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& Criteo Research, Paris

Abstract

We consider the stochastic contextual bandit
problem with additional regularization. The
motivation comes from problems where the
policy of the agent must be close to some
baseline policy known to perform well on
the task. To tackle this problem we use a
nonparametric model and propose an algo-
rithm splitting the context space into bins,
solving simultaneously — and independently
— regularized multi-armed bandit instances
on each bin. We derive slow and fast rates
of convergence, depending on the unknown
complexity of the problem. We also con-
sider a new relevant margin condition to
get problem-independent convergence rates,
yielding intermediate rates interpolating be-
tween the aforementioned slow and fast rates.

1 INTRODUCTION AND
RELATED WORK

In sequential optimization problems, an agent takes
successive decisions in order to minimize an unknown
loss function. An important class of such problems,
nowadays known as bandit problems, has been math-
ematically formalized by Robbins in his seminal pa-
per (Robbins, 1952). In the so-called stochastic multi-
armed bandit problem, an agent chooses to sample
(or “pull”) among K arms returning random rewards.
Only the rewards of the selected arms are revealed
to the agent who does not get any additional feed-
back. Bandits problems naturally model the explo-
ration/exploitation trade-offs which arise in sequential
decision making under uncertainty. Various general
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algorithms have been proposed to solve this problem,
following the work of Lai and Robbins (1985) who ob-
tain a logarithmic regret for their sample-mean based
policy. Further bounds have been obtained by Agrawal
(1995) and Auer et al. (2002) who developed different
versions of the well-known UCB algorithm.

The setting of classical stochastic multi-armed ban-
dits is unfortunately too restrictive for real-world ap-
plications. The choice of the agent can and should
be influenced by additional information (referred to
as “context” or “covariate”) revealed by the environ-
ment. It encodes features having an impact on the
arms’ rewards. For instance, in online advertising, the
expected Click-Through-Rate depends on the identity,
the profile and the browsing history of the customer.
These problems of bandits with covariates have been
initially introduced by Woodroofe (1979) and have at-
tracted much attention since Wang et al. (2005); Gold-
enshluger et al. (2009). This particular class of bandits
problems is now known under the name of contextual
bandits following Langford and Zhang (2008).

Contextual bandits have been extensively studied in
the last decades and several improvements upon multi-
armed bandits algorithms have been applied to contex-
tual bandits (Agrawal and Goyal, 2013; Perchet and
Rigollet, 2013; Dudik et al., 2011). They are quite in-
tricate to study as they borrow aspects from both su-
pervised learning and reinforcement learning. Indeed
they use features to encode the context variables, as
in supervised learning but also require an exploration
phase to discover all the possible choices. Applications
of contextual bandits are numerous, ranging from on-
line advertising (Tang et al., 2013), to news articles
recommendation (Li et al., 2010) or decision-making
in the health and medicine sectors (Tewari and Mur-
phy, 2017; Bastani and Bayati, 2015).

Among the general class of stochastic multi-armed
bandits, different settings can be studied. One nat-
ural hypothesis that can be made is to consider that
the arms’ rewards are regular functions of the con-
text, i.e. two close context values have similar expected
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rewards. This setting has been studied in Srinivas
et al. (2010), Perchet and Rigollet (2013) and Slivkins
(2014). A possible approach to this problem is to
take inspiration from the regressograms used in non-
parametric estimation (Tsybakov, 2008) and to di-
vide the context space into several bins. This tech-
nique also used in online learning (Hazan and Megiddo,
2007) leads to the concept of UCBograms (Rigollet and
Zeevi, 2010) in bandits.

We introduce regularization to the problem of stochas-
tic multi-armed bandits. It is a widely-used technique
in machine learning to avoid overfitting or to solve ill-
posed problems. Here, the regularization forces the
solution of the contextual bandits problem to be close
to an existing known policy. As an example of motiva-
tion, an online-advertiser or any decision-maker may
wish not to diverge too much from a handcrafted policy
that is known to perform well. This has already moti-
vated previous work such as Conservative Bandits (Wu
et al., 2016), where an additional arm corresponding
to the handcrafted policy is added. By adding regu-
larization, the agent can be sure to end up close to
the chosen policy. Within this setting, the form of the
objective function is not a classical bandit loss any-
more, but contains a regularization term on the global
policy. Regularized bandit problems, with no context,
have been studied in (Berthet and Perchet, 2017), with
applications in online experiment design (Berthet and
Chandraskeran, 2016), motivated by computational-
statistical tradeoffs (Berthet and Rigollet, 2013; Wang
et al., 2016a; Berthet, 2014; Wang et al., 2016b; Baldin
and Berthet, 2018; Berthet and Ellenberg, 2019).

Our main contribution consists in an algorithm with
proven slow or fast rates of convergence, depending
on the unknown complexity of the problem at hand.
These rates are better than the ones obtained for
classical nonparametric contextual bandits. Based
on nonparametric statistics we obtain parameter-
independent intermediate convergence rates when the
regularization function depends on the context value.

The remaining of this paper is organized as follows.
We present the setting and problem in Section 2. Our
algorithm is described in Section 3. Sections 4 and 5
are devoted to deriving the convergence rates. Lower
bounds are detailed in Section 6 and experiments are
presented in Section 7. Section 8 concludes the paper.

2 PROBLEM SETTING AND
DEFINITIONS

2.1 Problem Description

We consider a stochastic contextual bandits problem
with K ∈ N∗ arms and time horizon T . It is de-

fined as follows. At each time t ∈ {1, . . . , T}, Nature
draws a context variable Xt ∈ X = [0, 1]d uniformly
at random. This context is revealed to an agent who
chooses an arm πt amongst the K arms. Only the loss

Y
(πt)
t ∈ [0, 1] is revealed to the agent.

For each arm k ∈ {1, . . . ,K} we note µk(X)
.
=

E(Y (k)|X) the conditional expectation of the arm’s
loss given the context. We impose classical regularity
assumptions on the functions µk borrowed from non-
parametric estimation. Namely we suppose that the
functions µk are (β, Lβ)-Hölder, with β ∈ (0, 1]. We
note Hβ,Lβ this class of functions.

Assumption 1 (β-Hölder). For all k ∈ [K]1,

∀x, y ∈ X , |µk(x)− µk(y)| ≤ Lβ ‖x− y‖β2 .

We denote by p : X → ∆K the proportion function
of each arm (also called occupation measure), where
∆K is the unit simplex of RK . In classical stochastic
contextual bandits the goal of the agent is to minimize
the following loss function

L(p) =

∫
X
〈µ(x), p(x)〉dx.

