
HAL Id: hal-02457954
https://hal.science/hal-02457954v1

Preprint submitted on 28 Jan 2020 (v1), last revised 6 Feb 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Greedy Evolutionary Hybridization Algorithm for the
Optimal Network and Quadratic Assignment Problem

Mouhamadou A.M.T Baldé, Serigne Gueye, Babacar M. Ndiaye

To cite this version:
Mouhamadou A.M.T Baldé, Serigne Gueye, Babacar M. Ndiaye. A Greedy Evolutionary Hybridization
Algorithm for the Optimal Network and Quadratic Assignment Problem. 2020. �hal-02457954v1�

https://hal.science/hal-02457954v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Greedy Evolutionary Hybridization Algorithm for
the Optimal Network and Quadratic Assignment
Problem

Mouhamadou A.M.T. Baldé · Serigne
Gueye · Babacar M. Ndiaye

the date of receipt and acceptance should be inserted later

Abstract Our paper deals with a combinatorial optimization problem called
the Optimal Network and Quadratic Assignment Problem. The problem has
been introduced by Marc Los [18] as a model of an urban planning problem
that consists in optimizing simultaneously the best location of the activities of
an urban area (land-use), as well as the road network design (transportation
network) in such a way to minimize as much as possible the routing and
network costs. We propose a mixed-integer programming formulation of the
problem, and a hybrid algorithm based on greedy and evolutionary heuristic
methods. Some numerical experiments on randomly generated instances, and
on real-life big data from Dakar city, show the efficiency of the method.

Keywords Transportation network · Land-use plan · Quadratic Assignment
Problem · Heuristic · Metaheuristics · Big data

1 Introduction

The Optimal Network and Quadratic Assignment Problem (ON-QAP), in-
troduced by Marc Los [18] in 1978, is a simplified planning problem dealing
with the assignment of some amenities in an urban area, and the suitable
design of the transportation network to route the transportation demands
between these amenities as efficiently as possible. An “amenity” is defined

M.A.M.T Baldé, B.M. Ndiaye
Laboratoire de Mathématiques de la Décision et d’Analyse Numérique
LMDAN-FASEG, Université Cheikh Anta Diop
BP 4500 Dakar-Fann, 10700 Dakar, Sngal
E-mail: mouhamadouamt.balde,babacarm.ndiaye@ucad.edu.sn

S. Gueye
LIA, Université d’Avignon et des Pays de Vaucluse,
339 chemin des Meinajaries,
BP 1228, 84911 Avignon Cedex 9, France
E-mail: serigne.gueye@univ-avignon.fr

2 Baldé, Gueye, Ndiaye

as any activity type which generates some flow (i.e moves, trips) : homes,
schools, shops, leisure places, administrative centers, etc. Each amenity has
a known location, and may be the origin or the destination (or both) of in-
dividual trips. The amount of trips between each pair of amenities is usually
known as the Origin-Destination (O-D) matrix flows. These flows are routed
on a given transportation network, through different paths, depending on in-
dividual choices, that themselves depend on different routing costs such as the
path lengths and the travel times. Finding the routing paths is known in the
literature as the traffic assignment problem. It has been intensively studied
under various objectives and constraint assumptions (see [26] for a survey).
A very basic version of the traffic assignment problem takes as an objective
function the minimization of the overall sum of the path lengths (or travel
times). Nevertheless, all standard versions of the problem assume that the
amenity locations and the transportation network are known and fixed. As
a consequence, in this basic version, given a network and an amenity assign-
ment, the O-D flows are always routed through the shortest paths. Thus, it
leads to a significant simplification of the problem not always observed in prac-
tice. In many other, more elaborated, transportation models flows are routed
according using an equilibrium approach (see Y. Sheffi [31] for a survey).

The urban problem introduced by Los [18] is a more general problem in
which, in addition to the traffic assignment problem, two other levels of deci-
sions are introduced : the optimal amenity location and the optimal design of
the network. The simultaneous optimization of the land-used (amenity loca-
tions) and the transportation network is then the problem of finding the best
amenity locations and the best network minimizing the sum of routing costs,
network costs, and amenity assignment costs (i.e cost of assigning an amenity
in a given location). By assuming that the traffic flows are assigned as in the
basic version described above, this very difficult problem has been formalized
as a combinatorial optimization problem combining the well-known Quadratic
Assignment Problem (QAP) [16], and the optimal network design problem
[29]. Our paper deals with this latter problem. We propose a mathematical
program and an evolutionary heuristic resolution scheme combining network
design and QAP heuristic solutions.

In Section 2, the combinatorial optimization problem is formally defined.
Then, we give a mixed-integer programming formulation in Section 3. In Sec-
tion 4 and 5, the heuristic methods are presented. Numerical results with
randomly generated instances, as well as real-life big data of the Dakar city,
are provided in Section 6.

2 Problem definition and state-of-the-art

Let G = (V,E) be an undirected connected weighted graph where V =
{1, 2, ..., n} is the set of nodes and E the set of edges. Each edge e = (k, l) ∈ E
between k ∈ V and l ∈ V can be used in both directions, by which we can
introduce the set of arcs A making (V,A) a directed graph. For each edge

ON-QAP 3

(k, l) ∈ E, wkl represents the direct distance from k to l, which may differs
from the direct distance from l to k wlk. And bkl is the building cost of the
edge. Each node of G is a location in which one and only one amenity (or
activity) of a set F = {1, 2, ..., n} must be assigned. Assigning the activity
i ∈ F to the location k ∈ V induced an assignment cost cik. Between any pair
of activities i and j, some individuals, in an urban area, move. The amount of
trips from i to j (resp. from j to i) is noticed fij (resp. fji). An assignment (of
activities to locations) induces a routing cost, which is assumed proportional
to the trip quantities and to the shortest distance that separates the amenities.
If i and j are respectively located in k and l, and if the value of the shortest
path between k and l is dkl, then the routing cost is fijdkl. The total location
cost is defined as the sum of assignment and routing costs. Each edge may be
chosen, or not, in the transportation network. The network cost is then given
by the sum of the building costs of the chosen edges. The Optimal Network
and Quadratic Assignment Problem (ONQAP) is the problem of finding the
best assignment of activities on the node set, and the best edges to choose, in
such a way to minimize the sum of the location, assignment and network costs.

ONQAP combines two well-known problems in the scientific litterature : an
optimal network design problem and the quadratic assignment problem. But,
at the opposed of these problems for which a rich litterature exists, few contri-
butions dealing with problems closed to ONQAP exists in the litterature. Los
[18] introduced the problem and is the first author to propose a discrete-convex
programming approach in [19] to solve it. Before Los contribution, Lundqvist
[23] published statement of a model. He proposed a combinatorial program-
ming approach in which both the land-use decisions and the network decisions
are treated as discrete variables : some variables representing the amount of
building stock in a zone, and some binary ones denoting if a network link
should be built or not. The model is solved using an heuristic scheme. Feng
and Lin [24] proposed a nonlinear and multi-objective programming (MOP)
model called the The Sketch Layout Model (SLM). In SLM, the land area is
sub-divided in cells of equal surfaces and entities have to be assigned to them.
Some interactions are considered between entities located in the cells, and
one of the three objectives of the model corresponds to a quadratic objective
similar to the quadratic assignment problem one. However, because of many
others details not taken into account in ONQAP, SLM differs highly to our
problem. For instance, the travel times on the transportation links is a func-
tion depending on the flows traversing the links. Moreover, the O-D flows are
not known a priori but are computed by solving a trip distribution problem.
To solve SLM, the cumulative genetic algorithm (CGA) developed by Xiong
and Schneider [20] was modified to an heuristic algorithm to generate approx-
imating non-dominated solutions. In addition to these references, we will give
later, in the corresponding two sub-sections, contributions in the litterature
dealing with the two sub-problems considered in ONQAP.

4 Baldé, Gueye, Ndiaye

3 Formulation

The problem may be mathematically modeled as follows. Let xik, with i ∈
F, k ∈ V , be a binary variable equals to 1 if the activity i is assigned to the
location k and 0 otherwise. Let also ykl, with k ∈ V, l ∈ V , be another binary
variable equal to 1 if the edge (k, l) ∈ E is chosen and 0 otherwise. In the
sequel x = {xik}i,k=1,2,...,n will stand for the n × n square matrix composed
of the variables xik. And y = {ykl}(k,l)∈E , the matrix corresponding to the
variables ykl.

In addition to y, we define the variables dkl (k ∈ V, l ∈ V) as the shortest
path values in the graph defined by the variables y. d is the corresponding
matrix. The location, assignment and network costs are then given by the
following cubic function :

q(x, y, d) =
∑
i∈F

∑
k∈V

cikxik +
∑
i∈F

∑
k∈V

∑
j∈F

∑
l∈V

fijdklxikxjl +
∑

(k,l)∈E

bklykl.

