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CONCERNING THE PATHOLOGICAL SET IN THE CONTEXT OF PROBABILISTIC WELL-POSEDNESS

We prove a complementary result to the probabilistic well-posedness for the nonlinear wave equation. More precisely, we show that there is a dense set S of the Sobolev space of super-critical regularity such that (in sharp contrast with the probabilistic well-posedness results) the family of global smooth solutions, generated by the convolution with some approximate identity of the elements of S, does not converge in the space of super-critical Sobolev regularity.

Résumé. On démontre un résultat complémentaire à ceux manifestant le caractère bien posé probabiliste de l'équation des ondes avec des données initiales de régularité de Sobolev super critique par rapport au changement d'échelle laissant invariant l'équation.

Introduction

In this work, we are interested in the three dimensional nonlinear wave equation ∂ 2 t u -∆u + |u| 2σ u = 0, (t, x) ∈ R × T 3 , (u, ∂ t u)| t=0 = (f, g) ∈ H s (T 3 ), (1.1) where u is a real-valued function and H s (T 3 ) := H s (T 3 ) × H s-1 (T 3 ).

The nonlinear wave equation (1.1) is a Hamiltonian system with conserved energy

H[u] := 1 2 T 3 |∇u| 2 dx + 1 2σ + 2 T 3 |u| 2σ+2 dx.
It was shown (see [START_REF] Grillakis | Regularity and asymptotic behaviour of the wave equation with a critical non linearity[END_REF][START_REF] Shatah | Well-posedness in the energy space for semilinear wave equation with critical growth[END_REF]) that when σ ≤ 2, the problem (1.1) possesses a global strong solution in the energy space H 1 (T 3 ). By replacing T 3 to R 3 , the scaling

u → u λ (t, x) := λ 1 σ u(λt, λx)
keeps the equation (1.1) invariant. This leads to the critical regularity index s c = 3 2 -1 σ ≤ 1. Intuitively, for s < s c if the initial data is concentrated at the frequency scale ≫ 1 and is of size 1 measured by the H s norm, then the nonlinear part in the dynamics of (1.1) is dominant and it causes instability of the H s norm of the solution. This is called a norm inflation and it was extensively studied, see [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF], [START_REF] Lebeau | Nonlinear optic and supercritical wave equation[END_REF], [START_REF] Lebeau | Perte de régularité pour l'équation d'ondes sur-critiques[END_REF] in the context of nonlinear wave equations. For instance, it was shown in [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF] that there exists a sequence of smooth initial data whose H s norms converge to zero, while the H s norms of the obtained sequence of solutions amplifies at very short time. We also refer to [START_REF] Lindblad | A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations[END_REF] where a different concentration phenomenon, related to the Lorentz invariance of the wave equation, is observed.

1

In [START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local theory[END_REF] and [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF], by using probabilistic tools, N. Burq and the second author showed that problem (1.1) with cubic nonlinearity still possesses global strong solutions for a "large class" of functions of super-critical regularity. The result was further extended to 1 ≤ σ ≤ 2 in [START_REF] Oh | Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R 3[END_REF] and [START_REF] Sun | Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three[END_REF]. More precisely, the following statement follows from [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF], [START_REF] Oh | Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R 3[END_REF], [START_REF] Sun | Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three[END_REF].

Theorem 1. Let 1 ≤ σ ≤ 2 and 1 -1 σ < s < s c = 3 2 -1 σ .
Then there is a dense set Σ ⊂ H s (T 3 ) satisfying Σ ∩ H s ′ (T 3 ) = ∅ for every s ′ > s such that the following holds true. For every (f, g) ∈ Σ, let (f n , g n ) be the sequence in C ∞ (T 3 ) × C ∞ (T 3 ) defined by the regularization by convolution, i.e.

f n = ρ n * f, g n = ρ n * g,
where (ρ n ) n∈N is an approximate identity. Denote by (u n (t), ∂ t u n (t)) the smooth solutions of (1.1) with the smooth initial data (f n , g n ). Then there exists a limit object u(t) such that for any T > 0,

lim n→∞ (u n (t), ∂ t u n (t)) -(u(t), ∂ t u(t)) L ∞ ([-T,T ];H s (T 3 )) = 0.
Moreover u(t) solves (1.1) in the distributional sense.

When 1 ≤ σ < 2, the above theorem can be extended to s = 1 -1 σ , thanks to [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] (the case σ = 1) and a recent result [START_REF] Latocca | Almost Sure Existence of Global Solutions for supercritical semilinear Wave Equations[END_REF](the case 1 < σ < 2).

In Theorem 1 the set Σ is a full measure set with respect to a suitable non degenerate probability measure µ on the Sobolev space H s (T 3 ) such that µ(H s ′ (T 3 )) = 0 for every s ′ > s . One proves more than Theorem 1 in [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF], [START_REF] Oh | Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R 3[END_REF], [START_REF] Sun | Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three[END_REF] but the statement of Theorem 1 is the suitable one for our purpose here.

