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CONCERNING THE PATHOLOGICAL SET IN THE CONTEXT OF

PROBABILISTIC WELL-POSEDNESS

CHENMIN SUN AND NIKOLAY TZVETKOV

Abstract. We prove a complementary result to the probabilistic well-posedness for the nonlinear wave

equation. More precisely, we show that there is a dense set S of the Sobolev space of super-critical

regularity such that (in sharp contrast with the probabilistic well-posedness results) the family of global

smooth solutions, generated by the convolution with some approximate identity of the elements of S,

does not converge in the space of super-critical Sobolev regularity.

Résumé. On démontre un résultat complémentaire à ceux manifestant le caractère bien posé

probabiliste de l’équation des ondes avec des données initiales de régularité de Sobolev super critique

par rapport au changement d’échelle laissant invariant l’équation.

1. Introduction

In this work, we are interested in the three dimensional nonlinear wave equation{
∂2
t u−∆u+ |u|2σu = 0, (t, x) ∈ R× T3,

(u, ∂tu)|t=0 = (f, g) ∈ Hs(T3),
(1.1)

where u is a real-valued function and

Hs(T3) := Hs(T3)×Hs−1(T3).

The nonlinear wave equation (1.1) is a Hamiltonian system with conserved energy

H[u] :=
1

2

∫
T3

|∇u|2dx+
1

2σ + 2

∫
T3

|u|2σ+2dx.

It was shown (see [Gr90, SSt94]) that when σ ≤ 2, the problem (1.1) possesses a global strong solution

in the energy space H1(T3). By replacing T3 to R3, the scaling

u 7→ uλ(t, x) := λ
1
σ u(λt, λx)

keeps the equation (1.1) invariant. This leads to the critical regularity index sc = 3
2 −

1
σ ≤ 1.

Intuitively, for s < sc if the initial data is concentrated at the frequency scale � 1 and is of size 1

measured by the Hs norm, then the nonlinear part in the dynamics of (1.1) is dominant and it causes

instability of the Hs norm of the solution. This is called a norm inflation and it was extensively

studied, see [CCT03],[Le01],[Le05] in the context of nonlinear wave equations. For instance, it was

shown in [CCT03] that there exists a sequence of smooth initial data whose Hs norms converge to

zero, while the Hs norms of the obtained sequence of solutions amplifies at very short time. We also

refer to [Li93] where a different concentration phenomenon, related to the Lorentz invariance of the

wave equation, is observed.
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In [BTz08] and [BTz14], by using probabilistic tools, N. Burq and the second author showed that

problem (1.1) with cubic nonlinearity still possesses global strong solutions for a ”large class” of

functions of super-critical regularity. The result was further extended to 1 ≤ σ ≤ 2 in [OPo16] and

[SXia16]. More precisely, the following statement follows from [BTz14],[OPo16],[SXia16].

Theorem 1. Let 1 ≤ σ ≤ 2 and 1 − 1
σ < s < sc = 3

2 −
1
σ . Then there is a dense set Σ ⊂ Hs(T3)

satisfying Σ ∩ Hs′(T3) = ∅ for every s′ > s such that the following holds true. For every (f, g) ∈ Σ,

let (fn, gn) be the sequence in C∞(T3)× C∞(T3) defined by the regularization by convolution, i.e.

fn = ρn ∗ f, gn = ρn ∗ g,

where (ρn)n∈N is an approximate identity. Denote by (un(t), ∂tun(t)) the smooth solutions of (1.1)

with the smooth initial data (fn, gn). Then there exists a limit object u(t) such that for any T > 0,

lim
n→∞

∥∥(un(t), ∂tun(t))− (u(t), ∂tu(t))
∥∥
L∞([−T,T ];Hs(T3))

= 0.

Moreover u(t) solves (1.1) in the distributional sense.

When 1 ≤ σ < 2, the above theorem can be extended to s = 1 − 1
σ , thanks to [BTz14] (the case

σ = 1) and a recent result [La18](the case 1 < σ < 2).

In Theorem 1 the set Σ is a full measure set with respect to a suitable non degenerate probability

measure µ on the Sobolev space Hs(T3) such that µ(Hs′(T3)) = 0 for every s′ > s . One proves more

than Theorem 1 in [BTz14],[OPo16],[SXia16] but the statement of Theorem 1 is the suitable one for

our purpose here.

