≡ (ẋ = v, v̇ = −v). Our goal is ΓF ` [δF ; δF ](x = x = l ⇒ v ≤ v),
with ΓF := {x = x = 0, 0 < v ≤ v ≤ 1}.

First, we establish the fact that the objects in this example always have
positive velocity. We show this by the (Dbx) rule (Definition 13), where LδF v =

−v2 and LδF v = −v. This allows us to infer v > 0 and v > 0 hold at all times.
We apply the (Sync) rule along x = x, yielding the synchronized dynamics

ẋ = v, v̇ = −v2, ẋ = v ·(v/v), v̇ = −v ·(v/v) & v > 0 ∧ v > 0

Note that the new evolution domain condition v > 0 allows us to rewrite v ·(v/v)
to v. The synchronizability conditions follow immediately from the fact that
v > 0 and v > 0. For the synchronized formula, we apply the (DI) rule, so the
desired inequality v ≥ v is reduced to v2 ≤ v, that is, v ≤ 1. To this end, v > 0
tells us that the derivative of v, that is, −v2, is always negative, therefore v ≤ 1.

6.3 Model Refinement

In this example, we consider two abstract models of cars. The first car is able
to provide a high amount of constant acceleration a at low velocities, but at a
certain velocity vcut the engine switches to a different mode and then provides a
lesser, but still constant acceleration acut. The second car is an abstracted version
of the first, which ignores this mode change and provides the same constant
amount of acceleration a at all velocities.

Our aim in this example is to establish a safety envelope around the first
car’s behavior using the more simply stated second car’s dynamics. Hence we
show that the second car’s velocity is greater than the first’s at any position
x = x = l.
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More formally, the behavior of the first car is expressed as a hybrid program
α := (δ1; ?v = vcut; δ2) with two modes: δ1 := (ẋ = v, v̇ = a & v ≤ vcut)
and δ2 := (ẋ = v, v̇ = acut). The second car follows the simple dynamics
δ := (ẋ = v, v̇ = a).

Our goal is to prove the sequent

Γ `
[
α; δ
]
(x = x = l⇒ v ≤ v),

where the initial conditions are given by Γ := (x = x = 0, 0 < v = v = v0, 0 <
vcut, 0 < acut ≤ a).

Technically, the (Sync) rule merges one differential dynamics with another,
but the program the first car executes is a more complicated composition of
dynamics and testing. However, it is possible to synchronize piecewise, first syn-
chronizing δ with δ1 until the first car changes modes, then synchronizing δ with
δ2 for the remainder of their runs. This slightly generalized synchronization pro-
cedure means we can instead show

Γ `
[
δ1 ⊗(x,x) δ; ?v = vcut; δ2 ⊗(x,x) δ

]
(x = x = l⇒ v ≤ v)

There are also now two sets of synchronizability conditions to satisfy, but both
are again straightforward.

Since δ1 and δ are nearly identical (except for the evolution domain con-
straint), their synchronization δ1 ⊗(x,x) δ basically identifies the two dynamics.

The synchronization of δ2 and δ is exactly the synchronization performed above
in Section 6.1, and proceeds in the same way.

7 Conclusions and Future Work

In this paper, we presented a relational extension of the differential dynamic
logic based on time stretching of dynamics. This reparametrization enables us
to enforce comparisons between two systems occur when certain conditions are
satisfied, such as ensuring that two cars are compared when they are passing
through the same position. Reparametrization can be thought of as stretching
or compressing time for one of the dynamics, but we have also shown this trans-
formation can be effected by a transformation of the dynamics themselves based
on Lie derivatives, which we call synchronizing the dynamics (Definition 19).
This led us to a new dL proof rule, the (Sync) rule (Theorem 24). We then
implemented this rule in the KeYmaera X tool, and used our extension to
demonstrate several nontrivial relational properties of dynamical systems.

In the future, we think it would be interesting to combine our relational
logic with orthogonal relational extensions of dL [16] which focus on refinement
relations with varying levels of nondeterminism. We also hinted in our last case
study that it is possible to synchronize wider classes of hybrid programs than just
two differential dynamics. We also think that the level of automated proof search
available in KeYmaera X may enable the automatic detection of monotonic
properties in product lines. This may be useful in industry both to provide sanity
checks on formalized models of products, as well as enabling strong guarantees
to be more easily obtained for those models.
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