We add a regularization term representing the con-
straint on the optimal proportion function p?. For
example we may want to encourage p? to be close
to a chosen proportion function q, or to be far from
∂∆K . So we consider a convex regularization func-
tion ρ : ∆K ×X → R, and a regularization parameter
λ : X → R. Both ρ and λ are known and given to the
agent, while the µk functions are unknown and must
be learned. We want to minimize the loss function

L(p) =

∫
X
〈µ(x), p(x)〉+ λ(x)ρ(p(x), x) dx.

This is the most general form of the loss function. We
study first the case where the regularization does not
depend on the context (i.e. when λ is a constant and
when ρ is only a function of p).

The function λ modulates the weight of the regulariza-
tion and is chosen to be regular enough. More precisely
we make the following assumption.

Assumption 2. λ is a C∞ function and ρ is a C1

convex function.

In order to prove some propositions, the convexity of ρ
will not be enough and we will need strong convexity.
We will also be led to consider S-smooth functions:

Definition 1. A continuously differentiable function
f defined on a set D ⊂ RK is S-smooth (with S > 0)
if its gradient is S-Lipschitz continuous.

1[K] = {1, · · · ,K}
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The optimal proportion function is denoted by p? and
verifies p? = arginfp∈{X→∆K}L(p). If an algorithm
aiming at minimizing the loss L returns a proportion
function pT we define the regret as follows.

Definition 2. The regret of an algorithm outputting
pT ∈ {p : X → ∆K} is

R(T ) = EL(pT )− L(p?).

In the previous definition the expectation is taken on
the choices of the algorithm. The goal is to find after
T samples a pT ∈ {p : X → ∆K} the closest possible
to p? in the sense of minimizing the regret. Note that
R(T ) is actually a cumulative regret, since pT is the
vector of the empirical frequency of each arm, i.e. the
normalized total number of pulls of each arm. Earlier
choices affect this variable unalterably so that we face
a trade-off between exploration and exploitation.

2.2 Examples of Regularizations

The most natural regularization function considered
throughout this paper is the (negative) entropy func-
tion defined as follows:

ρ(p) =

K∑
i=1

pi log(pi) for p ∈ ∆K .

Since ∇2
iiρ(p) = 1/pi ≥ 1, ρ is 1-strongly convex. Us-

ing this function as a regularization forces p to go to
the center of the simplex, which means that each arm
will be sampled a linear amount of time.

We can consider instead the Kullback-Leibler diver-
gence between p and a known proportion function q:

ρ(p) = DKL(p||q) =

K∑
i=1

pi log

(
pi
qi

)
for p ∈ ∆K .

Instead of pushing p to the center of the simplex, the
KL divergence will push p towards q. This is typi-
cally motivated by problems where the decision maker
should not alter too much an existing policy q, known
to perform well on the task. Another way to force
p to be close to a chosen policy q is to use the `2-
regularization ρ(p) = ‖p− q‖22. These two last exam-
ples have an explicit dependency on x since q depends
on the context values, which was not the case of the en-
tropy (which only depends on x through p). Both the
KL divergence and the `2-regularization have a special
form that allows us to remove this explicit dependency
on x. They can indeed be written as

ρ(p(x), x) = H(p(x)) + 〈p(x), k(x)〉+ c(x)

with H a ζ-strongly convex function of p, k a β-Hölder
function of x and c any function of x.

Indeed,

DKL(p||q) =

K∑
i=1

pi(x) log

(
pi(x)

qi(x)

)

=

K∑
i=1

pi(x) log pi(x)︸ ︷︷ ︸
H(p(x))

+〈p(x),− log q(x)〉︸ ︷︷ ︸
k(x)

.

And

‖p(x)− q(x)‖22 = ‖p(x)‖2︸ ︷︷ ︸
H(p(x))

+〈p(x),−2q(x)︸ ︷︷ ︸
k(x)

〉+ ‖q(x)‖2︸ ︷︷ ︸
c(x)

.

With this specific form the loss function writes as

L(p) =

∫
X
〈µ(x), p(x)〉+ λ(x)ρ(p(x), x) dx

=

∫
X
〈µ(x) + λ(x)k(x), p(x)〉+ λ(x)H(p(x)) dx

+

∫
X
λ(x)c(x) dx.

Since we aim at minimizing L with respect to p, the
last term

∫
X λ(x)c(x) dx is irrelevant for the minimiza-

tion. Let us now note µ̃ = µ + λk. We are now mini-
mizing

L̃(p) =

∫
X
〈µ̃(x), p(x)〉+ λ(x)H(p(x)) dx.

This is actually the standard setting of Subsection 2.1
with a regularization function H independent of x. In
order to preserve the regularity of µ̃ we need λρ to be
β-Hölder which is the case if q is sufficiently regular.
Nonetheless, we remark that the relevant regularity is
the one of µ since λ and ρ are known by the agent.

As a consequence, from now on we will only consider
regularization functions ρ that only depend on p.

2.3 The Upper-Confidence Frank-Wolfe
Algorithm

We now briefly present the Upper-Confidence Frank-
Wolfe algorithm (UC-FW) from Berthet and Perchet
(2017), that will be an important tool of our own al-
gorithm. This algorithm is designed to optimize an
unknown convex function L : ∆K → R. At each time
step t ≥ 1 the feedback available is a noisy estimate of
∇L(pt), where pt is the vector of proportions of each
action. The algorithm chooses the arm k minimizing a
lower confidence estimate of the gradient value (simi-
larly as in the UCB algorithm (Auer et al., 2002)) and
updates the proportions vector accordingly. Slow and
fast rates for this algorithm are derived by the authors.
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3 ALGORITHM

3.1 Idea of the Algorithm

As the horizon is finite, even if we could use the
doubling-trick, and the reward functions µk are
smooth, we choose to split the context space X into
Bd cubic bins of side size 1/B. Inspired by UCBo-
grams (Rigollet and Zeevi, 2010) we are going to con-
struct a (bin by bin) piece-wise constant solution p̃T .

We denote by B the set of bins introduced. If b ∈ B
is a bin we note |b| = B−d its volume and diam(b) =√
d/B its diameter. Since p̃T is piece-wise constant on

each bin b ∈ B (with value p̃T (b)), we rewrite the loss
function into

L(p̃T ) =

∫
X
〈µ(x), p̃T (x)〉+ λ(x)ρ(p̃T (x)) dx

=
∑
b∈B

∫
b

〈µ(x), p̃T (b)〉+ λ(x)ρ(p̃T (b)) dx

=
1

Bd

∑
b∈B

〈µ̄(b), p̃T (b)〉+ λ̄(b)ρ(p̃T (b))

=
1

Bd

∑
b∈B

Lb(p̃T (b)) (1)

where Lb(p) = 〈µ̄(b), p〉 + λ̄(b)ρ(p) and µ̄(b) =
1

|b|
∫
b
µ(x) dx and λ̄(b) =

1

|b|
∫
b
λ(x) dx are the mean

values of µ and λ on the bin b.

