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Multi Modal Dynamic Linear Viscoelastic Back Analysis for Asphalt
Mixes

Jean-Claude Carret1 · Herve Di Benedetto1 · Cedric Sauzeat1

Abstract
In this paper, an investigation was performed to determine the accuracy of a simplified viscoelastic back analysis to interpret
dynamic loading tests on asphalt mixes (AM). First, quasi-static cyclic tension–compression lab tests were performed on
different AM to fit the 3 dimensional 2S2P1D linear viscoelastic (LVE) model. Considering these tests on very different
types of AM, a LVE material with “averaged” viscoelastic properties was obtained. Then, these “averaged” viscoelastic
properties were considered to perform finite elements method numerical simulations of dynamic loading tests on a cylinder.
The simulations were performed at ten different temperatures from − 40 to 50 ◦C. The longitudinal, flexural and torsional
modes of vibration are studied. The complex Young’s modulus and complex Poisson’s ratio were first obtained using the
viscoelastic 2S2P1D model at the first resonance frequency for the three studied modes of vibration. Then, a combined
viscoelastic back analysis, which has the advantage of simplicity, was used to determine the elastic equivalent properties and
the phase angle of the material. The results obtained directly with the 2S2P1D model and the results from the combined
viscoelastic back analysis results regarding both the Young’s modulus and the Poisson’s ratio are discussed in the paper.

Keywords Asphalt mixes · Viscoelasticity · Dynamic loading · Finite element calculation · Back analysis

1 Introduction

Seismic measurements such as impact loadings are econom-
ical, simple to perform and are nondestructive tests. These
tests seem to be a good approach for providing accurate char-
acterization of materials properties [1]. Measurement of the
flying time in wave propagation tests [2–4] and measurement
of the fundamental resonance frequencies through resonance
testing [5,6] have been used to determine the complex mod-
ulus of asphalt mixtures. These methods give information on
the tested LVE material only for a limited number of reso-
nance frequencies (1–3), which are, a priori, unknown. The
analysis of the results of these tests is based on simplified
approximate formulations used to determine a complex mod-
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ulus for each considered temperature and mode of vibration
[7,8]. Ryden and Gudmarsson [9,10] applied resonant acous-
tic spectroscopy (RAS) to calculate resonance frequencies of
cylindrical discs and beams for different modes of vibration.
These tests require simplified method such as the half-power
bandwidth method to evaluate the damping of the specimen.
In this paper, a comparison between the direct viscoelastic
analysis and a simplified back analysis of a specimen under
impact loadings were performed. The differences between
the two approaches and the limitations of the simplified back
analysis were highlighted. LVE finite element method numer-
ical simulations of impact loadings on a cylindrical specimen
were carried out. These numerical tests were performed at 10
different temperatures between − 40 and 50 ◦C for three dif-
ferent modes of vibration: the longitudinal mode, the flexural
mode and the torsional mode. The analysis of these compu-
tations were limited to the first resonance frequency for each
mode. Viscoelastic properties of the specimen were estimated
at the corresponding resonance frequency for each mode of
vibration and for each temperature using the 2S2P1D linear
viscoelastic model. Then, a combined back analysis—it is
the type of method mostly used to analyze impact testing on
asphalt materials—was used to evaluate the elastic equiva-
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Fig. 1 (left)
Tension–compression test
apparatus used for tests on
asphalt mixes; (right) detailed
scheme of measurement devices
and sample

Fig. 2 (left) Dynamic impact
tests set-up (ENTPE/LTDS
laboratory), case of the
longitudinal mode; (right)
Position of the accelerometer
and of the impact for the three
considered modes of vibration

lent properties and the phase angle of the material. Finally,
results obtained directly with the 2S2P1D model and from
the combined back analysis were compared.

2 Materials and Experimental Tests

2.1 Materials and ConsideredMaterial for Modelling

38 specimens are first considered in this study. They were
previously tested (cyclic tension–compression test—see fol-
lowing section-) during 4 different Ph.D. theses performed at
the University of Lyon / ENTPE, LTDS laboratory [11–17].
The wide variety of these specimens represents a good range
of asphalt mixes types and makes it possible to consider a
material with averaged viscoelastic properties. This material
was given the average values of the constants of the 2S2P1D
LVE model obtained for the 38 specimens. All the numeri-
cal simulations and analyses that are presented in this paper
were performed on this average material.