Theorem 1 is inspired by the seminal contribution of Bourgain [START_REF] Bourgain | Invariant measures for the 2d-defocusing nonlinear Schrödinger equation[END_REF]. There are however several new features with respect to [START_REF] Bourgain | Invariant measures for the 2d-defocusing nonlinear Schrödinger equation[END_REF]. The first one is that more general randomisations compared to [START_REF] Bourgain | Invariant measures for the 2d-defocusing nonlinear Schrödinger equation[END_REF] are allowed. This led to results similar to Theorem 1 in the context of a non compact spatial domains (see e.g. [START_REF] Benyi | On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on R d , d ≥ 3[END_REF], [START_REF] Lührmann | Random data Cauchy theory for nonlinear wave equations of power-type on R 3[END_REF]). Next, the argument allowing to pass from local to global solutions in Theorem 1 is very different from [START_REF] Bourgain | Invariant measures for the 2d-defocusing nonlinear Schrödinger equation[END_REF]. It is based on a probabilistic energy estimate introduced in [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF] (see also [START_REF] Colliander | Almost sure local well-posedness of the cubic NLS below L 2[END_REF]) while the argument giving the globalisation of the local solutions in [START_REF] Bourgain | Invariant measures for the 2d-defocusing nonlinear Schrödinger equation[END_REF] is restricted to a very particular distribution of the initial data. Finally, Theorem 1 deals with functions of positive Sobolev regularity which avoids a renormalization of the equation, making the results more natural from a purely PDE perspective.

Strictly speaking, the result of Theorem 1 is not stated as such in [START_REF] Burq | Probabilistic well-posedness for the cubic wave equation[END_REF], [START_REF] Oh | Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R 3[END_REF], [START_REF] Sun | Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three[END_REF]. One may however adapt the argument presented in [Tz] which proves Theorem 1 for σ = 1 to the case of

σ ∈ [1, 2].
The regularization by convolution used in Theorem 1 is essential. We refer to [Tz, Xia] for results showing that other regularizations of (f, g) ∈ Σ may give divergent sequences of smooth solutions.

The main result of this paper is that even if we naturally regularize the data by convolution, there is a dense set of (pathological) initial data giving not converging smooth solutions. This is in some sense a complementary to Theorem 1 result.

In order to state our result, we fix a bump function

ρ ∈ C ∞ c (R 3 ) such that 0 ≤ ρ(x) ≤ 1, ρ| |x|> 1 100 ≡ 0, R 3 ρ(x)dx = 1.
For any ǫ > 0, we define ρ ǫ (x) := ǫ -3 ρ(x/ǫ). With this notation, we have the following statement.

Theorem 2. Let 1 2 ≤ σ ≤ 2 and max{0, 3 2 -2 2σ-1 } < s < s c = 3 2 -1 σ .
There exists a dense set S ⊂ H s (T 3 ), such that for every (f, g) ∈ S, the family of global smooth solutions (u ǫ ) t>0 of (1.1) with initial data (ρ ǫ * f, ρ ǫ * g) does not converge. More precisely,

lim sup ǫ→0 u ǫ (t) L ∞ ([0,1];H s (T 3 )) = +∞.
(1.2)

Remark 1.1. Furthermore, when σ ≥ 1 (including the cubic nonlinearity), we are able to show that

lim ǫ→0 u ǫ (t) L ∞ ([0,1];H s )(T 3 ) = +∞. (1.3) See Remark 2.3.
It turns out that as a consequence of Theorem 2, the pathological set

P := {(f, g) ∈ H s (T 3 ) : the solution u ǫ (t) of (1.1) with initial data ρ ǫ * (f, g),
satisfies the property lim sup

ǫ→0 u ǫ (t) L ∞ ([0,1];H s (T 3 )) = +∞ } contains a dense G δ set:
Corollary 1.2. Under the same condition as Theorem 2, the pathological data set P of (1.1) such that (1.2) holds contains a dense G δ subset of H s (T 3 ).

Consequently, by the Baire category theorem, the good data set Σ in Theorem 1 cannot be G δ . On the other hand, the pathological set is negligible with respect to the measures used in the probabilistic well-posedness of (1.1). This shows that the topological and the measure theoretic notions of genericity are very different. For examples of G δ dense sets giving solutions of Hamiltonian PDE's with growing Sobolev norms for large times, we refer to [START_REF] Gérard | The cubic Szegö equation and Hankel operators[END_REF], [START_REF] Gérard | Generic colourful tori and inverse spectral transform for Hankel operators[END_REF], [Ha], while in Corollary 1.2, the Sobolev norms are growing in very short times, depending on the frequency localization of the initial data.

The main ingredient of the proof of Theorem 2 is a refined version of the ill-posedness construction in [START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local theory[END_REF] (see also [START_REF] Sun | New examples of probabilistic well-posedness for nonlinear wave equations[END_REF]) which uses an idea of Lebeau [Le01] exploiting the property of the finite propagation speed of the wave equation. It is an interesting problem to extend the result of Theorem 2 to the case of the nonlinear Schrödinger equation. Such a result would be a significant extension of [START_REF] Alazard | Loss of regularity for supercritical nonlinear Schrödinger equations[END_REF].

The results of Theorem 1 and Theorem 2 show that for data of supercritical regularity two opposite behaviours coexiste. Both behaviours are manifested on dense sets which makes that it would be probably interesting to try to observe these behaviours by numerical simulations.

It can be shown that V (t) is periodic (see Lemma 6.2 of [START_REF] Sun | New examples of probabilistic well-posedness for nonlinear wave equations[END_REF]). We choose the following parameters:

κ n = (log n) -δ 1 , ǫ n = 1 100n , t n = (log n) δ 2 n -3 2 -s σ , λ n = (κ n n 3 2 -s ) σ , (2.2) 
where 0 < δ 1 < δ 2 < 1 and their precise values are to be chosen according to different context.