Consequently we just need to minimize the unknown
convex loss functions Lb for each bin b ∈ B. We fall
precisely in the setting of Subsection 2.3 and we pro-
pose consequently the following algorithm: for each
time step t ≥ 1, given the context value Xt, we run one
iteration of the UC-FW algorithm for the loss function
Lb corresponding to the bin b 3 Xt. We note pT (b) the
results of the algorithm on each bin b.

Algorithm 1 Regularized Contextual Bandits

Require: K number of arms, T time horizon
Require: B = {1, . . . , Bd} set of bins

Require:
(
t 7→ α

(b)
k (t)

)b∈B
k∈[K]

pre-sampling functions

1: for b in B do
2: Sample α

(b)
k (T/Bd) times arm k for all k ∈ [K]

3: end for
4: for t ≥ 1 do
5: Receive context Xt from the environment
6: bt ← bin of Xt

7: Perform one iteration of the UC-FW algo-
rithm for the Lbt function on bin bt

8: end for
9: return the proportion vector (pT (1), . . . , pT (Bd))

Line 2 of Algorithm 1 consists in a pre-sampling stage
where all arms are sampled a certain amount of time.
It guarantees that pT (k) is bounded away from 0 so
that pT is bounded away from the boundary of ∆K ,
which will be required when Lb is not smooth on ∂∆K .

In the remaining of this paper, we derive slow and fast
rates of convergence for this algorithm.

3.2 Estimation and Approximation Errors

In order to obtain a bound on the regret, we decompose
it into an estimation error and an approximation error.

We note for all bins b ∈ B, p?b = arginfp∈∆KLb(p) the
minimum of Lb on the bin b. We note p̃? the piece-wise
constant function taking the values p?b on the bin b.

The approximation error is the minimal achievable er-
ror within the class of piece-wise constant functions.

Definition 3. The approximation error A(p) is the
error between the best piece-wise constant function p̃?

and the optimal solution p?.

A(p?) = L(p̃?)− L(p?).

The estimation error is due to the errors made by the
algorithm.

Definition 4. The estimation error E(pT ) is the er-
ror between the result of the algorithm pT and the best
piece-wise constant function p̃?.

E(pT ) = EL(pT )−L(p̃?) =
1

Bd

∑
b∈B

ELb(pT (b))−Lb(p?b)

where the last equality comes from (1).

We naturally have R(T ) = E(pT ) + A(p?). In order
to bound R(T ) we want to obtain bounds on both the
estimation and the approximation error terms.

4 CONVERGENCE RATES FOR
CONSTANT λ

In this section we consider the case where λ is constant.
We derive slow and fast rates of convergence. The
proofs are deferred to Appendix A and Appendix B.

4.1 Slow Rates

The analysis of the UC-FW algorithm gives the fol-
lowing bound.

Proposition 1. Let ρ be a S-smooth convex function
on ∆K . If pT is the result of Algorithm 1 and p̃? the
best piece-wise constant function on the set of bins B,
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then the following bound on the estimation error holds2

EL(pT )− L(p̃?) = O

(
√
KBd/2

√
log(T )

T

)
.

Some regularization functions are not S-smooth on
∆K , for example the entropy whose Hessian is not
bounded on ∆K . The following proposition shows that
the previous result still holds, at least for the entropy.

Proposition 2. If ρ is the entropy function the fol-
lowing bound on the estimation error holds

EL(pT (b))− L(p̃?) ≤ O
(
Bd/2

log(T )√
T

)
.

The idea of the proof is to force the result of the algo-
rithm to be “inside” the simplex ∆K (in the sense of
the induced topology) by pre-sampling each arm.

In order to obtain a bound on the approximation error
we notice that

Lb(p
?
b) = inf

p∈∆K
Lb(p) = inf

p∈∆K
λρ(p)− 〈−µ̄(b), p〉

= −(λρ)∗(−µ̄(b)) = −λρ∗
(
− µ̄(b)

λ

)
where ρ∗ is the Legendre-Fenchel transform of ρ.

Similarly,∫
b

〈µ(x), p?(x)〉+ λρ(p?(x)) dx

=

∫
b

inf
p∈∆K

−〈−µ(x), p〉+ λρ(p) dx

=

∫
b

−(λρ)∗(−µ(x)) dx

=

∫
b

−λρ∗
(
−µ(x)

λ

)
dx.

We want to bound

A(p?) =
∑
b∈B

∫
b

〈µ(x), p̃?(x)〉+ λρ(p̃?(x))

− 〈µ(x), p?(x)〉 − λρ(p?(x)) dx

=
∑
b∈B

∫
b

〈µ̄(b), p?b〉+ λρ(p?b)

− 〈µ(x), p?(x)〉 − λρ(p?(x)) dx

=
∑
b∈B

(∫
b

Lb(p
?
b) dx

−
∫
b

〈µ(x), p?(x)〉+ λρ(p?(x)) dx

)
= λ

∑
b∈B

∫
b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx. (2)

2The Landau notation O(·) has to be understood with
respect to T . The precise bound is given in the proof.

With Equation (2) and convex analysis tools we prove
the

Proposition 3. If p̃? is the piece-wise constant func-
tion on the set of bins B minimizing the loss function
L, we have the following bound

L(p̃?)− L(p?) ≤
√
LβKdβB

−β .

Combining Propositions 1 and 3 we get the

Theorem 1 (Slow rates). If ρ is a S-smooth con-
vex function, applying Algorithm 1 with choice B =

Θ
(

(T/ log(T ))
1/(2β+d)

)
gives3

R(T ) ≤ OLβ ,β,K,d

((
T

log(T )

)− β
2β+d

)
.

Proposition 2 directly shows that the result of this
theorem also holds when ρ is the entropy function.

The detailed proof of the theorem (see Appendix A)
consists in choosing a value of B balancing between
the estimation and the approximation errors. Since
β ∈ (0, 1], we see that the exponent of the convergence
rate is below 1/2 and that the proposed rate is slower
than T−1/2, hence the denomination of slow rate.

When λ = 0 we are in the usual contextual bandit set-
ting. The propositions of this section hold and we re-
cover the slow rates from Perchet and Rigollet (2013).