Theorem 1 is inspired by the seminal contribution of Bourgain [Bo96]. There are however several

new features with respect to [Bo96]. The first one is that more general randomisations compared to

[Bo96] are allowed. This led to results similar to Theorem 1 in the context of a non compact spatial

domains (see e.g. [BOP15], [LM14]). Next, the argument allowing to pass from local to global solutions

in Theorem 1 is very different from [Bo96]. It is based on a probabilistic energy estimate introduced in

[BTz14] (see also [CO12]) while the argument giving the globalisation of the local solutions in [Bo96] is

restricted to a very particular distribution of the initial data. Finally, Theorem 1 deals with functions

of positive Sobolev regularity which avoids a renormalization of the equation, making the results more

natural from a purely PDE perspective.

Strictly speaking, the result of Theorem 1 is not stated as such in [BTz14],[OPo16],[SXia16]. One

may however adapt the argument presented in [Tz] which proves Theorem 1 for σ = 1 to the case of

σ ∈ [1, 2].

The regularization by convolution used in Theorem 1 is essential. We refer to [Tz, Xia] for results

showing that other regularizations of (f, g) ∈ Σ may give divergent sequences of smooth solutions.

The main result of this paper is that even if we naturally regularize the data by convolution, there

is a dense set of (pathological) initial data giving not converging smooth solutions. This is in some

sense a complementary to Theorem 1 result.

In order to state our result, we fix a bump function ρ ∈ C∞c (R3) such that

0 ≤ ρ(x) ≤ 1, ρ||x|> 1
100
≡ 0,

∫
R3

ρ(x)dx = 1.
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For any ε > 0, we define ρε(x) := ε−3ρ(x/ε). With this notation, we have the following statement.

Theorem 2. Let 1
2 ≤ σ ≤ 2 and max{0, 3

2 −
2

2σ−1} < s < sc = 3
2 −

1
σ . There exists a dense set

S ⊂ Hs(T3), such that for every (f, g) ∈ S, the family of global smooth solutions (uε)t>0 of (1.1) with

initial data (ρε ∗ f, ρε ∗ g) does not converge. More precisely

lim sup
ε→0

‖uε(t)‖L∞([0,1];Hs(T3)) = +∞.

The main ingredient of the proof of Theorem 2 is a refined version of the ill-posedness construction

in [BTz08] (see also [STz19]) which uses an idea of Lebeau [Le01] exploiting the property of the finite

propagation speed of the wave equation. It is an interesting problem to extend the result of Theorem 2

to the case of the nonlinear Schrödinger equation. Such a result would be a significant extension of

[AC09].

The results of Theorem 1 and Theorem 2 show that for data of supercritical regularity two opposite

behaviours coexiste. Both behaviours are manifested on dense sets which makes that it would be

probably interesting to try to observe these behaviours by numerical simulations.

Acknowledgement. The authors are supported by the ANR grant ODA (ANR-18-CE40-0020-01).

2. Unstable profile

2.1. Explicit estimates for the ODE profile. Let V (t) be the unique solution of the following

ODE:

V ′′ + |V |2σV = 0, V (0) = 1, V ′(0) = 0. (2.1)

It can be shown that V (t) is periodic (see Lemma 6.2 of [STz19]). We choose the following parameters:

κn = (log n)−δ1 , εn =
1

100n
, tn =

(
(log n)δ2n−

(
d
2
−s
))σ

, λn = (κnn
d
2
−s)σ, (2.2)

where 0 < δ1 < δ2 < 1 and their precise values are to be chosen according to different context.

Take ϕ ∈ C∞c (|x| ≤ 1), radial, 0 ≤ ϕ ≤ 1, and ∇ϕ 6= 0 on 0 < |x| < 1. Let

vn(0, x) := κnn
d
2
−sϕ(nx), vεn(0) := ρε ∗ vn(0). (2.3)

Define

vεn(t, x) = vεn(0, x)V (t(vεn(0, x))σ). (2.4)

Then one verifies that vεn solves

∂2
t v
ε
n + |vεn|2σvεn = 0, (vεn, ∂tv

ε
n)|t=0 = (vεn(0), 0). (2.5)

Lemma 2.1. Let 0 ≤ s < sc, then for parameters defined in (2.2), we have

(1) ‖vεnn (tn)‖Hs(T3) & κn(λntn)s.