2.2 Cyclic Tension–Compression Tests

The tension–compression tests were used to determine the
complex Young’s modulus and the complex Poisson’s ratio of
asphalt mixes. The tests were performed on cylindrical sam-

ples (150 mm high with a 75 mm diameter). Cyclic sinusoidal
loadings were applied using a hydraulic press, as shown in
Fig. 1, in strain-controlled mode with an amplitude of around
5 ∗ 10−5 m/m.

The axial stress (σ1 = σ0.sin(ωt−φE )) was measured
with a load cell with a ±25kN maximum load and a 25N
accuracy. The axial strain (ε1 = ε01.sin(ωt)) was obtained
by means of three extensometers placed at 120◦ from each
other (Fig. 1). The radial strain (ε2 = ε02.sin(ωt+φν)) was
deduced from measurements of two non-contact transducers
(Fig. 1). The complex modulus and the complex Poisson’s
ratio at different loading frequencies (from 0.01 to 10 Hz) and
different temperatures (from − 30 to 50 ◦C) are calculated
according to Eqs. 1 and 2 where φE and φν are the phases
of the complex modulus and of the complex Poisson’s ratio
respectively.

E∗(ω) = σ ∗
1

ε∗
1

= ∣
∣E∗(ω)

∣
∣ ei�E (1)

ν∗(ω) = −ε∗
2

ε∗
1

= ∣
∣ν∗(ω)

∣
∣ ei�ν (2)
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Fig. 3 Representation of the 2S2P1D LVE model in the 1-dimension
case

2.3 Dynamic Impact Tests and Conditions for the
Numerical Simulations

The sample geometry used for tension–compression test (7.5
cm diameter and 15 cm height) was considered for dynamic
test. In this paper only numerical tests are presented but
the associated lab test set-up of the dynamic impact tests is
shown on the left of Fig. 2. The loading is manually applied
on the specimen with an impact hammer equipped with a
load cell (PCB model 086E80). The standing wave modes
are measured with an accelerometer (PCB model 353B15)
glued to the specimen. During the test, the specimen lays
on soft foam to ensure free boundary conditions [6]. The
impact hammer and the accelerometer are connected to the
data acquisition system that consists of a signal conditioner
(PCB model 482C15), a data acquisition device (NI DAQ
USB-6251) and a computer (see Fig. 2). It is possible to excite
different modes of vibration depending on the position of the
impact and of the accelerometer [18,19]. The configurations
for the three different modes of vibration considered in this
study are described on the right of Fig. 2. These configu-
rations were used for the FEM numerical simulations (see
Sect. 3.2).

3 Linear Viscoelastic Analysis

3.1 2S2P1D LVE Isotropic Model

The tension–compression tests results were analyzed using
the 2S2P1D LVE model developed at ENTPE [20–22]. It
consists of a combination of two springs, two parabolic creep
elements (also called fractional-derivative model [23]) and
one dashpot as schematized in the 1-dimension case in Fig. 3.

The introduced model has seven parameters and the com-
plex modulus of the 2S2P1D model is expressed according
to Eq. 3,

E∗
2S2P1D(ω)

= E00 + E0 − E00

1 + δ( jωτ)−k + ( jωτ)−h + ( jωβτ)−1 (3)

where j is complex number defined by j2 = −1, ω is the
angular frequency (ω = 2π f , where f is the frequency), E00

is the static modulus when ω → 0, E0 is the glassy modulus
when ω → +∞, δ is a dimensionless constant, k and h are
dimensionless exponents such as 0 < k < h < 1, β is a
dimensionless constant related to the Newtonian viscosity
η by η = (E0 − E00)βτ and τ is the characteristic time,
function of temperature. The time-temperature superposition
principle (TTSP) is verified for asphalt mixes in the linear and
nonlinear domains [16,24,25] using:

τ(T ) = aT (T )τre f (4)

where aT is the shift factor at the temperature T defined by
the Williams–Landel–Ferry (WLF) equation [26]:

log(aT ) = − C1(T − Tre f )

C2 + T − Tre f
(5)

where C1 and C2 are the two constants of the WLF equation
and Tre f is the reference temperature. The WLF parameters
used in this study are listed in Table 1 and the correspond-
ing shift factors are plotted in Fig. 4. Di Benedetto et al.
[27] extended the 2S2P1D model to characterize the com-
plex Poisson’s ratio as given in Eq. 6,

ν∗
2S2P1D(ω)