4.2 Fast Rates

We now consider possible fast rates, i.e. convergence
rates faster than O

(
T−1/2

)
. The price to pay to ob-

tain these quicker rates compared to the ones from
Subsection 4.1 is to have problem-dependent bounds,
i.e. convergence rates depending on the parameters of
the problem, and especially on λ.

As in the previous section we can obtain a bound on
the estimation error based on the convergence rates of
the Upper-Confidence Frank-Wolfe algorithm.

Proposition 4. If ρ is ζ-strongly convex and S-
smooth, and if there exists η > 0 such that for all
b ∈ B, dist(p?b , ∂∆K) ≥ η, then running Algorithm 1
gives the estimation error

EL(pT )− L(p̃?) = O
(
Bd
(
Sλ+

K

λ2ζ2η4

)
log2(T )

T

)
.

This bound depends on several parameters of the prob-
lem: λ, distance η of the optimum to the boundary

3The notation OLβ ,β,K,d means that there is a hidden
constant depending on Lβ , β,K and d. The constant can
be found in the proof in Appendix A.
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of the simplex, strong convexity and smoothness con-
stants. Since λ can be arbitrarily small, η can be small
as well and S large. Therefore the “constant” factor
can explode despite the convergence rate being “fast”:
these terms describe only the dependency in T .

As in the previous section we want to consider regular-
ization functions ρ that are not smooth on ∂∆K . To
do so we force the vectors p to be inside the simplex
by pre-sampling all arms at the beginning of the algo-
rithm. The following lemma shows that this is valid.

Lemma 1. On a bin b if there exists α ∈ (0, 1/2)
and po ∈ ∆K such that p?b � αpo (component-wise)
then for all i ∈ [K], the agent can safely sample arm i
αpoiT times at the beginning of the algorithm without
changing the convergence results.

The intuition behind this lemma is that if all arms
have to be sampled a linear amount of times to reach
the optimum value, it is safe to pre-sample each of the
arms linearly at the beginning of the algorithm. The
goal is to ensure that the current proportion vector pt
will always be far from the boundary in order to lever-
age the smoothness of ρ in the interior of the simplex.

Proposition 5. If ρ is the entropy function, sam-
pling each arm Te−1/λ/K times during the presam-
pling phase guarantees the same estimation error as
in Proposition 4 with constant S = Ke1/λ.

In order to obtain faster rates for the approximation
error we use Equation (2) and the fact that ∇ρ∗ is
1/ζ-Lipschitz since ρ is ζ-strongly convex.

Proposition 6. If ρ is ζ-strongly convex and if p̃? is
the piece-wise constant function on the set of bins B
minimizing the loss function L, the following bound on
the approximation error holds

L(p̃?)− L(p?) ≤ LβKd
β

2ζλ
B−2β .

Combining Propositions 4 and 6, we obtain fast rates
for our problem.

Theorem 2 (Fast rates). If ρ is ζ-strongly convex
and if there exists η > 0 such that for all b ∈ B,
dist(p?b , ∂∆K) ≥ η, applying Algorithm 1 with the

choice B = Θ
(
T/ log2(T )

)1/(2β+d)
gives the regret

R(T ) ≤ OLβ ,β,K,d,λ,η,ζ,S

((
T

log2(T )

)− 2β
2β+d

)
.

This rate matches the rates obtained in nonparametric
estimation (Tsybakov, 2008). However, as shown in
the proof presented in Appendix B, this fast rate is
obtained at the price of a factor involving λ, η and S,

which can be arbitrarily large. It is the goal of the
next section to see how to remove this dependency in
the parameters of the problem.

Proposition 5 shows that the previous theorem can also
be applied to the entropy regularization.

5 CONVERGENCE RATES FOR
NON-CONSTANT λ

In this section, we study the case where λ is a function
of the context value. This is quite interesting as agents
might want to modulate the weight of the regulariza-
tion term depending on the context. All the proofs of
this section can be found in Appendix C.

5.1 Estimation and Approximation Errors

Equation (1) implies that the estimation errors ob-
tained in Propositions 1 and 4 are still correct if λ is
replaced by λ̄(b). This is unfortunately not the case for
the approximation error propositions because Equa-
tion (2) does not hold anymore. Indeed the approxi-
mation error becomes :

A(p?) =
∑
b∈B

∫
b

〈µ(x), p̃?(x)〉+ λ(x)ρ(p̃?(x))

− 〈µ(x), p?(x)〉 − λ(x)ρ(p?(x)) dx

=
∑
b∈B

∫
b

〈µ̄(b), p?b〉+ λ(x)ρ(p?b)

− 〈µ(x), p?(x)〉 − λ(x)ρ(p?(x)) dx

=
∑
b∈B

(∫
b

Lb(p
?
b) dx

−
∫
b

〈µ(x), p?(x)〉+ λ(x)ρ(p?(x)) dx

)
=
∑
b∈B

∫
b

−(λ̄(b)ρ)∗(−µ̄(b)) + (λ(x)ρ)∗(−µ(x)) dx

=
∑
b∈B

∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx.

(3)

From this expression we obtain the following slow and
fast rates of convergence. These rates are the same as
in Section 4 in term of the powers of B but have worse
dependency in λ.

Proposition 7. If ρ is a strongly convex function and
λ a C∞ integrable non-negative function whose inverse
is also integrable, we have on a bin b:∫

b

(λ(x)ρ)∗ (−µ(x))− (λ̄(b)ρ)∗ (−µ̄(b)) dx

≤ O(Lβd
β/2B−β−d).
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The important point is that the bound does not de-
pend on λmin, which is not the case when we want to
obtain fast rates for the approximation error:

Proposition 8. If ρ is a ζ-strongly convex function
and λ a C∞ integrable non-negative function whose in-
verse is also integrable, we have on a bin b:∫

b

(λ(x)ρ)∗ (−µ(x))− (λ̄(b)ρ)∗ (−µ̄(b)) dx

≤ O
(
KdL2

β ‖∇λ‖
2
∞
B−2β−d

ζλ3
min

)
.

The rate in B is improved compared to Proposition 7
at the expense of the constant 1/λ3

min which can un-
fortunately be arbitrarily high.

5.2 Margin Condition

We begin by giving a precise definition of the function
η, the distance of the optimum to the boundary of ∆K .

Definition 5. Let x ∈ X a context value. We de-
fine by p?(x) ∈ ∆K the point where p 7→ 〈µ(x), p〉 +
λ(x)ρ(p) attains its minimum, and

η(x) := dist(p?(x), ∂∆K).

Similarly, if p?b is the point where Lb : p 7→ 〈µ̄(b), p〉+
λ̄(b)ρ(p) attains its minimum, we define

η(b) := dist(p?b , ∂∆K).