To ensure a suitable computation of the variables dkl. Let zklij (k, l, i, j ∈ V)
be equal to 1 if the shortest path between k and l used the arc (i, j) ∈ A and 0
otherwise. (ONQAP) is obtained by minimizing the objective function above
under a set of constraints described below.

(ONQAP) : Min q(x, y, d) (1)

s− t :
∑
i∈F

xik = 1 k ∈ V (2)∑
k∈V

xik = 1 i ∈ F (3)∑
j∈V

(m,j)∈A

zklmj −
∑
i∈V

(i,m)∈A

zklim (4)

=

 1 if m = k,
−1 if m = l,

0 otherwise.
m ∈ V ; k 6= l ∈ V (5)

dkl ≥
∑

(i,j)∈A
wijz

kl
ij ∀k, l ∈ V ; k 6= l (6)

zklij + zklji ≤ yij ∀(i, j) ∈ E; k, l ∈ V (7)

xik ∈ {0, 1} ∀i ∈ F, k ∈ V (8)

yij ∈ {0, 1} ∀(i, j) ∈ E (9)

zklij ≥ {0, 1} ∀(i, j) ∈ A, k 6= l (10)

The constraints (2) and (3) are the standard assignment constraints ensur-
ing that only one activity is localized in each area. The shortest paths value
between k and l are catched using flow variables zklij , constrained by the stan-
dard flow conservation constraints (8). The constraints (7) ensure that only
one arc (i, j) ∈ A or (j, i) ∈ A is used in the shortest path between k and l if

ON-QAP 5

and only if the corresponding edge (i, j) ∈ E belongs to the optimal network.
The constraints (8) and (9) are the integrality constraints. Let

S = {x ∈ {0, 1}n×n satisfying (2) , (3) , (8)}

and

S
′

= {(y, d) ∈ {0, 1}n×n × Rn×n satisfying (4) , (6) , (7) , (9) , (10)}.

(ONQAP) may be rewritten as follows :

(ONQAP) : min
x∈S

min
(y,d)∈S′

q(x, y, d) (11)

This shorter writing allows to derive a simple observation that leads to a
metaheuristic scheme detailed in Section 4.

4 A Greedy Heuristic Method

One may observe using the formulation (11) that

min
x∈S

min
(y,d)∈S′

q(x, y, d) = min
(y,d)∈S′

min
x∈S

q(x, y, d). (12)

As a consequence, we can derive the following result.

Theorem 1 If x∗, y∗ and d∗ are optimal solutions then it is necessary that

(y∗, d∗) ∈ argmin
(y,d)∈S′

q(x∗, y, d)

and

x∗ ∈ argmin
x∈S

q(x, y∗, d∗)

where argmin(q) denotes the set of optimal solutions of the function q.

The greedy heuristic method consists in finding a local optimal triplet
(x, y, d) verifying the necessary conditions described above. Such a point may
be found using the algorithm 1.

At each iteration of the loop in algorithm 1, an assignment is fixed and
the optimal network design problem is solved (line 14). The resulting network
solution is then fixed and the best assignment corresponding to this solution is

6 Baldé, Gueye, Ndiaye

1 x0 : an initial assignment;

2 (y0, d0) = argmin
(y,d)∈S′

q(x0, y, d) ;

3 old = q(x0, y0, d0) ;
4 p = 0 ;
5 stop = false ;
6 while (! stop) do
7 xp+1 = argmin

x∈S
q(x, yp, dp) ;

8 new = q(xp+1, yp, dp) ;
9 if (old ≤ new) then

10 stop = true ;
11 end
12 else
13 old = new ;

14 (yp+1, dp+1) = argmin
(y,d)∈S′

q(xp+1, y, d) ;

15 p = p + 1;

16 end

17 end

Algorithm 1: Greedy Heuristic with initial assignment

computed (line 7), and so on. It can be observed that instead of starting by an
initial assignment x0 (line 1), one may start by an initial network y0. Notice
also that fixing y0 gives automatically unique values of the shortest paths
thus defining the pair (y0, d0). Hence, starting with this pair leads to another
(symetrical) variant of the algorithm above where x and y are systematically
switched. However, in any variant, finding the optimal solution of an optimal
network design problem (line 14), as well as of a quadratic assignment one
(line 7), is necessary. It is well known that both problems are NP-Hard [10] by
which, in practice, we do not compute exact solutions but also some heuristic
ones using two standard heuristic methods detailed below.

4.1 Deletion method for the network design problem

The optimal network problem is solved at each iteration using a deletion
method associated with a shortest path algorithm (see [9] for more details
on deletion method). Let G = (V,E) be the graph in which the network de-
sign problem must be solved. Without loss of generality, we can assume (by
renumbering if necessary) that :

E = {e1, e2,, em} with be1 ≥ be2 ≥ ... ≥ bem

Let x be a given (fixed) assignment, and let us notice ShortestPathAlgorithm(G)
an algorithm giving all pair shortest path values on G (for instance the Floyd-
Warshall algorithm [8]). We assume that if no path exist between two nodes
k and l then dkl = +∞. Using this notation, the algorithm 2 can be deduced.

ON-QAP 7

1 ye = 1, ∀ e ∈ E;
2 d = ShortestPathAlgorithm(G) ;
3 i = 1 ;
4 old = q(x, y, d) ;
5 while i ≤ m do
6 E = E\{ei}, yei = 0 ;
7 d = ShortestPathAlgorithm(G) ;
8 new = q(x, y, d) ;
9 if (new < old) then

10 old = new ;
11 end
12 else
13 E = E ∪ {ei}, yei = 1 ;
14 end
15 i = i + 1 ;

16 end

Algorithm 2: Deletion algorithm

The deletion algorithm consists in deleting the edges of G, one by one,
in a given order. For each deletion, we check if the overall cost decreases or
not. If it decreases, the deletion is accepted (and fixed in a greedy fashion),
otherwise the edge is restored. In the algorithm above, the deletion is made in
the decreasing order of the edge construction cost, and the Flyod-Warshall [8]
algorithm is used for the shortest path computations.

4.2 2-opt neighbourhood search heuristic for QAP

QAP is a well-studied problem for which many meta-heuristic schemes have
been developped and tested. Meta-heuristics algorithms for QAP include : lo-
cal search methods, simulated annealing (Wilhelm and Ward [36]), tabu search
(Battiti and Tecchiolli [37]), iterated local search ([38] [39]), and population-
based approaches (as memetic and genetic algorithms). One may cite in the
class of population-based approaches a recent (2018) contribution of Abdel-
Baset el al. [21] dealing with a memetic algorithm using the Whale Optimiza-
tion Algorithm (WOA) integrated with a Tabu Search. Tabu Search is used to
improve the quality of solutions obtained by WA. Fourteen different case stud-
ies including 122 test problems are employed for analyzing the performance
of the proposed algorithm. The results show that the proposed memetic algo-
rithm finds good near optimal solutions with acceptable computational times.
In [22], Abdel-Baset. et al. also presented an Elite Opposition-Flower Pollina-
tion Algorithm (EOFPA). The proposed algorithm is tested against a set of
benchmarks of QAP from the public QAPLIB Library and compared against
the best proposals from the related literatures. In the majority of instances,
the results showed better performance than other algorithms of the litterature.

As QAP is just one of the two sub-problems of ONQAP, we choose to im-
plement a much less elaborated method than the two cited above. We use a
2-opt neighbourhood search procedures based on Iterated Local Search (ILS)

8 Baldé, Gueye, Ndiaye

hybridized with Tabu Search. ILS is essentially an improved version of Hill-
Climbing with Random Restarts. That is, it tries to stochastically hill-climb
in the space of the local optima (see [27]).

Let x be a initial assignment solution we wich to improve with our lo-
cal searcj procedure. The local search procedure is explained starting by one
solution x, but in practice n assignments are randomly generated, each one
improved as described below. The best solution is retained at the end. Accord-
ing to a specific criterion based on the contribution in the affectation cost, we
choose two assignments to permute as follows.