(2) ‖vεnn (t)‖Hk(T3) . κn(λntn)knk−s, for k = 0, 1, 2, 3, · · · and t ∈ [0, tn].

(3) ‖∂αvεnn (t)‖L∞(T3) . λ
1
σ
n n|α|(1 + λnt), for α ∈ N3, |α| = 0, 1 and t ∈ [0, tn].
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Proof. The proof follows from a direct calculation as in [BTz08], with an additional attention to the

convolution. We denote by Tλ, the scaling operator Tλ(f) := f(λ·). Without loss of generality, we will

do all the computation in R3 instead of T3, since all the functions involved are compactly supported

near the origin.

By definition, for α ∈ N3, |α| = k,

vεn(0, x) = λ
1
σ
n

∫
R3

ϕ(n(x− y))
1

ε3
ρ
(y
ε

)
dy, ∂αvεn(0, x) = λ

1
σ
n n

k

∫
Rd
Tn(∂αϕ)(x− y)

1

ε3
ρ
(y
ε

)
dy.

Using Young’s convolution inequality, we have from (2.4) that

‖∂αvεnn (0)‖L∞ . λ
1
σ
n n
|α|, ‖∂αvεnn (0)‖L2 . κnn

|α|−s, ‖vεnn (t)‖L∞ . λ
1
σ
n ,

and

‖vεnn (t)‖L2 ≤ ‖V ‖L∞‖vεnn (0)‖L2 . κnn
−s.

This proves (2) and (3) for the case k = 0. From direct calculation using (2.4),

∇vεnn (t, x) =σt(vεnn (0, x))σ∇vεn(0, x)V ′
(
t(vεnn (0, x))σ

)
+∇vεnn (0, x)V

(
t(vεnn (0, x))σ

)
. (2.6)

Thus ‖∇vεnn (t)‖L∞ . (λnt + 1)λ
1
σ
n n. Note that λntn = (log n)σ(δ2−δ1) � 1, the dominant part in

∂αvεnn (t, x) comes from (
(vεnn (0))σ−1∇vεnn (0)

)|α|
t|α|vεnn (0)V (|α|)(·),

if we estimate t by tn, hence ‖vεnn (t)‖Hk . κn(λntn)knk−s, for all k = 0, 1, 2, · · · . This proves (2).

The only non-trivial part is (1). Since 0 < s < 1, from the interpolation

‖vεnn (t)‖H1 . ‖vεnn (t)‖
1

2−s
Hs ‖vεnn (t)‖

1−s
2−s
H2

and the upper bound of ‖vεnn (t)‖H2 that we have proved, it suffices to show that

‖vεnn (tn)‖H1 & κn(λntn)n1−s. (2.7)

It is reduced to get a lower bound for the dominant part∥∥σtn(vεnn (0, x)
)σ∇vεnn (0, x)V ′

(
tn(vεnn (0, x))σ

)∥∥
L2

=σtnnλ
1+ 1

σ
n

∥∥[(Tn(∇ϕ)) ∗ ρεn
][

(Tn(ϕ)) ∗ ρεn
]σ
V ′
(
λntn((Tnϕ) ∗ ρεn)σ

)∥∥
L2

(2.8)

Note that (Tnf) ∗ ρεn(x) =
∫
f(nx− nεny)ρ(y)dy, hence

(RHS. of (2.8)) ∼ tnn1− d
2λ

1+ 1
σ

n

∥∥∇(ϕ ∗ ρ̃) · (ϕ ∗ ρ̃)σV ′
(
λntn(nεn)σd(ϕ ∗ ρ̃)σ(x)

)∥∥
L2 ,

where ρ̃ = T 1
nεn

ρ = T100ρ. Note that tnn
− d

2λ
1+ 1

σ
n = λntnn

1−s, hence (3.2) follows from the following

lemma:

Lemma 2.2. Assume that ψ ∈ C∞c (Rd) and ψ(x) > 0 for all |x| < 1. Assume that there exist two

constants 0 < a < b < 1, such that dψ 6= 0 on {x : a ≤ |x| ≤ b}. Let W be a non-trivial periodic

function (i.e. W 6= 0). Then there exist c0 > 0, λ0 > 0, such that for all λ ≥ λ0,∥∥∇ψ(x)|ψ(x)|σW (λψ(x))
∥∥
L2(Rd)