The fast rates obtained in Subsection 4.2 provide good
theoretical guarantees but may be useless in practice
since they depend on a constant that can be arbitrarily
large. We would like to discard the dependency on the
parameters, and especially λ (that controls η and S).

Difficulties arise when λ and η take values that are very
small, meaning for instance that we consider nearly no
regularization. This is not likely to happen since we do
want to study contextual bandits with regularization.
To formalize that we make an additional assumption,
which is common in nonparametric regression (Tsy-
bakov, 2008) and is known as a margin condition:

Assumption 3 (Margin Condition). We assume that
there exist δ1 > 0 and δ2 > 0 as well as α > 0 and
Cm > 0 such that

∀δ ∈ (0, δ1], PX(λ(x) < δ) ≤ Cmδ6α

and ∀δ ∈ (0, δ2], PX(η(x) < δ) ≤ Cmδ6α.

The non-negative parameter α controls the importance
of the margin condition.

The margin condition limits the number of bins on
which λ or η can be small. Therefore we split the bins

of B into two categories, the “well-behaved bins” on
which λ and η are not too small, and the “ill-behaved
bins” where λ and η can be arbitrarily small. The
idea is to use the fast rates on the “well-behaved bins”
and the slow rates (independent of λ and η) on the
“ill-behaved bins”. This is the point of Subsection 5.3.

Let CL =
√

K
K−1

‖λ‖∞+‖∇λ‖∞
ζ , c1 = 1 + ‖∇λ‖∞ dβ/6

and c2 = 1 + CLd
β/2.

We define the set of “well-behaved bins” WB as

WB = {b ∈ B, ∃ x1 ∈ b, λ(x1) ≥ c1B−β/3

and ∃ x2 ∈ b, η(x2) ≥ c2B−β/3},

and the set of “ill-behaved bins” as its complementary
set in B.

With the smoothness and regularity Assumptions 1
and 2, we derive lower bounds for λ and η on the “well-
behaved bins”.

Lemma 2. If b is a well-behaved bin then

∀x ∈ b, λ(x) ≥ B−β/3 and ∀x ∈ b, η(x) ≥ B−β/3.

5.3 Intermediate Rates

We summarize the different error rates obtained in the
previous sections.

Table 1: Slow and Fast Rates for Estimation and
Approximation Errors on a Bin

Error Slow Fast

Estim. B−d/2
√

log(T )

T

log2(T )

T

(
Sλ+

1

η4λ2

)
Approx. B−dB−β

B−2β−d

λ3

B

(
T

log(T )

) 1
2β+d

(
T

log2(T )

) 1
2β+d

R(T )

(
T

log(T )

) −β
2β+d

(
T

log2(T )

) −2β
2β+d

For the sake of clarity we removed the dependency on
the bin, writing λ instead of λ̄(b), and we only kept
the relevant constants, that can be very small (λ and
η), or very large (S).

Table 1 shows that the slow rates do not depend on the
constants, so that we can use them on the “ill-behaved
bins”.

Theorem 3 (Intermediate rates). Applying Algo-
rithm 1 with an entropy regularization and margin
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condition with parameter α ∈ (0, 1), the choice B =

Θ
(
T/ log2(T )

) 1
2β+d leads to the regret

R(T ) = OK,d,α,β,Lβ
(

T

log2(T )

)− β
2β+d (1+α)

.

As explained in the proof (Appendix C), we use a pre-
sampling stage on each bin to force the entropy to be
smooth, as in the proofs of Propositions 2 and 5.

We consider now the extreme values of α. If α → 0,
there is no margin condition and the speed obtained

is T−
β

2β+d which is exactly the slow rate from Theo-
rem 1. If α→ 1, there is a strong margin condition and

the rate of Theorem 3 tends to T−
2β

2β+d which is the
fast rate from Theorem 2. Consequently we get that
the intermediate rates from Theorem 3 do interpolate
between the slow and fast rates obtained previously.

6 LOWER BOUNDS

The results in Theorems 1 and 2 have optimal expo-
nents in the dependency in T . For the slow rate, since
the regularization can be equal to 0, or a linear form,
the lower bounds on contextual bandits in this set-
ting apply (Audibert et al., 2007; Rigollet and Zeevi,
2010), matching this upper bound. For the fast rates,
the following lower bound holds, based on a reduction
to nonparametric regression (Tsybakov, 2008; Györfi
et al., 2006).

Theorem 4. For any algorithm with bandit input and
output p̂T , for ρ that is 1-strongly convex, we have

inf
p̂

sup
µ∈Hβ

ρ∈1-str. conv.

{
E[L(p̂T )]− L(p?)

}
≥ C T−

2β
2β+d ,

for a universal constant C.

The proof is in Appendix D. The upper and lower
bound match up to logarithmic terms. This bound
is obtained for K = 2, and the dependency of the rate
in K is not analyzed here.

7 EMPIRICAL RESULTS

We present in this section experiments and simula-
tions for the regularized contextual bandits problem.
The setting we consider uses K = 3 arms, with an
entropy regularization and a fixed parameter λ = 0.1.
We run successive experiments for values of T ranging
from 1 000 to 100 000, and for different values of the
smoothness parameter β. The arms’ rewards follow 3
different probability distributions (Poisson, exponen-
tial and Bernoulli), with β-Hölder mean functions.

The results presented in Figure 1 shows that T 7→
T · R(T ) growths as expected, and the lower β, the
slower the convergence rate, as shown on the graph.

0 25,000 50,000 75,000 100,000

500

1,000

1,500

T

R
(T

)
·T

β = 0.3
β = 0.5
β = 0.7
β = 0.9

Figure 1: Regret as a Function of T

In order to verify that the fast rates proven in Subsec-
tion 4.2 are indeed reached, we plot on Figure 2 the
ratio between the regret and the theoretical bound on

the regret
(
T/ log2(T )

)− 2β
2β+d . We observe that this ra-

tio is approximately constant as a function of T , which
validates empirically the theoretical convergence rates.
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+
d
)

β = 0.3
β = 0.5
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β = 0.9

Figure 2: Normalized Regret as a Function of T

8 CONCLUSION

We proposed an algorithm for the problem of con-
textual bandits with regularization reaching fast rates
similar to the ones obtained in nonparametric estima-
tion, and validated by our experiments. We can dis-
card the parameters of the problem in the convergence
rates by applying a margin condition that allows us
to derive intermediate convergence rates interpolating
perfectly between the slow and fast rates.
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Supplementary Material for Regularized Contextual Bandits

A PROOFS OF SLOW RATES

We prove in this section the propositions and theorem of Subsection 4.1.