If i0 is assigned to k0, and j0 to l0 :

i.e xi0k0
= xj0l0 = 1,

the contribution of this assignment is evaluated with the values :

v(i0, k0, j0, l0) = ci0k0
+ cj0l0 +

∑
(i,k)∈F×V \(j0,l0)

fij0wkl0xikxj0l0

+
∑

(j,l)∈F×V \(i0,k0)

fi0jwk0lxi0k0
xjl

With this criterion, the pair of assignments for which the location will be
permuted, is the one that maximize the corresponding value. If the new as-
signment gives a reduction of the cost then the oldest solution is replaced by
the permutation otherwise the oldest solution is kept. And so on, until a given
number of iterations. As in tabu search heuristics, to avoid cycling the permu-
tations performed are stored in a tabu list (L). By which, in fact, the pair of
assignments chosen for permutation must maximize the criteria but also must
be not“Tabu”. When a solution is not improved a counter (k) is incremented.
This counter gives the number of iterations since the last best solution. If it
exceeds a given limit value then we consider that the algorithm is stuck on
a local solution and we disrupt it by random assignments. The limit value is
empirically and randomly chosen in the interval [n2/2, 2n2]. The algorithm
implements all the points describe above. In this algorithm,

– permute(x, i, k, j, l) denotes a procedure giving as result a new assignment
matrix x where the locations k of i and l of j have been permuted,

– evaluate(x) is the objective function value corresponding to x,
– disrupt(x) is a procedure disrupting randomly x.

With all the greedy procedures described above, an evolutionary heuristic
method have been implemented.

ON-QAP 9

Data: n : number of locations and activity, m : number of iterations;
x = a initial random assignments of entities to locations;

1 L = ∅;

2 lim = random value in [n2/2, 2n2];
3 k = 0;
4 i = 0;
5 while i < m do
6 i = i + 1;
7 BestSolution = x;
8 (i0, k0, j0, l0) = argmax

(i,k,j,l) ∈ F×V×F×V
(i,k,j,l)/∈L

v(i, k, j, l);

9 y = permute(x, i0, k0, j0, l0);
10 L = L ∪ {(i0, k0, j0, l0)} ;
11 if evaluate(x) ≤ evaluate(y) then
12 k = k + 1;
13 else
14 x = y ;
15 k = 0;

16 end
17 if lim < k then
18 x = disrupt(x);
19 end

20 end

Algorithm 3: Heuristic for QAP

5 Evolutionary Algorithm and greedy hybridization

In this section, we propose a Genetic Algorithm (GA) in order to improve
the solution of the greedy algorithms. Genetic Algorithms (GAs) are one of
the most popular heuristic algorithms for solving optimization problems. The
GAs are adaptive search techniques initially introduced by Holland [14]. Its
name derives from the fact that their operations are similar to the mechanics
of genetic models of natural systems. The GAs have been applied to a variety
of combinatorial optimization problems (Goldberg [11] and Davis [5]). Many
GAs for the QAP have been proposed. Bean [2] describes a genetic algorithm
to solve problems whose solutions are specified by permutations. Tate and
Smith [34] proposed another GA which uses the problem specific structure
and tested it on 11 benchmark instances, due to Nugent et al. [25], of size
5− 30 facilities. This is a fairly direct implementation of the classical GA that
do not use any greedy ideas. Fleurent and Ferland [7] describe another GA
which uses local search methods to improve the fitness of individuals. They
found that using local search methods substantially improves the correctness
of the algorithm for the QAP. In our work, we investigate GAs incorporating
our greedy heuristics. We present computational results of the algorithm on
artificial instances as well as on a real-life big data of the Dakar (Senegal)
region.

The GAs imitate the process of evolution on an optimization problem and
can be roughly subdivided into the following steps. Each feasible solution of

10 Baldé, Gueye, Ndiaye

a problem is composed of chromosomes and genes that must be first encoded.
We will see in the subsection 5.1 the encoding choices made for our algorithm.
At the beginning of the process, an initial population is created. Some individ-
uals are then selected, among the population, and contribute to the population
evolution using essentially two operators. The crossover operator allows two
individuals to be crossed in such a way as to give rise to better individuals.
And the mutation operator randomly changes some genes to the benefit of the
diversity in the population. The successive evolution of the population using
these operators provides new individuals in which the best one is chosen as
the problem solution at the end of the algorithm.

We detail the choices made in our algorithm for all these steps. In particu-
lar, notice that two methods were implemented and compared for generating
the initial population. A first one consisting in a pure random generation of
the population, and a second one where the assignment solution found by our
greedy algorithm is randomly perturbed. These two approaches lead to two al-
gorithms called GA (Genetic Algorithm) and GGG (Greedy Genetic Greedy)
for which the numerical experiments show clearly the added value of using the
greedy algorithm.

5.1 Encoding scheme

Consider a population consisting of m individuals xj = (xj
ik), i, k = 1, ..., n

where each xj denotes the assignment matrix. We define as “chromosome” the
(row) vector corresponding to each row of x and as “gene” each component
xik. We thus have n chromosomes and n2 genes.

n chromosomes ↓

individual −→ xj =
︷ ︸︸ ︷
xj
11 xj

12 · · ·x
j
ik · · ·x

j
nn

gene ↑

individual −→ xj =



xj
11 xj

12 · · ·x
j
1n ← chromosome 1

xj
21 xj

22 · · ·x
j
2n ← chromosome 2

...

xj
n1 xj

n2 · · ·xj
nn ← chromosome n

gene ↑

5.2 Initial population generation

In genetic algorithm approaches the individuals of the population can be ran-
domly generated or based on solutions provided by other algorithms. What
is the best approach between these two is not theoretically clear. One may

ON-QAP 11

think that a huge random population gives an initial good diversity by better
covering of the solution space. And that its evolution, with the operators, will
lead to better solutions. But solutions based on the random perturbations of
other (good) solutions may also help the algorithm to reach, more quickly,
solution spaces where an optimal solution can be found.

Two types of initial population have been considered to analyze their im-
pacts in the final solution. The first one is a pure random generation. The
second one is derived by exploiting the greedy algorithm of the Section 4.
More precisely in the second case, we first run the greedy algorithm and
the best solution, here denoted by (x0, y0, d0),will be the first individual of
our population. This solution is then randomly perturbed by permutation of
the assignment genes. These perturbations lead to m − 1 other individuals
(xj , yj , dj) (j = 1, · · · ,m − 1). Recall that the algorithm using the first type
of initial population will be called, in the numerical experiments, GA (Ge-
netic Algorithm) and the other using the greedy solution is the GGG (Greedy
Genetic Greedy) algorithm.

5.3 Selection

The selection process performs in this paper is called “selection by rank” in
the literature [5]. The m individuals computed before are classified in the in-
creasing order of their objectives function values q (also called fitness function).
Then we attribute to individuals, a weight that depends on its rank in the sort-
ing step. For an individual (xj , yj , dj) this weight is equal to Wj = (m− rj)

a,
with a = 1.5, where rj is the rank of the individual j in the classification. With

these weights a probability of survival is determined by Pj = Wj/
∑m−1

j=0 Wj .
Two parents are randomly selected for crossover if the sum of their probabili-
ties is greater than a fixed crossover probability. The best individual or parent
is always chosen to cross with a random choice of another parent.

5.4 Crossover

We propose a crossover based on permutation of chromosome. Two parents
selected will form two children as follows. Let i be the index of a chromosome.
We associate to i the following cost :

hi =

n∑
k=1

cikxik +

n∑
k=1

n∑
j=1

n∑
l=1

fijdklxikxjl.

We call “bad chromosome“ of the Parent 1 a chromosome i with the highest
cost hi. If i in the parent 1 is bad then it will be replaced by the chromosome
i of the parent 2. But before doing this change, for feasibility purpose, we first
copy the chromosome i of the parent 1 at the chromosome l of the parent

12 Baldé, Gueye, Ndiaye

1 identical to the chromosome i of the parent 2. And we get the first child.
The second child is obtained by the same procedure but by exchanging parent
roles. Hence, the child 1 is the parent 1 with the bad chromosome replaced.
And the child 2 is the parent 2 with the copied bad chromosome of the parent
1. An example of this process, with n = 4, is given in figure 1. We can see that

Parent 1 these 2 chromosome 3 Parent 2
1 0 0 0 will be changed 0 1 0 0
0 0 1 0 each other 0 0 1 0

bad chromosome→ 0 1 0 0 L99 −−−−− 99K 0 0 0 1

to replace 0 0 0 1 1 0 0 0

for from
feasibility Parent 1
↓ 1 0 0 0

copy 0 0 1 0

of chromosome 3→ 0 1 0 0

at chromosome 4→ 0 1 0 0

=====⇒ Child 1
bad chromosome 3

is replaced by 1 0 0 0
chromosome 3 of 0 0 1 0

99K Parent 2 99K 0 0 0 1

0 1 0 0

from
Parent 2

at chromosome 4→ 0 0 0 1

0 0 1 0

of chromosome 3→ 0 0 0 1

copy 1 0 0 0

=====⇒ Child 2

bad chromosome 3 0 0 0 1
is copied at 0 0 1 0

chromosome 3 of 0 1 0 0

99K Parent 2 99K 1 0 0 0

Fig. 1 Crossover

the crossover performed is like a permutation of a chromosome of a parent
based on a chromosome of an other parent. And applied to two parents give
two children.