≥ c0 > 0.
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Proof. We follow the geometric argument in [STz19]. Denote by Ca,b := {x : a ≤ |x| ≤ b}. By

shrinking a, b if necessary, we may assume that ψ(Ca,b) is foliated by Σs := {x : ψ(x) = s}. From the

hypothesis on ψ, there exist 0 < c1 < C1 <∞, such that c1 ≤ |∇ψ| ≤ C1 on Ca,b. Let B = maxCa,b ψ

and A = minCa,b ψ, then we have for F (s) = |s|2σ|W (λs)|2 that

‖∇ψ(F ◦ ψ)1/2‖2L2 ≥ c2
1

∫
Ca,b

F (ψ(x))dx.

By the co-area formula,∫
Ca,b

F (ψ(x))dx =

∫ B

A
F (s)ds

∫
Σs

dσΣs

|∇ψ|
≥ c′

∫ B

A
|s|2σ|W (λs)|2ds,

thanks to the fact that the mapping s 7→ Md−1(Σs) is continuous, whereMd−1 is the surface measure

on Σs. By changing variables, we obtain that∫ B

A
|s|2σ|W (λs)|2ds =

1

λ2σ+1

∫ λB

λA
|s|2σ|W (s)|2ds ≥ CA,B

1

λ(B −A)

∫ λB

λA
|W (s)|2ds ≥ C ′A,B,

where the last constant does not depend on λ, if λ is large enough. This completes the proof of

Lemma 2.2. �

The proof of Lemma 2.1 is now complete. �

2.2. Perturbative analysis. Fix (u0, u1) ∈ C∞(T3)× C∞(T3), denote by uεnn the solution of

∂2
t u

εn
n −∆uεnn + |uεnn |2σuεnn = 0

with the initial data (uεnn (0), ∂tu
εn
n (0)) = ρεn ∗

(
(u0, u1) + (vn(0), 0)

)
, where vn(0) is given by (2.3). We

denote by

S(t)(f, g) := cos(t
√
−∆)f +

sin
√
−∆√
−∆

g

the propagator of the linear wave equation.

Proposition 2.3. Assume that max
{

3
2−

2
2σ−1 , 0

}
≤ s < sc = 3

2−
1
σ , then for any 0 < θ < σ

2

(
3
2−s

)
− 1

2

and (u0, u1) ∈ C∞(T3)× C∞(T3), there exist C > 0, δ2 > 0, such that for any δ1 ∈ (0, δ2), we have

sup
t∈[0,tn]

‖uεnn (t)− S(t)(u0, u1)− vεnn (t)‖Hν(T3) ≤ Cn(ν−s)−θ,∀ν = 0, 1, 2,

where the function vεnn (t) is defined in (2.4) with parameters as in (2.2), and the constant C only

depends on the smooth data (u0, u1) and θ > 0. Consequently, we have

sup
t∈[0,tn]

‖uεnn (t)− S(t)(u0, u1)− vεnn (t)‖Hs(T3) ≤ Cn−θ.

In particular, for δ1 sufficiently small,

‖uεnn (tn)‖Hs(T3) & (log n)sσ(δ2−δ1)−δ1 →∞, as n→∞.
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Proof. Denote by uL(t) = S(t)(u0, u1) the linear solution and f(v) = |v|2σv. Consider the difference

wn = uεnn − uL − vεnn , then it satisfies the equation

∂2
twn −∆wn = ∆vεnn −

(
f(vεnn + uL + wn)− f(vεnn )

)
, (wn, ∂twn)|t=0 = 0.

Define the semi-classical energy for wn as in [BTz08]

En(t) :=
1

n2(1−s)

(
‖∂twn(t)‖2L2(T3) + ‖∇wn(t)‖2L2(T3)

)
+

1

n2(2−s)

(
‖∂twn(t)‖2H1(T3) + ‖∇wn(t)‖2H1(T3)

)
.

(2.9)

Here the second line in (2.9) is needed since we need to use it to control the L∞ norm of wn.