= ν00 + ν0 − ν00

1 + δ( jωτν)−k + ( jωτν)−h + ( jωβτν)−1 (6)

where ν00 is the low frequency Poisson’s ratio when ω → 0
and ν0 is the high frequency Poisson’s ratio when ω → +∞.
The same values of the parameters δ, k, h and β are used to
determine both the complex modulus and complex Poisson’s
ratio while τ is determined also for the Poisson’s ratio and
is therefore labeled τν . The constants of the 2S2P1D LVE
model for the material used in the numerical simulations (see
Sect. 2.1) are given in Table 1. The complex modulus (E*)
and the complex Poisson ratio (ν∗) of the average material
are plotted in Fig. 5 (master curves) and Fig. 6 (normalized
cole–cole curves).

3.2 Finite Element Method Simulations

Finite element method is widely used on pavement for dif-
ferent applications [28–32]. In this study, the behavior of
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Table 1 2S2P1D constants at the reference temperature of 10 ◦C for the material with “averaged” viscoelastic properties of asphalt mixes used for
the numerical simulations

E00(M Pa) E0(M Pa) ν0 ν00 δ k h β τ10◦C (s) τν(s) C1 C2

105 35,000 0.19 0.42 2.15 0.17 0.525 505 0.1 3.165 30 210

Fig. 4 Shift factor versus
temperature for the considered
WLF parameters

Fig. 5 Master curves at 10 ◦C
for the norm of the complex
Young’s modulus (solid line)
and for the norm of the complex
Poisson’s ratio (dot line) for the
material used for the numerical
simulations

Fig. 6 Cole–Cole plot for the
normalized complex Young’s
modulus and for the normalized
complex Poisson’s ratio for the
material used for the numerical
simulations
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Fig. 7 FEM calculation and
principle of the combined back
analysis

the material under dynamic loadings was calculated with
FEM numerical simulations. The 2S2P1D model complex
modulus and complex Poisson’s ratio (Table 1) were used as
input for the material properties and the material was con-
sidered as isotropic. The Comsol software was used to solve
the three-dimensional equation of motion in the frequency
domain (Eq. 7):

−ρω2u − ∇.σ = FpeiΦ (7)

where ω is the angular frequency, ρ is the density, u is the
displacement vector, ∇ is the gradient tensor operator, i is
complex number defined by i2 = −1 and σ is the Cauchy
stress tensor. Fp is the unity load and φ is the phase of the
cyclic load.

The unity load has been applied to the corresponding
point of the hammer impact while the response has been
determined at the position of the accelerometer for the three
considered modes of vibration (see Fig. 2). The simulations
were performed at 10 different temperatures every 10 ◦C
from − 40 to 50 ◦C, in a frequency range from 100 to 20,000
Hz considering steps of 20 Hz. Finer analysis with steps of 1
Hz were also carried out around the first resonant frequency
for each temperature and for each mode of vibration in order
to obtain a better evaluation of the first resonance frequency
and of the damping of the material. The geometry used in this
study was a cylinder with a 75 mm diameter and a 150 mm
height. The mesh consists of tetrahedral elements with a max-
imum element size of 2.5 cm that was determined through a
convergence study.

4 Combined Back Analysis

Back analysis methods are used for different applications on
pavement [33,34]. The proposed combined back analysis is
based on the analysis of the first resonance peak for each tem-
perature and for each mode of vibration. Figure 7 explains the
principle of the back analysis for one temperature. In the first
step (see Fig. 7), the first resonance frequency of each mode
of vibration fFi (i = L for the longitudinal mode, i = F
for the flexural mode and i = T for the torsional mode) was
deduced from the FEM simulations. The frequency band-
width Δ fi was also determined for each mode of vibration
from the FEM simulations using the half-power bandwidth
method (see Fig. 3). For the longitudinal and flexural modes
of vibration, the frequencies fFi were used in the 2S2P1D
model to calculate the corresponding complex modulus E∗

Fi ,
and Poisson’s ratio, ν∗

Fi , according to Eqs. 8 and 9:

E∗
Fi = E∗

2S2P1D(2π fFi ) (8)

ν∗
Fi = ν∗

2S2P1D(2π fFi ) (9)

For the torsional mode of vibration, the frequency fFT

was used in the 2S2P1D model to calculate the corresponding
complex shear modulus G∗

FT according to Eq. 10:

G∗
FT = G∗

2S2P1D(2π fFT ) (10)