5.5 New generation

The next generation will be obtained by replacing only individuals of older
population, with survival probability lower than a fixed threshold, by the chil-
drens obtained as above. Best individuals with probability greater than the
threshold are always conserved in the next generation.

5.6 Mutation

A random individual mutes if a random probability chosen between 0.00001
and 0.1, is lower than a fixed probability of mutation. We fix the probability
of mutation to 0.015. The mutation operator is a permutation of two random
chromosomes.

ON-QAP 13

5.7 Genetic Algorithm

Using all the operators described above leads to the algorithm 4.

Data: n number of locations and activity, m number of individuals, N number of
generations.

1 Initial population : m individuals xj , j = 0, · · · ,m− 1 population are generated as
in the Subsection5.2;

2 evaluate fitness of each individual q(xj , yj , dj) selection;
3 i ←−0;
4 while i< N do
5 i ←−i+1;
6 Selection() selection of parents to cross;
7 Crossover() construction of childrens;
8 Population() construction of the new generation;
9 Mutation();

10 end

Algorithm 4: Genetic Algorithm heuristic

5.8 Greedy Genetic hybridization

This algorithm (see figure 2) is an extension of the genetic algorithm. As ex-
plained in the beginning of Section 5, its initial population is obtained using
the best solution of the greedy algorithm as initial assignment and network.
Standard operators explained above are then applied in this population - lead-
ing to a new population where the best individual is chosen. Then, the resulting
solution is used as initial assignments (or network) of the greedy algorithm.
Despite the fact that iterating several times between Greedy, Genetic Algo-
rithm and Greedy is possible, we limit ourselves in the numerical experiments
to one iteration because of time limitations.

6 Numerical simulations

This section deals with the numerical results obtained using all the algorithms
described above. The tests have been performed on instances deriving from
academic sources, as well as on a real-life big data on Dakar city (Senegal).
Two types of academic instances have been used. The first one comes from
Los [18] (here denoted by “Los”) and the second one from the QAPLIB[4]
benchmark. The QAPLIB problems are the instances of Nugent, Vollman,
and Ruml [25] (here denoted “Nug”), Elshafei [6](“Els”), Hadley, Rendl,
Wolkowicz [13](“Had”), Krarup and Pruznan [15](“Kra”), Li and Pardalos
[17](“Lipa”), Roucairol [28](“Rou”), Scriabin and Vergin [30](“Scr”), Skorin-
Kapov [32](“Sko”), Taillard [33](“Tai”), Wilhelm and Ward [36](“Wil”).

14 Baldé, Gueye, Ndiaye

Fig. 2 Greedy Genetic Greedy hybridization (GGG)

Each instance gives, as input for our algorithms, the flows between the enti-
ties and the distances between the locations. The location costs are taken to
be null in these experiments. The construction cost of any edge (k, l) of the
network has been derived by multiplying the distance dkl by 10 in the case of
the instances “Nug”, “Had”, “Wil”, “Tho”, “Scr”, by 100 for instances “Els”,
“Lipa”, “Rou”, “Tai”, and by 1000 for “Kra”. In the table where the results
are reported, the acronym of the instance will be always followed by the size
of the problem. For instance, Los10 will denote an instance coming from Los
paper of size 10. The tests are performed on intel(R) core i3-2348M CPU @
2.30GHZ 2.30GHZ with 4Gb of ram memory.

All algorithms 1, 3, 4, and GGG showed in figure 2, have stochastic nature
because of the initial starting points or random choices within the algorithms.
Thus, to increase the ability to explore a larger solution space, we ran these
algorithms many times and present the best solution founded. All algorithms
implies also some parameters fixed as follows. The maximal number of itera-
tions (m) of the algorithm 3 has been fixed to 500 for instances of size up to
50, and to 50 for instances of size between 51 to 100 . The initial population
size of the genetic algorithm 4 is 10 for instances of size 100 and 20 for others,
for all the generations. And for each instance the number of generations N is
70 for the genetic algorithm 4, and 70 for the GGG algorithm 2.

6.1 Academic instances

To our knowledge, except the two instances of the Los paper, there are no
other benchmarks in the literature with which we can evaluate our heuristic
solutions by comparing different solution techniques for our problem. The aca-
demic instances, derived from QAPLIB ones, are used for the first time. Thus,
to have a meaningful evaluation of our methods, we choose to compare our

ON-QAP 15

results with one of the leading optimization software tools LocalSolver (version
7.5). LocalSolver combines several algorithmic techniques making it possible
to tackle large-scale combinatorial and / or numerical optimization problems
in very short times. If a maximal resolution time to solve a problem is spec-
ified, LocalSolver will not necessarily reach the optimal value but numerical
experiments show that, in comparison to other standard codes (such as Gurobi
or Cplex), LocalSolver can find (and often outperform) very good approxima-
tions. Thus, for each instance, the mathematical formulation of (ONQAP) has
been implemented in LocalSolver, and solved with a maximal processing time
of 1800 seconds for instances of size n ≤ 50, 2000 seconds for instances of size
n = 90, and 2500 seconds for instances of size n = 100. The best solution
values are then compared them with the values provided by our heuristics.
The results are reported in table 1.

UB-LS in this table corresponds to the value found by LocalSolver while
the other columns concern our heuristics. Greedy(x) (resp. Greedy (y)) al-
gorithm is the greedy algorithm where the assignments (resp. network) have
been fixed at the beginning. The column GA reports the results of the standard
Genetic Algorithm where the initial population is random and the different
operators detailed above are applied. It has to be compared with the column
GGG where the results of the hybridization with our greedy algorithm are
reported. This comparison gives an evaluation of the benefit of the greedy
algorithm. When our value is better than the LocalSolver one we indicate it
by the sign “**”, while “*” means that we have the same value. In table 2,
we report permutations corresponding to the best solutions and in table 3, we
report the processing times. In figure 3, we show graphically the processing
times of all algorithms. Except two instances (Nug22 and Sko42), at least one
of our upper bounds is always better than the LocalSolver solution. Notice
that our results depend on the simulation parameters. One can obtain better
result by choosing other values for the parameters, like the number of iter-
ations of the heuristic of QAP, the number of population and generation of
the genetic algorithm, etc. But the processing time increases with the values
of these parameters. The algorithm GGG gives, on average, the best results,
with computational times ranging from 2 to 1531 seconds. In comparison, Lo-
calSolver needs between 2 seconds and 2500 seconds to find its best solutions.
Nevertheless, the performance of our heuristic algorithms, in comparison to
LocalSolver, should be balanced with the fact that Localsolver runs directly
on the formulation (ONQAP). Another formulation on the same problem may
lead to better results.

16 Baldé, Gueye, Ndiaye

Data UB-LS Greedy(x) Greedy(y) GA GGG
Els19** 1.67760e+07 1.67657e+07 1.74978e+07 1.72381e+07 1.67393e+07
Had12* 1932 1932 1932 1932 1932
Had16* 4120 4120 4120 4120 4120
Had20* 7422 7422 7422 7472 7422
Kra32** 2.66502e+06 2.24233e+06 2.24256e+06 2.27793e+06 2.23936e+06
Los14* 4.03755e+07 4.03875e+07 4.03875e+07 4.03875e+07 4.03755e+07
Los16* 5.85162e+07 5.85525e+07 5.86338e+07 5.92312e+07 5.85162e+07
Nug12* 892 892 892 892 892
Nug14* 1398 1398 1398 1398 1398
Nug15* 1570 1570 1570 1594 1570
Nug16a* 2070 2070 2070 2082 2070
Nug17** 2220 2228 2220 2228 2200
Nug18* 2468 2470 2470 2484 2468
Nug20** 3202 3190 3190 3262 3190
Nug22 4154 4200 4200 4200 4194
Nug25** 4554 4540 4540 4774 4538
Nug30** 7200 7132 7124 7474 7124
Tho30* 150914 156086 154942 171310 150914
Tho40** 252298 252302 252242 279696 252242
Sko42 17452 17780 17816 17900 17558
Sko100** 194962 171308 173272 174620 170230
Tai100b 1.31184e+09 1.48512e+09 1.36733e+09 1.7238e+09 1.36546e+09
Scr20** 114600 114250 114670 152698 114250
Rou20 243854 299416 301146 312626 298708
Lipa40b 584049 586510 585259 608121 584791
Lipa50b** 1.28929e+06 1.29008e+06 1.28816e+06 1.34308e+06 1.2863e+06
Lipa90a** 479110 467935 468671 468086 467699
Wil50 62936 65162 65092 66722 64628
Wil100** 333266 293882 293910 298188 292376

Table 1 Objective values : the instances with “*” mean we obtain same result with Local-
Solver and with “**” mean we obtain better result than LocalSolver.