Let Fn(t) = −∆vεnn + f(vεnn + uL +wn)− f(vεnn ). From the energy estimate for the inhomogeneous

linear wave equation, we have

1

2

d

dt
En(t) ≤Cn−(1−s)‖n−(1−s)∂twn(t)‖L2(T3)‖Fn(t)‖L2(T3)

+Cn−(2−s)‖n−(2−s)∂twn(t)‖H1(T3)‖Fn(t)‖H1(T3),

and this implies that

d

dt
(En(t))1/2 ≤ C

(
n−(1−s)‖Fn(t)‖L2(T3) + n−(2−s)‖Fn(t)‖H1(T3)

)
. (2.10)

To simplify the notation, we denote by

en(t) := sup
0≤τ≤t

(
En(t)

) 1
2 .

Our goal is to show that supt∈[0,tn] en(t) . n−θ. Write

Gn(t) := f(vεnn + uL + wn)− f(vεnn ),

from Lemma 2.1, we have, for t ∈ [0, tn] that

‖Fn(t)‖L2(T3) . κn(λntn)2n2−s + ‖Gn(t)‖L2(T3). (2.11)

By the Taylor expansion,

|Gn| . (|uL|+ |wn|)(|vεnn |2σ + |uL|2σ + |wn|2σ),

hence

‖Gn(t)‖L2(T3) . ‖wn(t)‖L2(T3)

(
1 + ‖vεnn (t)‖2σL∞(T3) + ‖wn(t)‖2σL∞(T3)

)
+ ‖vεnn (t)‖L2(T3)‖vεnn (t)‖2σ−1

L∞(T3)
,

where the implicit constants depend on ‖uL(t)‖L∞(T3). By writing wn(t, x) =
∫ t

0 ∂twn(τ, x)dτ (since

wn(0, ·) = 0), we obtain that

‖Gn(t)‖L2(T3) .
∫ t

0
‖∂twn(τ)‖L2(T3)dτ ·

(
1 + ‖vεnn (t)‖2σL∞(T3) + ‖wn(t)‖2σL∞(T3)

)
+‖vεnn (t)‖L2(T3)‖vεnn (t)‖2σ−1

L∞(T3)
+ 1

.tn1−sen(t)(λ2
n + ‖wn(t)‖2σL∞(T3)) + κnλ

2− 1
σ

n n−s, (2.12)

where we have used Lemma 2.1 to control ‖vεnn (t)‖L∞ . Similarly, for t ∈ [0, tn], we have

‖∇Fn(t)‖L2(T3) . κn(λntn)3n3−s + ‖∇Gn(t)‖L2(T3). (2.13)
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We need to estimate ‖wn(t)‖L∞(T3). From the Gagliardo-Nirenberg inequality,

‖wn(t)‖L∞(T3) . ‖wn(t)‖
3
4

H2(T3)
‖wn(t)‖

1
4

L2(T3)
. (n2−sen(t))

3
4 (ten(t)n1−s)

1
4 = t

1
4n

7
4
−sen(t), (2.14)

where we used wn(t) =
∫ t

0 ∂twn(τ, ·)dτ again. Since t ≤ tn = (log n)σδ2n−
(

3
2
−s
)
σ and σ

(
3
2 − s

)
> 1, we

have

‖wn(t)‖L∞(T3) . n
3
2
−sen(t). (2.15)

Therefore,

n−(1−s)‖Fn(t)‖L2(T3) .κn(λntn)2n+ κn(κnn
3
2
−s)2σ−1n−1 + tnen(t)

(
(κnn

3
2
−s)2σ + (n

3
2
−sen(t))2σ

)
.(log n)2σ(δ2−δ1)−δ1n+ (log n)−2σδ1n(2σ−1)

(
3
2
−s
)
−1

+n

(
3
2
−s
)
σen(t)

[
(log n)σ(δ2−2δ1) + (log n)σδ2(en(t))2σ

]
.