We begin by a lemma on the concentration of Tb, the number of context samples falling in a bin b.

Lemma 3. For all b ∈ B, let Tb the number of context samples falling in the bin b. We have

P
(
∃b ∈ B,

∣∣∣∣Tb − T

Bd

∣∣∣∣ ≥ 1

2

T

Bd

)
≤ 2Bd exp

(
− T

12Bd

)
.

Proof. For a bin b ∈ B and t ∈ {1, . . . , T}, let Z
(b)
t = 1{Xt∈B} which is a random Bernoulli variable of parameter

1/Bd.

We have Tb =
∑T
t=1 Zt and E[Tb] = T/Bd.

Using a multiplicative Chernoff’s bound (Vershynin, 2018) we obtain:

P
(
|Tb − E[Tb]| ≥

1

2
E[Tb]

)
≤ 2 exp

(
−1

3

(
1

2

)2
T

Bd

)
= 2 exp

(
− T

12Bd

)
.

We conclude with an union bound on all the bins.

Proof of Proposition 1. We have

E(pT ) = EL(pT )− L(p̃?) =
1

Bd

∑
b∈B

ELb(pT (b))− Lb(p?b)

Let us now consider a single bin b ∈ B. We have run the UCB Frank-Wolfe (Berthet and Perchet, 2017) algorithm
for the function Lb on the bin b with Tb iterations.

For all p ∈ ∆K , Lb(p) = 〈µ̄(b), p〉+λρ(p), then for all p ∈ ∆K , ∇Lb(p) = µ̄(b)+λ∇ρ(p) and ∇2Lb(p) = λ∇2ρ(p).
Since ρ is a S-smooth convex function, Lb is a λS-smooth convex function.

We consider the event A:

A
.
=

{
∀b ∈ B, Tb ∈

[
T

2Bd
,

3T

2Bd

]}
.

Lemma 3 shows that P(A{) ≤ 2Bd exp

(
− T

12Bd

)
.

Theorem 3 of Berthet and Perchet (2017) shows that, on event A:

ELb(pT (b))− Lb(p?b) ≤ 4

√
3K log(Tb)

Tb
+
S log(eTb)

Tb
+

(
π2

6
+K

)
2 ‖∇Lb‖∞ + ‖Lb‖∞

Tb

≤ 4

√
6K log(T )

T/Bd
+

2S log(eT )

T/Bd
+ 2

(
π2

6
+K

)
2 ‖∇Lb‖∞ + ‖Lb‖∞

T/Bd
.

Since ρ is of class C1, ρ and ∇ρ are bounded on the compact set ∆K . It is also the case for Lb and consequently
‖Lb‖∞ and ‖∇Lb‖∞ exist and are finite and can be expressed in function of ‖ρ‖∞, ‖∇ρ‖∞ and ‖λ‖∞. On event

A{, ELb(pT (b))− Lb(p?b) ≤ 2 ‖Lb‖∞ ≤ 2 + 2 ‖λρ‖∞.
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Summing over all the bins in B we obtain:

EL(pT )−L(p?) ≤ 4Bd/2
√

6K log(T )

T
+Bd

2S log(eT )

T
+4KBd

4 + 2 ‖λ∇ρ‖∞ + ‖λρ‖∞
T

+4Bd(1+‖λρ‖∞)e−
T

12Bd .

(4)

The first term of Equation (4) dominates the others and we can therefore write that

EL(pT )− L(p?) = O

(
√
KBd/2

√
log(T )

T

)
where the O is valid for T →∞.

Proof of Proposition 2. We consider a bin b ∈ B containing t samples.

Let S .
=

{
p ∈ ∆K | ∀i ∈ [K], pi ≥

λ√
t

}
. In order to force all the successive estimations of p?b to be in S we

sample each arm λ
√
t times. Thus we have ∀i ∈ [K], pi ≥ λ/

√
t. Then we apply the UCB-Frank Wolfe algorithm

on the bin b. Let
p̂b

.
= min

p∈S
Lb(p) and p?b

.
= min
p∈∆K

Lb(p).

• Case 1: p̂b = p?b , i.e. the minimum of Lb is in S.

For all p ∈ ∆K , Lb(p) = 〈µ̄(b), p〉 + λρ(p), then for all p ∈ ∆K , ∇Lb(p) = µ̄(b) + λ(1 + log(p)) and
∇2
iiLb(p) = λ/pi. Therefore on S we have

∇2
iiLb(p) ≤

√
t.

And consequently Lb is
√
t-smooth. And since ∇iLb(p) = 1 + λ log(pi), ‖∇Lb(p)‖∞ . log(t). We can apply

the same steps as in the proof of Proposition 1 to find that

ELb(pt(b))− Lb(p?b) ≤ 4

√
3K log(t)

t
+

√
t log(et)

t
+

(
π2

6
+K

)
2 log(t) + log(K)

t
= O

(
log(t)√

t

)
.

• Case 2: p̂b 6= p?b . By strong convexity of Lb, p̂b cannot be a local minimum of Lb and therefore p̂b ∈ ∂∆K .

The Case 1 shows that

ELb(pt(b))− Lb(p̂b) ≤ O
(

log(t)√
t

)
.

Let π = (π1, . . . , πK) with πi
.
= max(λ/

√
t, p̂b,i). We have ‖π − p̂b‖2 ≤

√
Kλ/

√
t.

Let us derive an explicit formula for p?b knowing the explicit expression of ρ. In order to find the optimal
ρ? value let us minimize (p 7→ Lb(p)) under the constraint that p lies in the simplex ∆K . The KKT
equations give the existence of ξ ∈ R such that for each i ∈ [K], µ̄i(b) + λ log(pi) + λ + ξ = 0 which leads

to p?b,i = e−µ̄i(b)/λ/Z where Z is a normalization factor. Since Z =
∑K
i=1 e

−µ̄i(b)/λ we have Z ≤ K and

p?b,i ≥ e−1/λ/K. Consequently for all p on the segment between π and p?b we have pi ≥ e−1/λ/K and
therefore λ(1 + log(pi)) ≥ λ(1− logK)− 1 and finally |∇iLb(p)| ≤ 4 ‖λ‖∞ log(K).

Therefore Lb is 4
√
K log(K)-Lipschitz and

‖Lb(p?b)− Lb(π)‖2 ≤ 4 ‖λ‖∞
√
K log(K) ‖π − p̂b‖2 ≤ 4K log(K) ‖λ‖2∞ /

√
t = O(1/

√
t).