Take ϕ ∈ C ∞ c (|x| ≤ 1), radial, 0 ≤ ϕ ≤ 1, and ∇ϕ = 0 on 0 < |x| < 1. Let v n (0, x) := κ n n 3 2 -s ϕ(nx), v ǫ n (0) := ρ ǫ * v n (0). (2.3) Define v ǫ n (t, x) = v ǫ n (0, x)V (t(v ǫ n (0, x)) σ ). (2.4) Then one verifies that v ǫ n solves ∂ 2 t v ǫ n + |v ǫ n | 2σ v ǫ n = 0, (v ǫ n , ∂ t v ǫ n )| t=0 = (v ǫ n (0), 0). (2.5) Lemma 2.1. Let 0 ≤ s < s c , then for parameters defined in (2.2), (1) v ǫn n (t n ) H s (T 3 ) κ n (λ n t n ) s . (2) v ǫn n (t) H k (T 3 ) κ n (λ n t n ) k n k-s , for k = 0, 1, 2, 3, • • • and t ∈ [0, t n ]. (3) v ǫn n (t) L ∞ (T 3 ) λ 1 σ n . (4) ∂ α v ǫn n (t) L ∞ (T 3 ) λ 1 σ n n |α| (1 + λ n t), for α ∈ N 3 , |α| = 1 and t ∈ [0, t n ].
Proof. The proof follows from a direct calculation as in [START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local theory[END_REF], with an additional attention to the convolution. We denote by T λ , the scaling operator T λ (f ) := f (λ•). Without loss of generality, we will do all the computation in R 3 instead of T 3 , since all the functions involved are compactly supported near the origin.

By definition, for

α ∈ N 3 , |α| = k, v ǫn n (0, x) = λ 1 σ n R 3 ϕ(n(x -y)) 1 ǫ 3 n ρ y ǫ n dy, ∂ α v ǫn n (0, x) = λ 1 σ n n k R d T n (∂ α ϕ)(x -y) 1 ǫ 3 n ρ y ǫ n dy.
Using Young's convolution inequality, we have from (2.4) that

∂ α v ǫn n (0) L ∞ λ 1 σ n n |α| , ∂ α v ǫn n (0) L 2 κ n n |α|-s , v ǫn n (t) L ∞ λ 1 σ n , and v ǫn n (t) L 2 ≤ V L ∞ v ǫn n (0) L 2 κ n n -s
. This proves (2) and (3) for the case k = 0. From direct calculation using (2.4),

∇v ǫn n (t, x) =σt(v ǫn n (0, x)) σ ∇v ǫn n (0, x)V ′ t(v ǫn n (0, x)) σ + ∇v ǫn n (0, x)V t(v ǫn n (0, x)) σ . (2.6) Thus ∇v ǫn n (t) L ∞ (λ n t + 1)λ 1 σ n n. Note that λ n t n = (log n) σ(δ 2 -δ 1 ) ≫ 1, the dominant part in ∂ α v ǫn n (t, x) comes from (v ǫn n (0)) σ-1 ∇v ǫn n (0) |α| t |α| v ǫn n (0)V (|α|) (•), if we estimate t by t n , hence v ǫn n (t) H k κ n (λ n t n ) k n k-s , for all k = 0, 1, 2, • • • .
This proves (2). The only non-trivial part is (1). Since 0 < s < 1, from the interpolation

v ǫn n (t) H 1 v ǫn n (t) 1 2-s H s v ǫn n (t) 1-s 2-s H 2
and the upper bound of v ǫn n (t) H 2 that we have proved, it suffices to show that

v ǫn n (t n ) H 1 κ n (λ n t n )n 1-s . (2.7)
It is reduced to get a lower bound for the dominant part

σt n v ǫn n (0, x) σ ∇v ǫn n (0, x)V ′ t n (v ǫn n (0, x)) σ L 2 =σt n nλ 1+ 1 σ n (T n (∇ϕ)) * ρ ǫn (T n (ϕ)) * ρ ǫn σ V ′ λ n t n ((T n ϕ) * ρ ǫn ) σ L 2 (2.8) Note that (T n f ) * ρ ǫn (x) = f (nx -nǫ n y)ρ(y)dy, hence (RHS. of (2.8)) ∼ t n n 1-3 2 λ 1+ 1 σ n ∇(ϕ * ρ) • (ϕ * ρ) σ V ′ λ n t n (nǫ n ) -3σ (ϕ * ρ) σ (x) L 2 ,
where ρ = T 1 nǫn ρ = T 100 ρ and we used nǫ n = 1 100 . Note that t n n 1-3 2 λ

1+ 1 σ n = λ n t n n 1-s , hence (2.7) follows from the following lemma: Lemma 2.2. Assume that ψ ∈ C ∞ c (R d
) and ψ(x) > 0 for all |x| < 1. Assume that there exist two constants 0 < a < b < 1, such that dψ = 0 on {x : a ≤ |x| ≤ b}. Let W be a non-trivial periodic function (i.e. W = 0). Then there exist c 0 > 0, λ 0 > 0, such that for all λ ≥ λ 0 ,