Since s > 3
2 −

2
2σ−1 , we have (2σ − 1)

(
3
2 − s

)
− 1 < 1, thus

n−(1−s)‖Fn(t)‖L2(T3) . (log n)σ(2δ2−3δ1)n+ (log n)σδ2n

(
3
2
−s
)
σen(t)(1 + (en(t))2σ). (2.16)

Next we estimate |∇Gn| as

|∇Gn| .|∇vεnn |
(
1 + |vεnn |2σ−1 + |wn|2σ−1

)(
1 + |wn|

)
+
(
1 + |vεnn |2σ + |wn|2σ

)(
1 + |∇wn|

)
,

where the implicit constants depend on uL,∇uL. To estimate the L2 norm of ∇Gn, we organize the

terms as

‖∇vεnn (1 + |vεnn |2σ−1 + |wn|2σ−1)wn‖L2 ≤ ‖wn‖L2‖∇vεnn ‖L∞
(
1 + ‖vεnn ‖2σ−1

L∞ + ‖wn‖2σ−1
L∞

)
,

‖(1 + |vεnn |2σ + |wn|2σ)∇wn‖L2 ≤ ‖∇wn‖L2

(
1 + ‖vεnn ‖2σL∞ + ‖wn‖2σL∞

)
,

‖∇vεnn (1 + |vεnn |2σ−1 + |wn|2σ−1)‖L2 ≤ ‖∇vεnn ‖L2

(
1 + ‖vεnn ‖2σ−1

L∞ + ‖wn‖2σ−1
L∞

)
,

‖(1 + |vεnn |2σ + |wn|2σ)‖L2 ≤
(
1 + ‖vεnn ‖2σ−1

L∞ ‖v
εn
n ‖L2 + ‖wn‖2σ−1

L∞ ‖wn‖L2

)
.

Putting them together and using

‖wn(t)‖Hk(T3) =
∥∥∥∫ t

0
∂twn(τ)dτ

∥∥∥
Hk(T3)

≤ n1+k−sten(t), k = 0, 1, (2.17)

we have

n−(2−s)‖∇Gn(t)‖L2(T3) .(log n)σδ2n

(
3
2
−s
)
σen(t)

(
1 + (en(t))2σ

)
+(log n)σ(δ2−δ1)n(2σ−1)

(
3
2
−s
)
−1(1 + (en(t))2σ−1

)
.(log n)σδ2n

(
3
2
−s
)
σen(t)

(
1 + (en(t))2σ

)
+ (log n)σδ2n(1 + en(t)2σ−1).

(2.18)

We observe that
den
dt
≤
∣∣∣ d
dt

(En(t))1/2
∣∣∣.

Therefore,

den
dt
≤ (log n)3σδ2n+ (log n)σδ2nσ

(
3
2
−s
)
en(t)

(
1 + (en(t))2σ

)
. (2.19)



8 C-M. SUN AND N. TZVETKOV

By the Grownwall type argument, we obtain

en(t) ≤ n1−σ
(

3
2
−s
)
(log n)2σδ2e(logn)2σδ2 , ∀t ∈ [0, tn].

Since 1 < σ
(

3
2 − s

)
, for any 0 < θ < σ

2

(
3
2 − s

)
− 1

2 , we can choose δ2 > 0 sufficiently small, such that

the right hand side is smaller than n−θ. Consequently, from (2.17),

‖wn(t)‖L2(T3) ≤ n1−sen(t)t . n1−s−
(

3
2
−s
)
σ(log n)δ2σn−θ . n−s−θ, ∀t ≤ tn.

Finally, the bound for the Hs norm of wn(t) follows from the interpolation. This completes the proof

of Proposition 2.3. �

3. Proof of the main theorem

First we recall the following property of finite propagation speed for the wave equation.

Lemma 3.1. Let w1, w2 be two C∞ solutions of the nonlinear wave equation

∂2
tw −∆w + |w|2σw = 0.

If the initial data (w1(0), ∂tw1(0)), (w2(0), ∂tw2(0)) coincide on the ball B(x0, r0) ⊂ Rd, then for

0 ≤ t < r0, (w1(t), ∂tw1(t)) = (w2(t), ∂tw2(t)) on B(x0, r0 − t).

Proof. Without loss of generality, we may assume that x0 = 0. Take the difference u = w1 −w2, then

∂2
t u−∆u+ u = V (t, x)u,

where

V (t, x) = (2σ + 1)

∫ 1

0
|(1− λ)w1(t, x) + λw2(t, x)|2σdλ+ 1 ∈ L∞loc.

For 0 ≤ t1 < t2 < r0, denote by Ct1,t2(r0) := {(t, x) : t1 ≤ t ≤ t2, |x| ≤ r0 − t}. Define the local energy

density

e(t, x) :=
1

2
(|∇u(t, x)|2 + |∂tu(t, x)|2 + |u(t, x)|2).