The phase angle used in the back analysis φB Ai was deduced
using the following relationship suggested by Clough and
Penzien [35]:
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φB Ai = Arctan

(
� fi
fFi

)

(11)

In the second step of the combined back analysis (see Fig. 7),
2 different approaches were used. For the longitudinal and
flexural modes of vibration, three cases corresponding to
three different real values of Poisson’s ratio of 0.2, |ν∗

Fi |, and
0.45 were studied. Three elastic equivalent moduli EE E1i ,
EE E2i and EE E3i associated to the three cases were back-
calculated through elastic FEM numerical simulations for
these two modes of vibration. For the torsional mode of vibra-
tion, the shear modulus is independent of the Poisson’s ratio
value. Therefore, only one elastic equivalent shear modulus
GE ET was back-calculated through elastic FEM numerical
simulations. Then φB Ai was considered as the correspond-
ing phase angle for the three considered modes of vibration.
Three complex moduli E∗

B A1i , E∗
B A2i and E∗

B A3i were deter-
mined according to Eqs. 12–14 for the longitudinal and
flexural mode and one complex shear modulus G∗

B AT was
determined according to Eq. 15.

E∗
B A1i = EE E1i e

iφB Ai (12)

E∗
B A2i = EE E2i e

iφB Ai (13)

E∗
B A3i = EE E3i e

iφB Ai (14)

G∗
B AT = GE ET eiφB AT (15)

5 Evaluation of the Proposed Combined
Back Analysis

5.1 Principle of the Comparison

The procedure described in the previous section was used to
determine the values of fFi , E∗

Fi (norm and phase angleφFi ),
|ν∗

Fi |, φB Ai , EE E1i , EE E2i and EE E3i for the longitudinal
and flexural modes of vibration and the values of fFT , G∗

FT
(norm and phase angle φFT ), φB AT and GE ET . All these
values were calculated for the 10 considered temperatures.
Table 2 details the name of the variables evaluated in the back

Fig. 8 Example of the half-power bandwidth method limitations at
high temperatures where it was not possible to obtain �f (numerical
simulation for the longitudinal mode at 40 ◦C)

analysis in the different cases studied for clarity. Results are
given in Tables 3, 4 and 5 in appendix.

For temperatures higher than 30 ◦C, it was not possible to
estimate the phase angle of the material for the longitudinal
and the torsional modes of vibration. This is due to too much
damping in the material for such temperatures that made the
estimation of the frequency bandwidth impossible with the
half-power bandwidth method (see Fig. 8).

In order to evaluate the accuracy of the proposed combined
back analysis, the different values obtained were compared.
For the longitudinal and flexural modes of vibration, the norm
and the phase angle of the 2S2P1D model complex modulus
E∗

Fi obtained at the frequency fFi (Eq. 8) were compared
to the norm and to the phase angle of the three complex
moduli E∗

B A1i , E∗
B A2i and E∗

B A3i (Eqs. 12–14) obtained from
the simplified back analysis. The three studied cases allow
to consider the effect of the Poisson’s ratio value. For the
torsional mode of vibration, the norm and the phase angle of
the 2S2P1D model complex shear modulus G∗

FT obtained
at the frequency fFT (Eq. 10) were compared to the norm
and to the phase angle of the complex shear modulus G∗

B AT
(Eq. 15) obtained from the simplified back analysis.

Table 2 Summary of the
variables evaluated in the
different cases studied for the
back analysis

Mode of
vibration

Case studied Elastic equivalent
modulus

Phase
angle

Complex
modulus

Longitudinal ν1 =0.2 EEE1L φBAL E∗
BA1L

ν2 = | ν∗
2S2P1D(fL)| EEE2L E∗

BA2L

ν3 =0.45 EEE3L E∗
BA3L

Flexural ν1 =0.2 EEE1F φBAF E∗
BA1F

ν2 = | ν∗
2S2P1D(fF)| EEE2F E∗

BA2F

ν3 =0.45 EEE3F E∗
BA3F

Torsional Independent of ν GET φBAT G∗
BAT
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Fig. 9 Relative difference
between the elastic equivalent
modulus obtained from the
combined back analysis (Fig. 3)
and the norm of the 2S2P1D
model value obtained at the first
resonance frequency
(Eqs. 8–10) for the three
considered modes of vibration
and different considered
Poisson’s ratio values