Data Permutation of UB-LS Permutation of our best result
Els19** 9, 10, 7, 19, 11, 14, 4, 5, 6, 12, 17, 13, 18, 8, 15, 16,

1, 2, 3
9, 10, 7, 19, 11, 14, 4, 17, 6, 12, 13, 5, 18, 8, 15, 16,
1, 2, 3

Had12* 3, 10, 11, 2, 12, 5, 6, 7, 8, 1, 4, 9 3, 10, 11, 2, 12, 5, 6, 7, 8, 1, 4, 9
Had16* 9, 4, 16, 1, 7, 8, 6, 14, 15, 11, 12, 10, 5, 3, 2, 13 9, 4, 16, 1, 7, 8, 6, 14, 15, 11, 12, 10, 5, 3, 2, 13
Had20* 8, 15, 16, 14, 19, 6, 7, 17, 1, 12, 10, 11, 5, 20, 2, 3,

4, 9, 18, 13
8, 15, 16, 14, 19, 6, 7, 17, 1, 12, 10, 11, 5, 20, 2, 3,
4, 9, 18, 13

Kra32** 16, 7, 9, 17, 21, 13, 20, 8, 2, 4, 15, 14, 6, 3, 19, 28,
31, 27, 18, 1, 23, 30, 32, 12, 25, 24, 11, 10, 29, 26,
5, 22

7, 8, 22, 20, 2, 3, 5, 9, 17, 11, 6, 12, 16, 1, 4, 13, 23,
21, 31, 10, 29, 25, 19, 32, 26, 30, 27, 15, 18, 14, 24,
28

Los14* 14, 6, 4, 10, 1, 9, 13, 12, 8, 5, 2, 11, 7, 3 14 , 6, 4, 10, 1, 9, 13, 12, 8, 5, 2, 11, 7, 3
Los16* 14, 1, 8, 7, 13, 16, 4, 9, 2, 11, 10, 12, 15, 3, 6, 5 14, 1, 8, 7, 13, 16, 4, 9, 2, 11, 10, 12, 15, 3, 6, 5
Nug12* 12, 11, 9, 3, 4, 7, 8, 1, 5, 6, 10, 2 12, 11, 9, 3, 4, 7, 8, 1, 5, 6, 10, 2
Nug14* 9, 8, 13, 2, 1, 11, 7, 14, 3, 4, 12, 5, 6, 10 9, 8, 13, 2, 1, 11, 7, 14, 3, 4, 12, 5, 6, 10
Nug15* 12, 5, 15, 6, 10, 11, 7, 14, 3, 4, 9, 8, 13, 2, 1 12, 5, 15, 6, 10, 11, 7, 14, 3, 4, 9, 8, 13, 2, 1
Nug16a* 9, 14, 15, 16, 3, 10, 12, 8, 11, 6, 5, 7, 1, 4, 13 9, 14, 15, 16, 3, 10, 12, 8, 11, 6, 5, 7, 1, 4, 13
Nug17** 9, 14, 12, 11, 16, 3, 2, 15, 8, 4, 6, 5, 7, 1, 17, 13 9, 14, 12, 11, 16, 10, 2, 15, 8, 4, 3, 5, 7, 1, 17, 6, 13
Nug18** 9, 14, 12, 11, 16, 10, 2, 15, 8, 4, 3, 18, 7, 1, 17, 6,

13, 5
9, 14, 12, 11, 16, 10, 2, 15, 8, 4, 3, 18, 7, 1, 17, 6,
13, 5

Nug20** 17, 4, 11, 19, 16, 20, 8, 15, 2, 18, 13, 7, 12, 14, 9, 6,
5, 1, 10, 3

9, 3, 10, 14, 18, 16, 11, 12, 2, 4, 13, 8, 20, 15, 19, 6,
1, 7, 5, 17

Nug22 5, 6, 12, 10, 7, 1, 22, 11, 8, 15, 17, 2, 13, 21, 9, 16,
3, 18, 19, 4, 14, 20

2, 21, 9, 7, 3, 1, 19, 8, 20, 17, 5, 13, 12, 16, 11, 22,
18, 4, 14, 15

Nug25** 5, 11, 20, 15, 22, 2, 25, 8, 9, 1, 18, 3, 16, 6, 19, 24,
4, 21, 7, 21, 10, 12, 17, 14, 13

12, 24, 18, 11, 5, 17, 21, 16, 25, 2, 4, 14, 3, 8, 20,
23, 7, 6, 9, 15, 13, 10, 19, 1, 22

Nug30** 5, 2, 21, 13, 6, 28, 29, 16, 9, 7, 12, 25, 4, 30, 19, 11,
10, 26, 20, 3, 8, 22, 1, 24, 14, 27, 18, 23, 15, 17

15, 23, 11, 30, 27, 4, 17, 18, 8, 16, 3, 14, 1, 22, 7,
19, 29, 20, 26, 6, 10, 9, 21, 28, 24, 12, 25, 13, 2, 5

Tho30* 11, 7, 14, 16, 23, 21, 22, 15, 18, 20, 3, 5, 24, 4, 17,
8, 26, 13, 6, 12, 29, 19, 1, 27, 2, 28, 30, 25, 10, 9

11, 7, 14, 16, 23, 21, 22, 15, 18, 20, 3, 5, 24, 4, 17,
8, 26, 13, 6, 12, 29, 19, 1, 27, 2, 28, 30, 25, 10, 9

Tho40** 25, 27, 8, 13, 21, 23, 24, 19, 36, 26, 35, 32, 37, 28,
33, 4, 34, 12, 29, 16, 30, 15, 6, 7, 17, 31, 11, 10, 14,
2, 1, 40, 3, 38, 5, 22, 9, 20, 39, 18

17, 31, 29, 10, 11, 12, 34, 3, 25, 35, 21, 8, 6, 14, 40,
36, 5, 27, 22, 20, 15, 1, 9, 7, 26, 32, 16, 24, 33, 30,
39, 18, 38, 13, 23, 37, 4, 28, 2, 19

Sko42 40, 10, 6, 16, 11, 30, 12, 28, 33, 8, 41, 34, 18, 9, 39,
32, 3, 14, 13, 19, 26, 24, 37, 23, 31, 17, 25, 27, 7,
20, 0, 36, 38, 1, 21, 5, 15, 2, 4, 29, 35, 22

27, 10, 42, 5, 17, 41, 25, 13, 31, 19, 32, 12, 7, 11, 2,
39, 30, 18, 34, 36, 6, 28, 14, 35, 26, 20, 3, 29, 22,
15, 40, 37, 38, 24, 23, 33, 4, 9, 21, 1, 16, 8

ON-QAP 17

Sko100** 6, 87, 80, 42, 47, 78, 81, 10, 77, 96, 58, 54, 49, 48,
88, 57, 32, 4, 13, 33, 65, 26, 82, 50, 37, 53, 70, 94,
20, 74, 23, 36, 18, 46, 60, 72, 99, 11, 8, 44, 92, 93,
7, 71, 90, 55, 62, 40, 17, 85, 3, 15, 1, 66, 56, 21, 35,
89, 12, 75, 41, 79, 38, 84, 98, 63, 14, 34, 31, 83, 29,
2, 24, 16, 67, 91, 39, 69, 19, 76, 43, 68, 9, 86, 64,
25, 95, 97, 27, 61, 5, 0, 30, 28, 59, 73, 45, 22, 51, 52

23, 42, 7, 37, 17, 12, 70, 27, 31, 62, 19, 72, 96, 21,
89, 50, 60, 4, 63, 5, 90, 68, 93, 28, 11, 43, 46, 52,
56, 44, 32, 24, 97, 18, 47, 41, 26, 48, 25, 76, 53, 79,
91, 6, 3, 2, 57, 8, 82, 16, 65, 87, 34, 13, 83, 49, 22,
81, 74, 80, 54, 85, 1, 15, 94, 75, 98, 59, 69, 95, 45,
71, 67, 64, 58, 0, 61, 20, 30, 10, 39, 40, 36, 77, 92,
84, 66, 73, 38, 35, 33, 29, 9, 99, 14, 88, 51, 78, 55,
86

Tai100b 77, 47, 66, 82, 64, 24, 91, 83, 92, 58, 89, 40, 12, 63,
6, 70, 76, 52, 75, 25, 85, 55, 96, 78, 13, 15, 36, 49, 5,
69, 10, 72, 29, 39, 59, 57, 8, 68, 23, 14, 45, 74, 48,
22, 4, 31, 62, 42, 80, 17, 50, 46, 43, 21, 84, 18, 33,
90, 60, 61, 95, 97, 93, 65, 3, 56, 19, 2, 94, 51, 26,
88, 41, 54, 0, 79, 44, 30, 98, 7, 53, 28, 86, 73, 38,
11, 99, 9, 1, 71, 87, 35, 67, 37, 81, 32, 20, 34, 27, 16