∇ψ(x)|ψ(x)| σ W (λψ(x)) L 2 (R d ) ≥ c 0 > 0.
Proof. We follow the geometric argument in [START_REF] Sun | New examples of probabilistic well-posedness for nonlinear wave equations[END_REF]. Denote by C a,b := {x : a ≤ |x| ≤ b}. By shrinking a, b if necessary, we may assume that ψ(C a,b ) is foliated by Σ s := {x : ψ(x) = s}. From the hypothesis on ψ, there exist 0

< c 1 < C 1 < ∞, such that c 1 ≤ |∇ψ| ≤ C 1 on C a,b . Let B = max C a,b ψ and A = min C a,b ψ, then we have for F (s) = |s| 2σ |W (λs)| 2 that ∇ψ(F • ψ) 1/2 2 L 2 ≥ c 2 1 C a,b F (ψ(x))dx.
By the co-area formula,

C a,b F (ψ(x))dx = B A F (s)ds Σs dσ Σs |∇ψ| ≥ c ′ B A |s| 2σ |W (λs)| 2 ds,
thanks to the fact that the mapping s → M d-1 (Σ s ) is continuous, where M d-1 is the surface measure on Σ s . By changing variables, we obtain that

B A |s| 2σ |W (λs)| 2 ds = 1 λ 2σ+1 λB λA |s| 2σ |W (s)| 2 ds ≥ C A,B 1 λ(B -A) λB λA |W (s)| 2 ds ≥ C ′ A,B ,
where the last constant does not depend on λ, if λ is large enough. This completes the proof of Lemma 2.2.

The proof of Lemma 2.1 is now complete.

Remark 2.3. When σ ≥ 1, the statements of Lemma 2.1 hold for all ǫ ≤ ǫ 2 n . Indeed, all the inequalities hold automatically for ǫ ≤ ǫ 2 n , except for (1), the lower bound of v ǫ n (t n ) H s (T 3 ) . To get (1), it suffices to prove (2.7) when replacing ǫ n by ǫ ≤ ǫ 2 n . It is then reduced to show that

(T n ∇ϕ)(T n ϕ) σ V ′ (λ n t n (T n ϕ) σ ) -(T n ∇ϕ) * ρ ǫ • (T n ϕ * ρ ǫ ) σ V ′ (λ n t n (T n ϕ * ρ ǫ ) σ ) L 2 ≤o(n -3 2 ), (2.9)
as n → ∞. Note that

T n ∇ * ρ ǫ L ∞ + T n ϕ * ρ ǫ L ∞ 1, V (k) (λ n t n (T n ϕ * ϕ ǫ )) L ∞ 1,
for k = 1, 2, with constants independent of ǫ. By taking the Fourier transform, for any Schwartz function F , uniformly in ǫ ≤ ǫ 2 n , we have

T n F -T n F * ρ ǫ L 2 ≤ n -3 2 ( ρ(nǫξ) -ρ(0)) F (ξ) L 2 = o(n -3 2 ), n → ∞,
thanks to the dominated convergence theorem. Together with the fact σ ≥ 1 and the mean value theorem, we obtain (2.9). The above argument, combed with slight modifications of the analysis below, allows us to prove (1.3).

2.2. Perturbative analysis.

Fix (u 0 , u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3 ), denote by u ǫn n the solution of ∂ 2 t u ǫn n -∆u ǫn n + |u ǫn n | 2σ u ǫn n = 0 with the initial data (u ǫn n (0), ∂ t u ǫn n (0)) = ρ ǫn * (u 0 , u 1 ) + (v n (0), 0)
, where v n (0) is given by (2.3). We denote by

S(t)(f, g) := cos(t √ -∆)f + sin √ -∆ √ -∆ g
the propagator of the linear wave equation.

Proposition 2.4. Assume that max 3 2 -2 2σ-1 , 0 ≤ s < s c = 3 2 -1 σ , then for any 0 < θ < σ 2 3 2 -s -1 2 and (u 0 , u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3
), there exist C > 0, δ 2 > 0, such that for any δ 1 ∈ (0, δ 2 ), we have

sup t∈[0,tn] u ǫn n (t) -ρ ǫn * S(t)(u 0 , u 1 ) -v ǫn n (t) H ν (T 3 ) ≤ Cn (ν-s)-θ , ∀ν = 0, 1, 2,
where the function v ǫn n (t) is defined in (2.4) with parameters as in (2.2), and the constant C only depends on the smooth data (u 0 , u 1 ) and θ > 0. Consequently, we have

sup t∈[0,tn] u ǫn n (t) -ρ ǫn * S(t)(u 0 , u 1 ) -v ǫn n (t) H s (T 3 ) ≤ Cn -θ .
In particular, for δ 1 sufficiently small,

u ǫn n (t n ) H s (T 3 ) (log n) sσ(δ 2 -δ 1 )-δ 1 → ∞, as n → ∞.
Proof. Denote by u ǫn L (t) = ρ ǫn * S(t)(u 0 , u 1 ) the linear solution with regularized data ρ ǫn * (u 0 , u 1 ) 1 . Then for k = 0, 1, 2, 3,

∇ k u ǫn L (t) L ∞ (T 3 ) 1, (2.10)
uniformly in n, where the implicit constant depends only on finitely many norms of the smooth linear solution S(t)(u 0 , u 1 ).