Fig. 10 2S2P1D model phase
angle obtained at the first
resonance frequency (Eqs. 8–10)
(dot lines) and difference with
the phase angle obtained from
the combined back analysis
(Fig. 3) (solid lines) for the three
considered modes of vibration

Fig. 11 Complex modulus
values obtained from the
2S2P1D model at the first
resonance frequency of the
longitudinal mode (Eq. 8) and
values obtained from the
proposed combined back
analysis for the three considered
values of Poisson’s ratio (Fig. 3)
for the longitudinal mode of
vibration (Eqs. 12–14)

5.2 Results and Discussion

Figure 9 presents the relative difference between the elastic
equivalent moduli EE E1i , EE E2i and EE E3i and the norm
of the complex modulus |E∗

Fi | calculated using the 2S2P1D
model at the resonance frequencies fFi . Lines with a circle
(in blue) are for the longitudinal mode of vibration while lines
with a square (in red) are for the flexural mode of vibration.

Also on Fig. 6, the relative difference between the elastic
equivalent shear modulus GE ET and the norm of the com-
plex shear modulus |G∗

FT | calculated using 2S2P1D model at
the frequency fFT is plotted (green line with a triangle). The
solid lines on Fig. 6 clearly indicate that there is a good cor-
relation between the elastic equivalent modulus EE E2i and
the norm of the complex modulus from the 2S2P1D model
|E∗

Fi | and also between the elastic equivalent shear modu-
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Fig. 12 Complex modulus
values obtained from the
2S2P1D model at the first
resonance frequency of the
flexural mode (Eq. 8) and values
obtained from the proposed
combined back analysis for the
three considered values of
Poisson’s ratio (Fig. 3) for the
flexural mode of vibration
(Eqs. 12–14)

Fig. 13 Complex shear
modulus values obtained from
the 2S2P1D model at the first
resonance frequency of the
torsional mode (Eq. 10) and
values obtained from the
proposed combined back
analysis (figure 3) for the
torsional mode of vibration
(Eq. 15)

lus and the norm of the complex shear modulus from the
2S2P1D model |G∗

FT |. This is particularly true for temper-
atures below 30 ◦C with a maximum relative difference of
less than 2.5%. At higher temperatures, the error increases
for the three modes of vibration but it remains less than 6%.
It can also be seen on Fig. 6 that the Poisson’s ratio value has
an impact on the calculation of the elastic equivalent moduli.
The relative difference is clearly higher for EE E3i (around
3% for the flexural mode and around 5% for the longitudi-
nal mode) that is calculated for a Poisson’s ratio of 0.45, a
value away from the two other studied cases. Nevertheless,
the impact of the Poisson’s ratio value remains limited.

Figure 10 presents the phase angle φFi given by the
2S2P1D model at the frequency fFi (dot lines) and also
the difference in degree (◦) with the combined back analysis
phase angle φB Ai for the three considered modes of vibration.
Figure 4 shows a good agreement between the back analy-
sis phase angle φB Ai and the 2S2P1D model phase angle
φFi with a maximum difference of around 2◦ at 30 ◦C for
the longitudinal and torsional modes. For the flexural mode,
it can be seen that the difference significantly increases for

temperatures above 30 ◦C to reach 6◦ at 50 ◦C. This proves
the inaccuracy of the half-power bandwidth method at high
temperature: when there is too much damping in the material,
the damping is overestimated and so is the phase angle.

For the complex modulus or complex shear modulus
as well as for the phase angle, differences between values
obtained from the 2S2P1D model at the first resonance fre-
quency and values obtained with the combined back analysis
increase with the temperature but remain limited. Figures 11,
12 and 13 present the different complex moduli in a Cole–
Cole diagram for the three considered modes of vibration and
the three different values of Poisson’s ratio. On Figs. 7 and 8
corresponding to the longitudinal mode and to the flexural
mode respectively, it can be seen that the values of E∗

B A1i or
E∗

B A2i and E∗
Fi are rather close, especially at low tempera-

tures. E∗
B A3i does not fit so well with E∗

Fi . It is due to the
effect of the Poisson’s ratio value as already noted on Fig. 6.
Figure 9 corresponding to the torsional mode shows a good
agreement between G∗

B AT and G∗
FT , especially for the low

temperatures. All the observations from Figs. 11, 12 and 13
confirm the conclusions already raised from Figs. 9 and 10.
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6 Conclusion