33, 28, 92, 89, 24, 82, 86, 40, 13, 42, 97, 49, 8, 99,
74, 85, 66, 98, 88, 39, 60, 81, 75, 53, 12, 79, 83, 14,
15, 41, 17, 45, 25, 27, 78, 76, 62, 16, 50, 9, 20, 68,
32, 71, 11, 44, 18, 87, 95, 1, 19, 30, 47, 94, 80, 0,
36, 70, 58, 6, 73, 61, 23, 65, 64, 29, 2, 4, 90, 77, 26,
43, 37, 31, 5, 96, 59, 93, 22, 7, 54, 63, 52, 21, 69,
38, 57, 56, 48, 55, 34, 67, 3, 72, 35, 46, 10, 84, 51,
91

Scr20** 16, 17, 4, 13, 18, 12, 14, 15, 0, 5, 11, 10, 3, 1, 2, 7,
6, 8, 9, 19

19, 8, 9, 4, 13, 0, 12, 16, 11, 10, 2, 6, 15, 14, 18, 3,
7, 1, 5, 17

Rou20 15, 9, 0, 14, 10, 1, 19, 11, 6, 17, 13, 12, 7, 3, 18, 2,
8, 5, 4, 16

6, 2, 8, 14, 18, 19, 0, 5, 7, 9, 16, 1, 13, 10, 3, 15, 11,
17, 4, 12

Lipa40b 27, 14, 19, 2, 30, 8, 39, 6, 33, 0, 25, 22, 4, 5, 35, 38,
31, 9, 23, 29, 18, 15, 28, 13, 12, 17, 11, 20, 1, 7, 26,
24, 16, 3, 34, 10, 32, 36, 37, 21

11, 14, 16, 31, 24, 23, 19, 37, 9, 12, 26, 17, 13, 8, 6,
36, 35, 7, 1, 29, 20, 25, 21, 27, 32, 28, 39, 2, 18, 5,
0, 4, 15, 22, 3, 10, 34, 30, 38, 33

Lipa50b** 19, 9, 40, 5, 31, 16, 27, 34, 45, 25, 43, 44, 1, 4, 39,
46, 26, 37, 28, 14, 42, 8, 6, 11, 3, 15, 29, 36, 23, 30,
12, 7, 47, 49, 13, 22, 17, 35, 21, 32, 2, 48, 10, 41,
18, 20, 24, 38, 0, 33

10, 44, 47, 36, 28, 21, 12, 11, 41, 30, 43, 42, 26, 24,
33, 20, 45, 46, 25, 2, 32, 8, 13, 14, 15, 29, 19, 49,
40, 22, 31, 37, 18, 0, 39, 7, 23, 27, 3, 35, 4, 1, 16,
48, 9, 5, 17, 34, 38, 6

Lipa90a** 48, 57, 41, 62, 31, 3, 6, 80, 74, 54, 67, 66, 25, 82, 85,
16, 46, 33, 45, 47, 89, 23, 59, 29, 75, 5, 84, 8, 51, 9,
17, 37, 24, 64, 20, 1, 19, 70, 30, 32, 27, 0, 13, 18, 4,
10, 2, 36, 63, 40, 44, 77, 12, 53, 88, 78, 87, 58, 26,
15, 61, 22, 73, 34, 79, 11, 60, 7, 55, 52, 72, 71, 68,
50, 83, 76, 86, 14, 42, 35, 28, 49, 81, 38, 65, 69, 43,
21, 56, 39

84, 60, 42, 52, 73, 22, 15, 72, 21, 16, 78, 55, 30, 77,
28, 12, 23, 67, 14, 82, 46, 27, 10, 88, 41, 44, 13, 32,
4, 34, 58, 47, 48, 9, 79, 80, 76, 25, 43, 5, 65, 31, 3,
83, 62, 61, 59, 24, 35, 63, 17, 11, 2, 33, 56, 26, 70,
40, 36, 19, 89, 74, 0, 6, 68, 85, 1, 20, 18, 86, 53, 45,
75, 69, 57, 51, 39, 49, 81, 37, 7, 38, 66, 29, 71, 87,
8, 50, 54, 64

Wil50 0, 38, 5, 45, 1, 34, 19, 17, 9, 31, 14, 39, 18, 10, 15,
21, 44, 29, 6, 48, 11, 30, 7, 24, 28, 8, 49, 33, 42, 32,
12, 22, 4, 47, 41, 46, 35, 25, 36, 2, 23, 43, 37, 3, 13,
40, 16, 20, 26, 27

19, 42, 43, 17, 37, 47, 11, 33, 10, 27, 31, 4, 14, 28,
41, 25, 6, 2, 30, 0, 46, 9, 32, 45, 40, 20, 7, 8, 48, 38,
21, 34, 5, 1, 29, 35, 3, 23, 15, 36, 24, 18, 13, 16, 26,
49, 12, 39, 22, 44

Wil100** 80, 35, 58, 54, 45, 85, 18, 3, 91, 92, 86, 16, 75, 41,
90, 94, 95, 23, 39, 2, 98, 61, 56, 38, 17, 34, 55, 81,
47, 96, 78, 89, 99, 40, 87, 25, 22, 36, 57, 28, 44, 5,
30, 84, 53, 20, 26, 50, 79, 60, 73, 76, 48, 52, 29, 62,
0, 66, 46, 10, 64, 4, 88, 69, 49, 14, 43, 97, 37, 13,
15, 77, 83, 93, 68, 74, 59, 11, 72, 82, 65, 6, 67, 21,
12, 33, 71, 8, 9, 63, 24, 19, 32, 1, 31, 42, 7, 51, 27,
70

44, 71, 8, 59, 78, 88, 30, 80, 29, 50, 13, 43, 46, 9, 27,
14, 40, 54, 23, 84, 92, 73, 66, 35, 51, 55, 18, 37, 42,
10, 6, 34, 38, 17, 4, 94, 49, 2, 67, 93, 41, 65, 16, 3,
19, 99, 11, 61, 85, 58, 57, 83, 95, 76, 90, 98, 87, 5,
0, 75, 45, 60, 68, 47, 31, 64, 69, 91, 32, 28, 24, 22,
25, 48, 52, 97, 74, 62, 21, 96, 1, 86, 20, 79, 36, 33,
82, 77, 63, 39, 89, 53, 7, 81, 72, 56, 12, 15, 70, 26

Table 2 Activities location : permutation associated to the solution of LocalSolver and
permutation corresponding to the best solution obtained with our algorithms.

18 Baldé, Gueye, Ndiaye

Data tUB−LS tGreedy(x) tGreedy(y) tGA tGGG

Els19 1015 7 6 10 10
Had12 2 1 1 2 2
Had16 31 4 3 2 5
Had20 388 9 7 5 13
Kra32 829 35 28 28 56
Los14 146 2 2 3 4
Los16 1633 4 4 6 5
Nug12 129 1 1 2 2
Nug14 592 2 2 3 4
Nug15 243 3 3 4 5
Nug16a 546 4 3 3 5
Nug17 591 5 5 6 7
Nug18 79 6 5 5 8
Nug20 1097 10 10 6 8
Nug22 399 12 11 8 11
Nug25 753 26 26 13 19
Nug30 119 49 50 19 46
Tho30 504 25 22 25 36
Tho40 389 191 185 93 125
Sko42 128 214 210 120 150
Sko100 2373 1105 1065 2492 1341
Tai100b 2500 1417 1274 1861 1531
Scr20 454 4 3 10 9
Rou20 912 4 4 9 8

Lipa40b 968 72 65 155 55
Lipa50b 687 164 165 321 167
Lipa90a 1997 996 679 2363 1509
Wil50 1260 497 530 1895 958
Wil100 1692 813 770 1943 1359

Table 3 Processing times (in second)

6.2 Case study : Dakar

The heuristic algorithms have been also tested for a real-world case on Dakar
(Senegal). Different data sources have been exploited for this case study.
Origin-Destination flows were built from the mobile phone data used in the
d4d challenge [12]. The d4d challenge (Data For Development) is an innova-
tion challenge on ICT Big Data for the purposes of societal development. The
second edition, in which we have participated, was organized in 2015 by the
French telecommunication group Orange and its partner in Senegal, Sonatel.
Sonatel and the Orange Group have provided anonymous data, extracted from
the mobile phone network in Senegal. One family of these data contains tra-
jectories of millions of agents (or customers), in Senegal, in 2014 which is
compiled as follows. Each time an Orange/Sonatel customer makes or receives
a call with its mobile phone, this call is in practice possible by connection
through relay antennas (or mobile phone antennas) performing the message
transmissions. If the customer does not move, its closest relay antennas will
detect the call request. Whereas, if he moves, different (closest) antennas met