Denote by f

(v) = |v| 2σ v. Consider the difference w n = u ǫn n -u ǫn L -v ǫn n , it satisfies the equation ∂ 2 t w n -∆w n = ∆v ǫn n -f (v ǫn n + u ǫn L + w n ) -f (v ǫn n ) , (w n , ∂ t w n )| t=0 = 0.
1 Since we work on T 3 , the convolution ρǫ commutes with free propagators cos(t √ -∆) and sin(t

√ -∆) √ -∆
. For the wave equation on general manifolds, one should take the linear solution as S(t)(ρǫ n * (u0, u1)).

Define the semi-classical energy for w n as in [BTz08]

E n (t) := 1 n 2(1-s) ∂ t w n (t) 2 L 2 (T 3 ) + ∇w n (t) 2 L 2 (T 3 ) + 1 n 2(2-s) ∂ t w n (t) 2 H 1 (T 3 ) + ∇w n (t) 2 H 1 (T 3 ) .
(2.11)

Here the second line in (2.11) is needed since we need to use it to control the L ∞ norm of w n .

Let

F n (t) = -∆v ǫn n + f (v ǫn n + u L + w n ) -f (v ǫn n ).
From the energy estimate for the inhomogeneous linear wave equation, we have 1 2

d dt E n (t) ≤Cn -(1-s) n -(1-s) ∂ t w n (t) L 2 (T 3 ) F n (t) L 2 (T 3 ) +Cn -(2-s) n -(2-s) ∂ t w n (t) H 1 (T 3 ) F n (t) H 1 (T 3 ) ,
and this implies that

d dt (E n (t)) 1/2 ≤ C n -(1-s) F n (t) L 2 (T 3 ) + n -(2-s) F n (t) H 1 (T 3 ) .
(2.12)

To simplify the notation, we denote by

e n (t) := sup 0≤τ ≤t E n (t) 1 2 .
Our goal is to show that sup t∈[0,tn] e n (t) n -θ . Write

G n (t) := f (v ǫn n + u ǫn L + w n ) -f (v ǫn n ), from Lemma 2.1, we have, for t ∈ [0, t n ] that F n (t) L 2 (T 3 ) κ n (λ n t n ) 2 n 2-s + G n (t) L 2 (T 3 ) .
(2.13) By the Taylor expansion,

|G n | (|u ǫn L | + |w n |)(|v ǫn n | 2σ + |u ǫn L | 2σ + |w n | 2σ ), hence G n (t) L 2 (T 3 ) w n (t) L 2 (T 3 ) 1 + v ǫn n (t) 2σ L ∞ (T 3 ) + w n (t) 2σ L ∞ (T 3 ) + v ǫn n (t) L 2 (T 3 ) v ǫn n (t) 2σ-1 L ∞ (T 3 ) ,
where we used (2.10). By writing

w n (t, x) = t 0 ∂ t w n (τ, x)dτ (since w n (0, •) = 0), we obtain that G n (t) L 2 (T 3 ) t 0 ∂ t w n (τ ) L 2 (T 3 ) dτ • 1 + v ǫn n (t) 2σ L ∞ (T 3 ) + w n (t) 2σ L ∞ (T 3 ) + v ǫn n (t) L 2 (T 3 ) v ǫn n (t) 2σ-1 L ∞ (T 3 ) + 1 tn 1-s e n (t)(λ 2 n + w n (t) 2σ L ∞ (T 3 ) ) + κ n λ 2-1 σ n n -s , (2.14)
where we have used Lemma 2.1 to control v ǫn n (t) L ∞ . Similarly, for t ∈ [0, t n ], we have

∇F n (t) L 2 (T 3 ) κ n (λ n t n ) 3 n 3-s + ∇G n (t) L 2 (T 3 ) .
(2.15)

We need to estimate w n (t) L ∞ (T 3 ) . From the Gagliardo-Nirenberg inequality,

w n (t) L ∞ (T 3 ) w n (t) 3 4 H 2 (T 3 ) w n (t) 1 4 L 2 (T 3 ) (n 2-s e n (t)) 3 4 (te n (t)n 1-s ) 1 4 = t 1 4 n 7 4 -s e n (t), (2.16)
where we used w n (t) = t 0 ∂ t w n (τ, •)dτ again. Since t ≤ t n = (log n) σδ 2 n -3 2 -s σ and σ 3 2s > 1, we have

w n (t) L ∞ (T 3 ) n 3 2 -s e n (t).
(2.17) Therefore,

n -(1-s) F n (t) L 2 (T 3 ) κ n (λ n t n ) 2 n + κ n (κ n n 3 2 -s ) 2σ-1 n -1 + t n e n (t) (κ n n 3 2 -s ) 2σ + (n 3 2 -s e n (t)) 2σ (log n) 2σ(δ 2 -δ 1 )-δ 1 n + (log n) -2σδ 1 n (2σ-1) 3 2 -s -1 +n 3 2 -s σ e n (t) (log n) σ(δ 2 -2δ 1 ) + (log n) σδ 2 (e n (t)) 2σ . Since s > 3 2 -2 2σ-1 , we have (2σ -1) 3 2 -s -1 < 1, thus n -(1-s) F n (t) L 2 (T 3 ) (log n) σ(2δ 2 -3δ 1 ) n + (log n) σδ 2 n 3 2 -s σ e n (t)(1 + (e n (t)) 2σ ).
(2.18)