The proposed simplified back analysis proposed in this paper
gives good results, both for the norm of the complex modulus
and for the phase angle at low and intermediate temperatures.
Slight differences appear for temperatures higher than 20 ◦C.
They are mostly due to an overestimation of the phase angle.
Therefore, the half-power bandwidth method used to deter-
mine the phase angle is not adapted for high temperatures
because it overestimates the damping of the materials. The
influence of the Poisson’s ratio value was also studied. It was
found that it has a limited impact on the calculation of the
elastic equivalent modulus (less than 5%). The observations
and findings from this study demonstrate that for temper-
atures below 20 ◦C, a simple assumption on constant real
value for Poisson’s ratio and the proposed simplified com-
bined back analysis are enough to analyse accurately impact

loadings in order to obtain the behaviour of asphalt mixes..
This is very interesting to obtain quickly and accurately the
LVE properties at high frequencies. However, the limitation
with the temperature gives only access to a small part of
the master curve that can be estimated with this method.
In addition, for higher temperatures corresponding to values
of the phase angle higher than about 15◦, the method does
not provide a good evaluation of the phase angle. Therefore,
for temperatures higher than 30 ◦C corresponding to phase
angle of above 15◦ the half-power bandwidth could not be
used because of too much damping in the material. These
numerical results need to be checked and validated in further
studies using laboratory measurements.

Appendix

Table 3 Results of the numerical simulations and the combined back analysis (longitudinal mode)

T (◦C) 2S2P1D model Combined back analysis

|E∗
F L |(M Pa) φF L (◦) |ν∗

F L | fF L (Hz) φB AL (◦) EE E1L (M Pa) EE E2L (M Pa) EE E3L (M Pa)

−40 34,602 0.178 0.191 12,320 0.186 34,645 34,605 34,425

−30 34,029 0.434 0.194 12,216 0.450 34,060 34,030 35,810

−20 32,890 0.943 0.198 12,006 0.969 32,900 32,890 34,585

−10 30,891 1.837 0.206 11,631 1.901 30,870 30,910 32,460

0 27,813 3.232 0.219 11,031 3.372 27,775 27,850 29,200

10 23,675 5.219 0.238 10,173 5.542 23,620 23,755 24,840

20 18,770 8.049 0.264 9062 8.813 18,740 18,930 19,705

30 13,475 12.575 0.294 7708 14.782 13,560 13,780 14,260

40 8179 20.188 0.327 6080 × 8440 8625 8870

50 3746 30.621 0.362 4160 × 3950 4065 4155

Table 4 Results of the numerical simulations and the combined back analysis (flexural mode)

T (◦C) 2S2P1D model Combined back analysis

|E∗
F F | (M Pa) φF F (◦) |ν∗

F F | fF F (Hz) φB AF (◦) EE E1F (M Pa) EE E2F (M Pa) EE E3F (M Pa)

−40 34,569 0.193 0.192 7619 0.203 34,625 34,575 35,580

−30 33,948 0.47 0.194 7549 0.486 34,000 33,960 34,940

−20 32,720 1.019 0.199 7410 1.044 32,750 32,750 33,630

−10 30,580 1.977 0.207 7161 2.031 30,595 30,610 31,420

0 27,317 3.461 0.221 6764 3.587 27,290 27,380 28,030

10 22,991 5.571 0.242 6201 5.838 22,935 23,040 23,570

20 17,933 8.63 0.268 5472 9.218 17,860 17,980 18,350

30 12,518 13.671 0.3 4573 15.101 12,490 12,610 12,815

40 7177 22.12 0.334 3460 25.880 7140 7230 7325

50 3002 32.832 0.37 2220 39.036 2940 2985 3015
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Table 5 Results of the
numerical simulations and the
combined back analysis
(torsional mode)

T (◦C) 2S2P1D model Combined back analysis

|G∗
FT | (M Pa) φFT (◦) fFT (Hz) φB AT (◦) GE ET (M Pa)

−40 14,502 0.192 8033 0.214 14,550

−30 14,184 0.514 7954 0.526 14,225

−20 13,653 1.107 7795 1.139 13,670

−10 12,681 2.152 7512 2.203 12,685

0 11,205 3.769 7065 3.887 11,220

10 9284 6.051 6437 6.321 9320

20 7090 9.227 5639 9.967 7145

30 4834 14.371 4684 16.540 4930

40 2711 22.839 3560 × 2850

50 1107 33.091 2280 × 1170
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