ON-QAP 19

Fig. 3 Processing times of algorithms

Fig. 4 Processing times per size of algorithms

20 Baldé, Gueye, Ndiaye

during his trip may be used. Thus, for a customer, the registration (in files)
of the relay antennas used in a given period can be useful to re-build cus-
tomer trip trajectories. The d4d big data are organized in 25 files, each one
containing the list of visited mobile phone antennas, over a period of 2 weeks,
for 320,000 individuals, anonymized, and randomly selected. For each file, the
sample of 320,000 individuals is renewed to ensure anonymity. For a given week
in 2014, by analyzing the corresponding file, it is thus possible to deduce the
total amount of trips between any pair of antennas. However, we are not inter-
ested in the antennas, where an agent has been detected, but on the activities
performed around them because our goal is to find good locations for them.
Our case study is limited to the file corresponding to the first 2 weeks of 2014,
and for this file we limit ourself to agent trips in the Dakar region (not in the
entirety of Senegal). With this limitation, we exploit the file as follows. The
antennas have been first grouped in clusters to solve the problem of antenna
co-localization. Co-localization means that several mobile phone antennas are
located nearby. It follows that from time to time a call can be supported over
a short period by several antennas even if the agent calling (receiving a call)
does not move. In other words, detecting an agent with two antennas close to
each other does not mean that the agent performed a trip which should be con-
sidered as a flow. Thus to have more precise information on real movements,
we perform a hierarchical ascendant clustering of the antennas. This algorithm
provides clusters of antennas where, in each cluster, the maximal distance be-
tween any pair of antennas does not exceed a given threshold. Thus an agent
successively detected by two antennas in the same cluster will be then consid-
ered as motionless. Using the d4d file, we implement an algorithm giving for
each pair of antennas cluster the total amount of moves. This corresponds pre-
cisely to the O-D matrix describing flows between the antenna clusters. Now,
in addition to the D4D file, we have also retrieved and exploited Open Street
Map (OSM) resources, in particular the OSM data for Senegal provided by
the Humanitarian OpenStreetMap Team (HOT). Using the tool Osmosis and
the open source Geographical System Quantum GIS, we separately construct
a list of Dakar amenities (activities) with their geographical locations. As we
also have mobile phone antenna locations, each amenity has been assigned
to its closest antenna. As a consequence, the union of activities assigned to
each antenna of a cluster also defines a cluster of activities. We assume that if
an agent is detected moving from antenna cluster O to antenna cluster D, it
means that he moves from an activity of the cluster of activities associated to
O to another activity of the activities associated to D. Our problem is then to
find where the cluster of activities should be located and what should be the
transportation links between them to optimize the overall sum (for all agents)
of the trip costs between the activity clusters.

For one flow going from O to D, another important data item is the evalu-
ation of the trip cost. It is assumed in our model that this cost corresponds to
the distance between O and D. But, there are at least two ways to compute
this distance that may lead to different solutions. Geographical distance is the

ON-QAP 21

simplest evaluation but it assumes that it is possible to build a direct road
from O and D which may be not possible in practice because of land con-
straints. Another way is to consider the current transportation network and
to compute the shortest road distance between the median antennas of O and
D. Doing this removes the road feasibility problem since the distances corre-
spond here to real-life roads. However, in turn, the optimal network computed
by the algorithm will be in fact a sub-network of the current one. We choose
in our experiments this second approach.The distances have been computed
using Google Maps APIs on the real transportation network.

It is also important at this point to focus on the motivations of these exper-
iments and their practical applicability. We obviously know that, in practice,
permuting two clusters of activities, as well as building a new transportation
line, may be difficult and in certain cases impossible. Of course, in the real-life,
the city design cannot be modified as in the electronic game SimCity1. Ac-
tivities are not puzzles or chess pieces that urban planners may easily move.
Our work consists in giving models whose optimal solutions give an idea of
the “best” activity locations and transportation network taking into account
observed O-D flows (“best” in the sense of an optimization function). Know-
ing this “ideal” city, planners can then compare it with the current situation,
and take any feasible decisions to reach it. Notice that in our experiments, all
activity clusters may move but simple constraints may be added to allow the
movements of a given subset of activities. An urban planner can then use the
models to just analyze suitable locations of k (fixed) activity clusters. In our
experiments, 43 antenna clusters have been built. Given that an activity clus-
ter is associated with each antenna cluster, we also have 43 activity clusters
for which we want to find the best location among them, and the best links
connecting them.

Map 5 gives the geographical position of the “median” antenna of each
cluster. The “median” antenna is defined as the antenna minimizing the sum
of the distance to the others. That is in each cluster the geographical position of
the optimal solution of a 1-median location problem. Each cluster (of antennas
or activities) is identified by a number. Initially, the clusters and the areas
(locations) where they are located have the same indices. New locations for
the activity clusters correspond to a permutation of these clusters.

Using informations provided by Senegalese maps and geographical pub-
lic offices (DGTC : Direction des Travaux Gographiques et Cartographiques,
CETUD: Conseil Excutif des Transports Urbains de Dakar), we assume that
between areas the possible road to be constructed is monolayer with width
of 7m. It is estimated (by these offices) that 1 km of this type of road costs
CM = 33, 246, 500 F CFA. By which the cost to construct an edge (k, l) be-
tween the areas k and l is bkl = CM ∗ wkl.

For the location cost of activities, we consider two situations :

1 https://www.ea.com/games/simcity

22 Baldé, Gueye, Ndiaye

Fig. 5 Considered zones n = 43, green points : Average geographical position of subsets of
activities

– The case without cost : the location cost is chosen equal to zero for all
activities. We notice it data Dkr1 43.

– In the second case, the cost aik to locate the activities cluster i on the
location k is equal to

aik = sipk

where si is the total surface occupied by i and pk the land price by (squarre
meters) in k. si is obtained by adding the surface of each activity in the
cluster and pk from informations given by public organism. This data is
noticed Dkr2 43.

The simulation results are given in the table 4 and the time processing
times in the table 5.

Data UB-LS Greedy(x) Greedy(y) GA GGG
Dkr1 43 281847 284250 286662 282085 281262
Dkr2 43 10986.5 7990.67 7991.65 8015.95 7990.1

Table 4 Values of real life tests : (×106).

The algorithms are particularly good for these real life instances. Our algo-
rithm always finds better solutions than LocalSolver. We show in figure 6 the
graphical processing times of all algorithms, and in figure 7 the new locations
of the activities cluster found as well as the transportation links computed by
our algorithm. With a significantly lower processing times in comparison to

ON-QAP 23

Data tUB−LS tGreedy(x) tGreedy(y) tGA tGGG

Dkr1 43 1752 260 251 294 142
Dkr2 43 1246 289 296 186 183

Table 5 Processing times of tests on real life.

Fig. 6 Processing times of algorithms

LocalSolver, the best algorithm GGG always find better solution (in term of
objective function value). The best solution is graphically presented in figure
7. We can observe in this figure that, for instance, the activity (in blue) 29
has been assigned to the location (in black) 11 and the activity 15 to the lo-
cation 8. But, activities 29 and 15 was initially located in the areas 29 and
15. Actually 29 is a residential area, with few jobs activities, in comparison
to the area 15 which is a dynamic activity center in Dakar. It is also known
that, in Dakar, the traffic (specially in the work periods) goes from suburbs
areas in the east of the picture towards the job areas in the west. Observing
the map, we can see that the activities 29 and 15 are initially far away from
each other. So, the solution found suggests to put them more closer to each
other in the areas 8 and 11 in order to reduce the transportation costs of the
individuals traveling from area 29 to 15. Even if in practice such permutation
will be difficult, this is precise the kind of results we theoretically expect.

24 Baldé, Gueye, Ndiaye

Fig. 7 Result coresponding to the best solution for Dkr1 43 instance : n = 43 activi-
ties(blue) and zones(black), with road(red) to build in logical link.

7 Conclusion and Perspectives

We propose, in this paper, methodologies to solve the Optimal Network and
Quadratic Assignment Problem. We formulate it as a mixed integer program-
ming problem, and propose a greedy algorithm, based on theorem 1, showing
how to reach a local optima by solving alternatively a QAP problem and a net-
work design one. To solve the sub-problems (all NP-Hard), standard schemes
have been exploited : 2-opt neighbourhood search heuristic for QAP, deletion
method for the network design problem. Genetic algorithm is then applied in
an initial population composed of the greedy solution and some others ran-
domly perturbed from it. The best solutions found by the genetic algorithm
have been used as starting points for the greedy algorithm. We call this al-
gorithm the Greedy-Genetic-Greedy algorithm. Despite the fact that several
iterations between the greedy and the genetic method can be done, the al-
gorithm GGG is limited to just 1 iteration for processing time reasons. With
just 1 iteration, our method performed better (in terms of solution qualities
and processing times) than the best local search software (LocalSolver) when
using academic instances.