Next we estimate |∇G n | as

|∇G n | |∇v ǫn n | 1 + |v ǫn n | 2σ-1 + |w n | 2σ-1 1 + |w n | + 1 + |v ǫn n | 2σ + |w n | 2σ 1 + |∇w n |
, where the implicit constants are independent of n, thanks to (2.10). To estimate the L 2 norm of ∇G n , we organize the terms as

∇v ǫn n (1 + |v ǫn n | 2σ-1 + |w n | 2σ-1 )w n L 2 ≤ w n L 2 ∇v ǫn n L ∞ 1 + v ǫn n 2σ-1 L ∞ + w n 2σ-1 L ∞ , (1 + |v ǫn n | 2σ + |w n | 2σ )∇w n L 2 ≤ ∇w n L 2 1 + v ǫn n 2σ L ∞ + w n 2σ L ∞ , ∇v ǫn n (1 + |v ǫn n | 2σ-1 + |w n | 2σ-1 ) L 2 ≤ ∇v ǫn n L 2 1 + v ǫn n 2σ-1 L ∞ + w n 2σ-1 L ∞ , (1 + |v ǫn n | 2σ + |w n | 2σ ) L 2 ≤ 1 + v ǫn n 2σ-1 L ∞ v ǫn n L 2 + w n 2σ-1 L ∞ w n L 2 .
Putting them together and using

w n (t) H k (T 3 ) = t 0 ∂ t w n (τ )dτ H k (T 3 ) ≤ n 1+k-s te n (t), k = 0, 1, (2.19) we have n -(2-s) ∇G n (t) L 2 (T 3 ) (log n) σδ 2 n 3 2 -s σ e n (t) 1 + (e n (t)) 2σ +(log n) σ(δ 2 -δ 1 ) n (2σ-1) 3 2 -s -1 1 + (e n (t)) 2σ-1 (log n) σδ 2 n 3 2 -s σ e n (t) 1 + (e n (t)) 2σ + (log n) σδ 2 n(1 + e n (t) 2σ-1 ).
(2.20)

We observe that

de n dt ≤ d dt (E n (t)) 1/2 .
Therefore,

de n dt ≤ (log n) 3σδ 2 n + (log n) σδ 2 n σ 3 2 -s e n (t) 1 + (e n (t)) 2σ .
(2.21)

By the Grownwall type argument, we obtain

e n (t) ≤ n 1-σ 3 2 -s (log n) 3σδ 2 e (log n) 2σδ 2 , ∀t ∈ [0, t n ]. Since 1 < σ 3 2 -s , for any 0 < θ < σ 2 3 2 -s -1 2
, we can choose δ 2 > 0 sufficiently small, such that the right hand side is smaller than n -θ . Consequently, from (2.19),

w n (t) L 2 (T 3 ) ≤ n 1-s e n (t)t n 1-s-3 2 -s σ (log n) δ 2 σ n -θ n -s-θ , ∀t ≤ t n .
Finally, the bound for the H s norm of w n (t) follows from the interpolation. This completes the proof of Proposition 2.4.

Proof of the main theorem

First we recall the following property of finite propagation speed for the wave equation.

Lemma 3.1. Let w 1 , w 2 be two C ∞ solutions of the nonlinear wave equation

∂ 2 t w -∆w + |w| 2σ w = 0.
If the initial data (w

1 (0), ∂ t w 1 (0)), (w 2 (0), ∂ t w 2 (0)) coincide on the ball B(x 0 , r 0 ) ⊂ R d , then for 0 ≤ t < r 0 , (w 1 (t), ∂ t w 1 (t)) = (w 2 (t), ∂ t w 2 (t)) on B(x 0 , r 0 -t).
Proof. Without loss of generality, we may assume that x 0 = 0. Take the difference u = w 1w 2 , then

∂ 2 t u -∆u + u = V (t, x)u,
where

V (t, x) = (2σ + 1) 1 0 |(1 -λ)w 1 (t, x) + λw 2 (t, x)| 2σ dλ + 1 ∈ L ∞ loc .
For 0 ≤ t 1 < t 2 < r 0 , denote by C t 1 ,t 2 (r 0 ) := {(t, x) : t 1 ≤ t ≤ t 2 , |x| ≤ r 0 -t}. Define the local energy density

e(t, x) := 1 2 (|∇u(t, x)| 2 + |∂ t u(t, x)| 2 + |u(t, x)| 2 ).
Then a direct calculation yields

C 0,t 0 (r 0 ) ∂ t u(∂ 2 t -∆ + 1)udxdt = t 0 0 |x|≤r 0 -t d dt e(t, x)dxdt - t 0 0 |x|=r 0 -t ∂ t u∂ r udσ(x)dt, where ∂ r u = x |x| • ∇u and r = |x|. Notice that d dt 1 |x|≤r 0 -t = -δ |x|=r 0 -t , we have C 0,t 0 (r 0 ) ∂ t u(∂ 2 t -∆ + 1)udxdt = |x|≤r 0 -t e(t, x)dx t=t 0 t=0 + t 0 0 |x|=r 0 -t 1 2 |∂ t u -∂ r u| 2 + |u| 2 dσ(x)dt ≥ |x|≤r 0 -t e(t, x)dx t=t 0 t=0 .
Using the equation ∂ 2 t u -∆u + u = V u, we have

E(t 0 ) ≤ E(0) + C 0,t 0 (r 0 ) V u • ∂ t udxdt ≤ E(0) + V L ∞ ([0,r 0 ]×B(0;r 0 )) t 0 0 E(t)dt,
for all 0 ≤ t 0 < r 0 , where E(t) = |x|≤r 0 -t e(t, x)dx is the local energy. Since E(0) = 0, from Gronwall's inequality, we deduce that E(t) ≡ 0 for all 0 ≤ t < r 0 . This completes the proof of Lemma 3.1.