Then a direct calculation yields∫
C0,t0 (r0)

∂tu(∂2
t −∆ + 1)udxdt =

∫ t0

0

∫
|x|≤r0−t

d

dt
e(t, x)dxdt−

∫ t0

0

∫
|x|=r0−t

∂tu∂rudσ(x)dt,

where ∂ru = x
|x| · ∇u and r = |x|. Notice that d

dt1|x|≤r0−t = −δ|x|=r0−t, we have∫
C0,t0 (r0)

∂tu(∂2
t −∆ + 1)udxdt =

[ ∫
|x|≤r0−t

e(t, x)dx
]t=t0
t=0

+

∫ t0

0

∫
|x|=r0−t

1

2

[
|∂tu− ∂ru|2 + |u|2

]
dσ(x)dt

≥
[ ∫
|x|≤r0−t

e(t, x)dx
]t=t0
t=0

.

Using the equation ∂2
t u−∆u+ u = V u, we have

E(t0) ≤ E(0) +
∣∣∣ ∫
C0,t0 (r0)

V u · ∂tudxdt
∣∣∣ ≤ E(0) + ‖V ‖L∞([0,r0]×B(0;r0))

∫ t0

0
E(t)dt,

for all 0 ≤ t0 < r0, where E(t) =
∫
|x|≤r0−t e(t, x)dx is the local energy. Since E(0) = 0, from Gronwall’s

inequality, we deduce that E(t) ≡ 0 for all 0 ≤ t < r0. This completes the proof of Lemma 3.1. �
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To prove Theorem 2, we need to do some preparations. We use the coordinate system x = (x1, x
′)

near the origin. Let zk = (zk1 , 0) with zk1 = 1
k . Let nk = eek , and define

v0,k(x) := (log nk)
−δ1n

3
2
−s

k ϕ(nk(x1 − zk1 ), nkx
′) = vnk(0, · − zk),

where vn(0) is the initial data of the ill-posed profile defined in (2.3). Note that there exists k0, such

that for all k ≥ k0, the supports of v0,k are pairwise disjoint. Moreover, for k0 ≤ k1 < k2,

dist
(
supp(v0,k1), supp(v0,k2)

)
∼ 1

k1
− 1

k2
.

Denote by Bk = B(zk, rk), where rk = 1
k3

. With sufficiently large k0, the balls Bk, k ≥ k0 are mutually

disjoint. Moreover, supp(ρεnk ∗ v0,k) ⊂ Bk (recall that εnk = nk
100). Another simple observation is that

dist
(
supp(ρεnk ∗ (v0 − v0,k)), Bk

)
&

1

k2
,

where

v0 =
∑
k≥k0

v0,k ∈ Hs(T3).

In particular, for any (f, g) ∈ C∞×C∞, ρεnk ∗ ((f, g) + (v0, 0)) coincides with ρεnk ∗ ((f, g) + (v0,k, 0))

on Bk. Let B̃k = B(zk, rk/3) be a slightly smaller ball. We observe that for k large enough,

supp(ρεnk ∗ v0,k) ⊂ B̃k.

Now we are able to prove Theorem 2.

Proof of Theorem 2. Define

S = C∞(T3)× C∞(T3) +
{( ∞∑

k=k1

v0,k, 0
)

: k1 ≥ k0

}
.

Using ∥∥∥ ∞∑
k=k1

v0,k

∥∥∥
Hs(T3)

≤
∞∑

k=k1

‖v0,k‖Hs(T3) ≤
∞∑

k=k1

e−kδ1 → 0 as k1 →∞,

we deduce S is dense inHs(T3). Now fix (f, g) ∈ S. Then by definition, there exists (u0, u1) ∈ C∞×C∞
and k1 ≥ k0, such that

(f, g) = (u0, u1) +
( ∞∑
k=k1

v0,k, 0
)
.

Our goal is to show that, for any N > 0 and any δ > 0, there exist τN ∈ [0, 1] and 0 < ε < δ, such

that the solution uε to (1.1) with initial data ρε ∗ (f, g) satisfies

‖uε(τN )‖Hs(T3) > N. (3.1)

First we choose k ≥ k1, large enough, such that

κnk(λnktnk)s > N, εk =
nk
100

< δ.