Hence, our main theoretical contribution resides in an original greedy
method, based on theorem 1, to solve an NP-Hard problem combining QAP
and a network design problem. This method provides solutions used as initial
population in a genetic algorithm in which several implementation choices,,
based on the literature, have been done. The best algorithm (GGG), in the
light of the numerical results, alternates iteratively between the greedy and
the genetic algorithms. The construction of a real-life data with which this

ON-QAP 25

algorithm has been applied is also another important but practical contribu-
tion. Indeed, a significant work has been performed to derive from big data
files, containing trajectories of millions of individuals in Senegal, suitable infor-
mations with which new activity locations and transportation network design
have been computed. Notice that processing these big data to extract such
relevant informations is not a trivial task. Several steps and choices, explained
in the sub-section 5.2, are necessary : clustering of the mobile phone antenna,
exploitation of the OSM resources to identify activities in Dakar, assignment
of these activities to the closest clusters, processing the files to compute the
amount of trips (flows) between clusters, etc. (see section 5.1). In comparison
to LocalSolver, for this instance, our genetic algorithm is also able to compute
meaningful solutions (as illustrated in the picture) in a reduced amount of
times.

However, despite of the good numerical observations, attention must be
paid to the results interpretation and the problem formulation. In this paper,
two important assumptions have been made. In the first one, the well-known
congestion phenomena have been omitted. Indeed, we always assume that the
flows are routes on the shortest path according to the route lengths. This
is not always true. A more sophisticated model should express the routing
time in any arc as a function of the flows. We will fall in this case on more
complex equilibrium models. The other hypothesis consists in considering that
the activity locations are independent of the O-D flows. Wherever the activities
are located, our model based on the Quadratic Assignment Problem assumes
that the O-D flows are constant. But in practice, changing the locations of
some activities may have a big impact on the flows arriving or leaving them.
A model closer to the reality should express the O-D flows as a function of the
activity locations leading to much more complex formulations.

Acknowledgements The authors are grateful to John Catherall and James Bleach (the
õbex project) for their editorial support. As well as to the two reviewers for their valuable
comments that help to improve the paper quality.

References

1. Balàc M., Ciari F., Genre-Grandpierre C., Voituret F., Gueye S., and Michelon P., 2014,
Decoupling accessibility and automobile mobility in urban areas. in Transport Research
Arena, Paris.

2. Bean J.C., 1994, Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. , Vol. 6, pp. 154-60.

3. Billheimer J.W., 1970, Optimal route configurations with fixed link construction costs,
Stanford Research Institut. SRI-Project 454531-309.

4. Burkard R. E., Karisch S. E., and Rendl F., 1997, Qaplib a quadratic assignment problem
library. J. Global Opt., Vol. 10, pp. 391403.

5. Davis L., 1991, Handbook of Genetic Algorithms, Van Nostrand. New York.

6. Elshafei A. N., 1977, Hospital Layout as a Quadratic Assignment Problem. Operational
Research Quarterly, Vol. 28, No. 1, Part 2, pp. 167-179.

26 Baldé, Gueye, Ndiaye

7. Fleurent C., Ferland J.A., 1994, Genetic hybrids for the quadratic assignment problem.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 16,
Providence. RI: American Mathematical Society, pp. 173-87.

8. Floyd R. W., 1962, Algorithm 97: Shortest Path. Communications of the ACM 5 (6):
345.

9. Gamvros I., Golden B., Raghavan S., and Stanojevi D., Heuristic search for network
design. The Robert H. Smith School of Business. University of Maryland. College Park,
MD 20742-1815.

10. Garey M-R., and Johnson D-S.,1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co. New York, NY, USA.

11. Goldberg D.E., Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Reading, MA, 1989.

12. Gueye S., Ndiaye B.M., Josselin D., Poss M., Faye R.M., Michelon P., Genre-Grandpierre
C., and Ciari F., 2015, Using mobile phone data for Spatial Planning simulation and
Optimization Technologies (SPOT), Data for Development Challenge Senegal, in Book of
Abstracts: Scientific Papers. N T15, p 516-534.

13. Hadley S. W., Rendl F. and Wolkowicz H., 1992, A New Lower Bound via Projection
for the Quadratic Assignment Problem. Mathematics of Operations Research, Vol. 17, No.
3, pp. 727-739.

14. Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, University of Michi-
gan Press, Ann Arbor, MI.

15. Krarup J., and Pruzan P. M., 1978, Computer-aided layout design. Mathematical Pro-
gramming Study, Vol. 9, pp. 75-94.

16. Lawler E.L., 1963. The quadratic assignment problem. Management Science, Vol. 9,
pp. 586-599.

17. Li Y., and Pardalos P.M, 1992, Generating quadratic assignment test problems with
known optimal permutations. Computational Optimization and Applications, 1:163-184.

18. Los M., 1978, Simultaneous optimization of land use and transportation. A Synthesis of
the Quadratic Assignment Problem and the Optimal Network Problem. Regional Science
and Urban Economics, Vol. 8, pp. 21-42.

19. Los M., 1979, A discrete-convex programming approach to simultaneous optimization
of land use and transportation. Transp. Res-B, Vol. 13B, pp. 33-48.

20. Xiong Y., and Schneider JB., 1995, Transportation network design using a cumulative
genetic algorithm and neural network. Transportation Research Record, 1364, pp. 37-44

21. Abdel-Baset M. , Manogaran G. , El-Shahat D., and Mirjalili S., 2018, Integrating the
whale algorithm with Tabu search for quadratic assignment problem: A new approach for
locating hospital departments Applied Soft Computing Journal, 73, 530-546.

22. Abdel-Baset M. , Wu H. , Zhou Y., and Abdel-fatah L., 2017, Elite opposition-flower
pollination algorithm for quadratic assignment problem. Journal of Intelligent & Fuzzy
Systems, 33, 901-911.

23. Lundqvist L., 1973, Integrated location- Transportation Analysis; A decomposition ap-
proach. Regional and Urban Economics, Vol. 3, N3, pp. 233-262.

24. Lin J-L., and Feng C-M., 2003, A bi-level programming model for the land use- network
design problem. The Annals of Regional Science, 37, pp. 93-105.

25. Nugent C.E., Vollman T.E., and Ruml, 1968, J. An experimental comparison of tech-
niques for the assignment of facilities to locations. Oper. Res., Vol. 16, pp.150-73.

26. Patriksson M., 1994, The traffic assignment problem : Models and methods. Linkping
Institute of Technology, Linkping, Sweden, VSP.

27. Sean L., 2013, Essentials of Metaheuristics, Lulu, Second Edition, available at
http://cs.gmu.edu/∼sean/book/metaheuristics/

28. Roucairol C.. Du sequentiel au parallèle: la recherche arborescente et son application à
la programmation quadratique en variables 0 et 1, 1987. Thèse d’Etat, Université Pierre
et Marie Curie, Paris, France.

29. Scott A.J., 1969, The optimal network problem: Some computational procedures.
Transportation Research , Vol. 3, pp. 201-210.

30. Scriabin M., and Vergin R.C., 1975, Comparison of computer algorithms and visual
based methods for plant layout. Management Science, 22:172-187.

31. Sheffi Y., 1984, Urban Transportation Networks: Equilibrium Analysis With Mathe-
matical Programming Techniques. Prentice Hall.

ON-QAP 27

32. J. Skorin-kapov. Tabu search applied to the quadratic assingnment problem. ORSA
Journal on Computing, 2(1):33-45, 1990.

33. E.D. Taillard. Comparison of iterative searches for the quadratic assingnment problem.
Location Science,3:87-105, 1995.

34. Tate D.E., and Smith A.E., 1985, A genetic approach to the quadratic assignment
problem. Comput. Oper. Res., Vol. 22, pp. 73-83.

35. Thonemann U.W., and Bölte A. An improved simulated annealing algorithm for the
quadratic assignment problem. Working paper, School of Business, Department of Pro-
duction and Operations Research, University of Paderborn, Germany, 1994.

36. Wilheilm M.R., and Ward T.L.. Solving quadratic assignment problems by simulated
annealing. IIE Transaction, 19/1:107-119, 1987.

37. Battiti, R., and Tecchiolli, G., 1994, The reactive tabu search. ORSA Journal of Com-
puting, 6(2), 126140.

38. Benlic, U., Hao, and J. K. (2013c). Breakout local search for the quadratic assignment
problem. Applied Mathematics and Computation, 219(9), 48004815.

39. Stützle, T., 2006, Iterated local search for the quadratic assignment problem. European
Journal of Operational Research, 174(3), 15191539.