To prove Theorem 2, we need to do some preparations. We use the coordinate system x = (x 1 , x ′ ) near the origin. Let z k = (z k 1 , 0) with z k 1 = 1 k . Let n k = e e k , and define

v 0,k (x) := (log n k ) -δ 1 n 3 2 -s k ϕ(n k (x 1 -z k 1 ), n k x ′ ) = v n k (0, • -z k )
, where v n (0) is the initial data of the ill-posed profile defined in (2.3). Note that there exists k 0 , such that for all k ≥ k 0 , the supports of v 0,k are pairwise disjoint. Moreover, for

k 0 ≤ k 1 < k 2 , dist supp(v 0,k 1 ), supp(v 0,k 2 ) ∼ 1 k 1 - 1 k 2 .
Denote by B k = B(z k , r k ), where r k = 1 k 3 . With sufficiently large k 0 , the balls B k , k ≥ k 0 are mutually disjoint. Moreover, supp(ρ

ǫn k * v 0,k ) ⊂ B k (recall that ǫ n k = 1 100n k ). Another simple observation is that dist supp(ρ ǫn k * (v 0 -v 0,k )), B k 1 k 2 , where v 0 = k≥k 0 v 0,k ∈ H s (T 3 ).
In particular, for any (f, g)

∈ C ∞ × C ∞ , ρ ǫn k * ((f, g) + (v 0 , 0)) coincides with ρ ǫn k * ((f, g) + (v 0,k , 0)) on B k . Let B k = B(z k , r k /3
) be a slightly smaller ball. We observe that for k large enough,

supp(ρ ǫn k * v 0,k ) ⊂ B k .
Now we are able to prove Theorem 2.

Proof of Theorem 2. Define

S = C ∞ (T 3 ) × C ∞ (T 3 ) + ∞ k=k 1 v 0,k , 0 : k 1 ≥ k 0 . Using ∞ k=k 1 v 0,k H s (T 3 ) ≤ ∞ k=k 1 v 0,k H s (T 3 ) ≤ ∞ k=k 1 e -kδ 1 → 0 as k 1 → ∞,
we deduce S is dense in H s (T 3 ). Now fix (f, g) ∈ S. Then by definition, there exists (u 0 , u

1 ) ∈ C ∞ ×C ∞ and k 1 ≥ k 0 , such that (f, g) = (u 0 , u 1 ) + ∞ k=k 1 v 0,k , 0 .
Our goal is to show that, for any N > 0 and any δ > 0, there exist τ N ∈ [0, 1] and 0 < ǫ < δ, such that the solution u ǫ to (1.1) with initial data ρ ǫ * (f, g) satisfies

u ǫ (τ N ) H s (T 3 ) > N. (3.1)
First we choose k ≥ k 1 , large enough, such that

κ n k (λ n k t n k ) s > N, ǫ k = 1 100n k < δ.
This can be achieved by choosing δ 1 < δ 2 such that sσ(δ 2δ 1 ) > δ 1 . Recall that the parameters κ n k = e -kδ 1 , λ n k t n k = e (δ 2 -δ 1 )kσ are given by (2.2). Let u k be the solution of (1.1) with the initial data ρ ǫn k * (u 0 , u 1 ) + ρ ǫn k * (v 0,k , 0). Let v k be the solution of

∂ 2 t v k + | v k | 2σ v k = 0 with the initial data ρ ǫn k * (v 0,k , 0). We remark that v k , u k are just v ǫn k n k , u ǫn k n k in Proposition 2.4 up to translation. In particular, u k (t n k ) H s (T 3 ) (log n k ) sσ(δ 2 -δ 1 )-δ 1 , (3.2) and u k (t n k ) -ρ ǫn k * S(t n k )(u 0 , u 1 ) -v k (t n k ) H s (T 3 ) n -θ k . (3.3) We have that supp( v k (t)) ⊂ B k for all t ∈ [0, t n k ]. Now we apply Lemma 3.1 to u k and u ǫn k . Since at t = 0, (u ǫn k (0), ∂ t u ǫn k (0))| B k = ( u k (0), ∂ t u k (0))| B k , we deduce that (u ǫn k (t), ∂ t u ǫn k (t))| B(z k ,r k -t) = ( u k (t), ∂ t u k (t))| B(z k ,r k -t) , ∀0 ≤ t < r k .
In particular, for large k,

(u ǫn k (t), ∂ t u ǫn k (t))| B(z k ,r k /2) = ( u k (t), ∂ t u k (t))| B(z k ,r k /2) , ∀t ∈ [0, t n k ]. (3.4) Lemma 3.2. Assume that s 1 ≥ 0. Let u ∈ H s 1 (T 3 ) and χ ∈ C ∞ c (T 3
). Then there exists A > 0, depending only on the function χ and s 1 , such that for any R ≥ 1

(1 -χ(Rx))u H s 1 (T 3 ) + χ(Rx)u H s 1 (T 3 ) ≤ AR s 1 u H s 1 (T 3 ) .
Proof. First for s 1 ∈ N, the proof follows from the direct calculation. For general s 1 ≥ 0, the conclusion follows from the interpolation.