This can be achieved by choosing δ1 < δ2 such that sσ(δ2 − δ1) > δ1. Recall that the parameters

κnk = e−kδ1 , λnktnk = e(δ2−δ1)kσ are given by (2.2). Let ũk be the solution of (1.1) with the initial

data ρεnk ∗ (u0, u1) + ρεnk ∗ (v0,k, 0). Let ṽk be the solution of ∂2
t ṽk + |ṽk|2σṽk = 0 with the initial
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data ρεnk ∗ (v0,k, 0). We remark that ṽk, ũk are just v
εnk
nk , u

εnk
nk in Proposition 2.3 up to translation. In

particular,

‖ũk(tnk)‖Hs(T3) & (log nk)
sσ(δ2−δ1)−δ1 , (3.2)

and

‖ũk(tnk)− S(tnk)(u0, u1)− ṽk(tnk)‖Hs(T3) . n
−θ
k . (3.3)

We have that supp(ṽk(t)) ⊂ B̃k for all t ∈ [0, tnk ]. Now we apply Lemma 3.1 to ũk and uεnk . Since

at t = 0, (uεnk (0), ∂tu
εnk (0))|Bk = (ũk(0), ∂tũk(0))|Bk , we deduce that

(uεnk (t), ∂tu
εnk (t))|B(zk,rk−t) = (ũk(t), ∂tũk(t))|B(zk,rk−t), ∀0 ≤ t < rk.

In particular, for large k,

(uεnk (t), ∂tu
εnk (t))|B(zk,rk/2) = (ũk(t), ∂tũk(t))|B(zk,rk/2), ∀t ∈ [0, tnk ]. (3.4)

Lemma 3.2. Assume that s1 ≥ 0. Let u ∈ Hs1(T3) and χ ∈ C∞c (T3). Then there exists A > 0,

depending only on the function χ and s1, such that for any R ≥ 1

‖(1− χ(Rx))u‖Hs1 (T3) + ‖χ(Rx)u‖Hs1 (T3) ≤ ARs1‖u‖Hs1 (T3).

Proof. First for s1 ∈ N, the proof follows from the direct calculation. For general s1 ≥ 0, the conclusion

follows from the interpolation. �

Take χ ∈ C∞c (R3), such that χ(x) ≡ 1 if |x| < 1
3 and χ ≡ 0 if |x| ≥ 1

2 . Define χk(x) := χ((x−zk)/rk),
hence χk|B̃k ≡ 1 and χk|(B(zk,rk/2))c ≡ 0. Then (3.4) is translated to

χk(x)(uεnk (t), ∂tu
εnk (t)) = χk(x)(ũk(t), ∂tũk(t)), ∀t ∈ [0, tnk ].

From Lemma 3.2,

‖uεnk (tnk)‖Hs(T3) & r
s
k‖χkuεnk (tnk)‖Hs(T3) ∼ (log log nk)

−3s‖χk(x)ũk(tnk)‖Hs(T3).

Therefore,

‖χk(x)ũk(tnk)‖Hs(T3) ≥‖ũk(tnk)‖Hs(T3) − ‖(1− χk)ũk(tnk)‖Hs(T3)

=‖ũk(tnk)‖Hs(T3) − ‖(1− χk)(ũk(tnk)− ṽk(tnk))‖Hs(T3),

where in the last equality, we use the fact that (1−χk)ṽk(tnk) = 0, thanks to the support property of

ṽk. Therefore, we have

‖uεnk (tnk)‖Hs(T3) &(log log nk)
−3s‖ũk(tnk)‖Hs(T3) − (log log nk)

−3s‖(1− χk)S(tnk)(u0, u1)‖Hs(T3)

−(log log nk)
−3s‖(1− χk)

(
ũk(tnk)− S(tnk)(u0, u1)− ṽk(tnk)

)
‖Hs(T3).

(3.5)

Applying Lemma 3.2 again, we have

‖uεnk (tnk)‖Hs(T3) & (log log nk)
−3s(log nk)

sσ(δ2−δ1)−δ1 − ‖S(tnk)(u0, u1)‖Hs(T3) − n−θk . (3.6)

By choosing δ1 > 0 small such that sσ(δ2 − δ1) − δ1 > 0, the left hand side of (3.6) tends to +∞ as

k →∞. This completes the proof of Theorem 2. �
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