Finally, since Lb(π) ≥ Lb(p̂b) (because π ∈ S), we have

ELb(pt(b))− Lb(p?b) ≤ ELb(pt(b))− Lb(p̂b) + Lb(p̂b)− Lb(p?b) ≤ O
(

log(t)√
t

)
+ L(π)− L(p?b) = O

(
log(t)√

t

)
.

We conclude by summing on the bins and using that t ∈ [T/2Bd, 3T/2Bd] with high probability, as in the
proof of Proposition 1.
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Proof of Proposition 3. We have to bound the quantity

L(p̃?)− L(p?) = λ
∑
b∈B

∫
b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx.

Classical results on convex conjugates (Hiriart-Urruty and Lemaréchal, 2013a) give that ∇ρ∗(y) =
argminx∈∆Kρ(x) − 〈x, y〉 for all y ∈ RK . Consequently, ∇ρ∗(y) ∈ ∆K and for all y ∈ RK , ‖∇ρ∗(y)‖ ≤ 1
showing that ρ∗ is 1-Lipschitz continuous. This leads to

L(p̃?)− L(p?) ≤ λ
∑
b∈B

∫
b

∥∥∥∥µ(x)− µ̄(b)

λ

∥∥∥∥ dx

≤
∑
b∈B

∫
b

√
LβK

(√
d

B

)β
dx

≤
√
LβKdβB

−β

because all the µk are (Lβ , β)-Hölder.

Proof of Theorem 1. We will denote by Ck with increasing values of k the constants. Since the regret is the sum
of the approximation error and the estimation error we obtain

R(T ) ≤
√
LβdβKB

−β + C1

√
KBd/2

√
log(T )

T
+Bd

2S log(eT )

T
+ C2K

Bd

T
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

With the choice of

B =
(
C2β

√
Lβd

β/2−1
)1/(β+d/2)

(
T

log(T )

)1/(2β+d)

,

we find that the three last terms of the regret are negligible with respect to the first two. This gives

R(T ) ≤ O

((
3
√
KL

d/(4β+2d)
β dβ(4+d)/(4β+2d)(C2β)−β/(2β+d)

)( T

log(T )

)−β/(2β+d)
)
.

B PROOFS OF FAST RATES

We prove now the propositions and theorem of Subsection 4.2.

Proof of Proposition 4. The proof is very similar to the one of Proposition 1. We decompose the estimation error
on the bins:

EL(pT )− L(p̃?) =
1

Bd

∑
b∈B

ELb(pT (b))− Lb(p?b).

Let us now consider a single bin b ∈ B. We have run the UCB Frank-Wolfe algorithm for the function Lb on the
bin b with Tb samples.

As in the proof of Proposition 1 we consider the event A.

Theorem 7 of Berthet and Perchet (2017), applied to Lb which is a λS-smooth λζ-strongly convex function,
shows that on event A:

EL(pT )− L(p?) ≤ 2c̃1
log2(T )

T/Bd
+ 2c̃2

log(T )

T/Bd
+ c̃3

2

T/Bd
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with c̃1 =
96K

ζλη2
, c̃2 =

24

ζλη3
+ λS and c̃3 = 24

(
20

ζλη2

)2

K +
λζη2

2
+ λS. Consequently

EL(pT )− L(p?) ≤ 2c̃1
log2(T )

T/Bd
+ 2c̃2

log(T )

T/Bd
+ c̃3

2

T/Bd
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

In order to have a simpler expression we can use the fact that λ and η are constants that can be small while S
can be large. Consequently c̃3 is the largest constant among c̃1, c̃2 and c̃3 and we obtain

EL(pT )− L(p?) ≤ O
((

K

λ2ζ2η4
+ Sλ

)
Bd

log2(T )

T

)
,

because the other terms are negligible.

Proof of Lemma 1. We consider a single bin b ∈ B. Let us consider the function

L̂b : p 7→ Lb(αp
o + (1− α)p).

Since for all i, p?b,i ≥ αpoi and since ∆K is convex we know that minp∈∆K L̂b(p) = Lb(p
?
b).

If p is the frequency vector obtained by running the UCB-Frank Wolfe algorithm for function L̂b with (1− α)T
samples then minimizing L̂b is equivalent to minimizing L with a presampling stage.

Consequently the whole analysis on the regret still holds with T replaced by (1− α)T . Thus fast rates are kept
with a constant factor 1/(1− α) ≤ 2.

Proof of Proposition 5. For the entropy regularization, we have

p?b,i =
exp(−µ̄(b)i/λ)∑K
j=1 exp(−µ̄(b)j/λ)

≤ exp(−1/λ)

K
.

We apply Lemma 1 with po =

(
1

K
, . . . ,

1

K

)
and α = exp(−1/λ). Consequently each arm is presampled

T exp(−1/λ)/K times and finally we have

∀i ∈ [K], pi ≥
exp(−1/λ)

K
.

Therefore we have

∀i ∈ [K], ∇iiρ(p) =
1

pi
≤ K exp(1/λ),

showing that ρ is K exp(1/λ)-smooth.

In order to prove the Proposition 6 we will need the following lemma which is a direct consequence of a result
on smooth convex functions.

Lemma 4. Let f : Rd → R be a convex function of class C1 and L > 0. Let g : Rd 3 x 7→ L

2
‖x‖2 − f(x). Then

g is convex if and only if ∇f is L-Lipschitz continuous.

Proof. Since g is continuously differentiable we can write

g convex ⇔ ∀x, y ∈ Rd, g(y) ≥ g(x) + 〈∇g(x), y − x〉

⇔ ∀x, y ∈ Rd,
L

2
‖y‖2 − f(y) ≥ L

2
‖x‖2 − f(x) + 〈Lx−∇f(x), y − x〉

⇔ ∀x, y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2

(
‖y‖2 + ‖x‖2 − 2〈x, y〉

)
⇔ ∀x, y ∈ Rd, f(y) ≤ f(x) + 〈∇f(x), y − x〉+

L

2
‖x− y‖2

⇔ ∇f is L-Lipschitz continuous.

where the last equivalence comes from Theorem 2.1.5 of Nesterov (2013).



Xavier Fontaine, Quentin Berthet, Vianney Perchet

Proof of Proposition 6. Since ρ is ζ-strongly convex then ∇ρ∗ is 1/ζ-Lipschitz continuous (see for example The-
orem 4.2.1 at page 82 in Hiriart-Urruty and Lemaréchal (2013b)). Since ρ∗ is also convex, Lemma 4 shows that

g : x 7→ 1
2ζ ‖x‖

2 − ρ∗(x) is convex.

Let us now consider the bin b and the function µ = (µ1, . . . , µk). Jensen’s inequality gives:

1

|b|

∫
b

g(−µ(x)/λ) dx ≥ g
(

1

|b|

∫
b

−µ(x)

λ
dx

)
.