Take χ ∈ C ∞ c (R 3 ), such that χ(x) ≡ 1 if |x| < 1 3 and χ ≡ 0 if |x| ≥ 1 2 . Define χ k (x) := χ((x-z k )/r k ), hence χ k | B k ≡ 1 and χ k | (B(z k ,r k /2)) c ≡ 0. Then (3.4) is translated to χ k (x)(u ǫn k (t), ∂ t u ǫn k (t)) = χ k (x)( u k (t), ∂ t u k (t)), ∀t ∈ [0, t n k ].
From Lemma 3.2,

u ǫn k (t n k ) H s (T 3 ) r s k χ k u ǫn k (t n k ) H s (T 3 ) ∼ (log log n k ) -3s χ k (x) u k (t n k ) H s (T 3 ) . Therefore, χ k (x) u k (t n k ) H s (T 3 ) ≥ u k (t n k ) H s (T 3 ) -(1 -χ k ) u k (t n k ) H s (T 3 ) = u k (t n k ) H s (T 3 ) -(1 -χ k )( u k (t n k ) -v k (t n k )) H s (T 3 ) ,
where in the last equality, we use the fact that (1χ k ) v k (t n k ) = 0, thanks to the support property of v k . Therefore, we have

u ǫn k (t n k ) H s (T 3 ) (log log n k ) -3s u k (t n k ) H s (T 3 ) -(log log n k ) -3s (1 -χ k )ρ ǫn k * S(t n k )(u 0 , u 1 ) H s (T 3 ) -(log log n k ) -3s (1 -χ k ) u k (t n k ) -ρ ǫn k * S(t n k )(u 0 , u 1 ) -v k (t n k ) H s (T 3 ) .
(3.5) Applying Lemma 3.2 again, we have u ǫn k (t n k ) H s (T 3 ) (log log n k ) -3s (log n k ) sσ(δ 2 -δ 1 )-δ 1ρ ǫn k * S(t n k )(u 0 , u 1 ) H s (T 3 )n -θ k . (3.6) Since ρ ǫn k * S(t n k )(u 0 , u 1 ) H s (T 3 ) 1, uniformly in ǫ n k , by choosing δ 1 > 0 small such that sσ(δ 2δ 1 )δ 1 > 0, the left hand side of (3.6) tends to +∞ as k → ∞. This completes the proof of Theorem 2. 

Finally, we prove Corollary 1 . 2 :

 12 Recall the definition of the pathological set: P := {(f, g) ∈ H s (T 3 ) : the solution u ǫ (t) of (1.1) with initial data ρ ǫ * (f, g), satisfies the property lim supǫ→0 u ǫ (t) L ∞ ([0,1];H s (T 3 )) = +∞ }.For simplicity, below we will denote u ǫ (t) = Φ(t)(ρ ǫ * (f, g)) the solution of (1.1) with initial data ρ ǫ * (f, g). Obviously, the setO := {(f, g) ∈ H s (T 3 ) : lim sup k→∞ Φ(t)(ρ ǫn k * (f, g)) L ∞ ([0,1];H s (T 3 )) = ∞} is contained in P. From the proof of Theorem 2 in the last paragraph, S ⊂ O, hence O is dense. It remains to show that O is a G δ set, that is, a countable intersection of open sets. Note that O = ∞ N =1 O N ,whereO N := {(f, g) ∈ H s (T 3 ) : lim sup k→∞ Φ(t)(ρ ǫn k * (f, g)) L ∞ ([0,1];H s (T 3 )) > N }.By definition,O N = ∞ k 0 =1 k=k 0 O N,k , where O N,k := {(f, g) ∈ H s (T 3 ) : Φ(t)(ρ ǫn k * (f, g)) L ∞ ([0,1];H s (T 3 )) > N }.It suffices to show that, for fixed N, k, O N,k is an open set. Indeed, pick (f 0 , g 0 ) ∈ O N,k , denote byr 0 := Φ(t)(ρ ǫn k * (f 0 , g 0 )) L ∞ ([0,1];H s (T 3 )) -N > 0.From the inequalityρ ǫn k * (f, g) H 2 (T 3 ) ≤ Cǫ -(2-s) n k (f, g) H s (T 3 ) ,the Sobolev embedding H 2 (T 3 ) ֒→ L ∞ (T 3 ), and the global well-posedness theory in H 2 (T 3 ),we deduce that there exists a uniform constant C 0 > 0, such that supt∈[0,1] Φ(t)(ρ ǫn k * (f 0 , g 0 )) -Φ(t)(ρ ǫn k * (f, g)) H 1 (T 3 ) (3.7) ≤C 0 ǫ -(2-s)(2σ+1) n k ( (f 0 , g 0 ) 2σ H s (T 3 ) + (f, g) 2σ H s (T 3 ) ) (ff 0 , gg 0 ) H s (T 3 ) . f 0 , g 0 ) 2σ H s (T 3 ) + (f, g) 2σ H s (T 3 ) ) -1 , then if (f, g) -(f 0 , g 0 ) H s (T 3 ) < δ,by (3.7) we deduce that Φ(t)(ρ ǫn k * (f, g)) H s (T 3 ) > N. This shows that O N,k is open. The proof of Corollary 1.2 is now complete.
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