This leads to ∫
b

g(−µ(x)/λ) dx ≥
∫
b

g(−µ̄(b)/λ) dx∫
b

1

2ζ
‖−µ(x)‖2 /λ2 − ρ∗(−µ(x)/λ) dx ≥

∫
b

1

2ζ
‖−µ̄(b)‖2 /λ2 − ρ∗(−µ̄(b)/λ) dx∫

b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx ≤ 1

2ζλ2

∫
b

‖µ(x)‖2 − ‖µ̄(b)‖2 dx.

We use the fact that
∫
b
‖µ(x)− µ̄(b)‖2 dx =

∫
b
‖µ(x)‖2 + ‖µ̄(b)‖2− 2〈µ(x), µ̄(b)〉dx =

∫
b
‖µ(x)‖2 + ‖µ̄(b)‖2 dx−

2〈µ̄(b),
∫
b
µ(x) dx〉 =

∫
b
‖µ(x)‖2 + ‖µ̄(b)‖2 dx− 2〈µ̄(b), |b|µ̄(b)〉 =

∫
b

∥∥µ(x)2
∥∥− ‖µ̄(b)‖2 dx and we get finally

∫
b

ρ∗(−µ(x)/λ)− ρ∗(−µ̄(b)/λ) dx ≤ 1

2ζλ2

∫
b

‖µ(x)− µ̄(b)‖2 dx.

Equation (2) shows that

L(p̃?)− L(p?) ≤ 1

2ζλ

∑
b∈B

∫
b

‖µ̄(b)− µ(x)‖2 dx

≤
∑
b∈B

∫
b

LβK

2ζλ

(√
d

B

)2β

dx

≤ LβKd
β

2ζλ

(
1

B

)2β

because each µk is (Lβ , β)-Hölder.

Proof of Theorem 2. We denote again by Ck the constants. We sum the approximation and the estimation errors
(given in Propositions 6 and 4) to obtain the following bound on the regret:

R(T ) ≤ C1
LβKd

β

ζλ
B−2β + C2

log2(T )

T
Bd
(

1

ζλη3
+

K

ζ2λ2η4
+ λζη2 + λS

)
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

For the sake of clarity let us note ξ1
.
= C1

LβKd
β

ζλ
and ξ2

.
= C2

(
1

ζλη3
+

K

ζ2λ2η4
+ λζη2 + λS

)
.

We have

R(T ) ≤ ξ1B−2β + ξ2B
d log2(T )

T
+ 4Bd(1 + ‖λρ‖∞) exp

(
− T

12Bd

)
.

Taking

B =

(
2ξ1β

ξ2

)1/(2β+d)(
T

log2(T )

)1/(d+2β)

,

we notice that the third term is negligible and we conclude that

R(T ) ≤ O

(
2ξ1

(
2ξ1β

ξ2

)−2β/(2β+d)(
T

log2(T )

)−2β/(2β+d)
)
.
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C PROOFS OF INTERMEDIATE RATES

We begin with a lemma on convex conjugates.

Lemma 5. Let λ, µ > 0 and let y ∈ Rn and ρ a non-negative bounded convex function. Then

(λρ)∗(y)− (µρ)∗(y) ≤ |λ− µ| ‖ρ‖∞ .

Proof. (λρ)∗(y) = supx〈x, y〉 − λρ(x) = 〈xλ, y〉 − λρ(xλ).

And (µρ)∗(y) = supx〈x, y〉 − µρ(x) = 〈xµ, y〉 − µρ(xµ) ≥ 〈xλ, y〉 − µρ(xλ).

Then, (λρ)∗(y)− (µρ)∗(y) ≤ 〈xλ, y〉 − λρ(xλ)− (〈xλ, y〉 − µρ(xλ)) = (µ− λ)ρ(xλ).

Finally (λρ)∗(y)− (µρ)∗(y) ≤ |λ− µ| ‖ρ‖∞.

Proof of Proposition 7. There exists x0 ∈ b such that λ̄(b) = λ(x0) and x1 ∈ b such that µ̄(b) = µ(x1). We use
Lemma 5 to derive a bound for the approximation error.∫

b

(λ(x)ρ)∗ (−µ(x))− (λ̄(b)ρ)∗ (−µ̄(b)) dx

=

∫
b

(λ(x)ρ)∗ (−µ(x))− (λ(x)ρ)∗ (−µ̄(b)) dx+

∫
b

(λ(x)ρ)∗ (−µ̄(b))− (λ̄(b)ρ)∗ (−µ̄(b)) dx

≤
∫
b

λ(x)

(
ρ∗
(
−µ(x)

λ(x)

)
− ρ∗

(
− µ̄(b)

λ(x)

))
dx+

∫
b

|λ(x)− λ̄(b)| ‖ρ‖∞ dx

≤
∫
b

λ(x)

∣∣∣∣µ(x)

λ(x)
− µ̄(b)

λ(x)

∣∣∣∣ dx+ ‖ρ‖∞
∫
b

|λ(x)− λ(x0)|dx

≤
∫
b

Lβ |x− x1|β dx+ ‖ρ‖∞
∫
b

‖λ′‖∞ |x− x0|dx

≤ B−d
(
Lβd

β/2B−β + ‖ρ‖∞ ‖λ
′‖∞
√
dB−1

)
= O(B−β−d).

Proof of Proposition 8. As in the proof of Proposition 6 we consider a bin b ∈ B and the goal is to bound∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx.

We use a similar method and we apply Jensen inequality with density
λ(x)

|b|λ̄(b)
to the function g : x 7→ 1

2ζ ‖x‖
2 −

ρ∗(x) which is convex.

g

(∫
b

−µ(x)

λ(x)

λ(x)

|b|λ̄(b)
dx

)
≤
∫
b

g

(
−µ(x)

λ(x)

)
λ(x)

|b|λ̄(b)
dx

g

(
− µ̄(b)

λ̄(b)

)
≤
∫
b

g

(
−µ(x)

λ(x)

)
λ(x)

|b|λ̄(b)
dx

1

2ζ

∥∥∥∥− µ̄(b)

λ̄(b)

∥∥∥∥2

− ρ∗
(
− µ̄(b)

λ̄(b)

)
≤ 1

|b|λ̄(b)

∫
b

[
1

2ζ

∥∥∥∥−µ(x)

λ(x)

∥∥∥∥2

− ρ∗
(
−µ(x)

λ(x)

)]
λ(x) dx

∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx ≤ 1

2ζ

∫
b

‖µ(x)‖2

λ(x)
− ‖µ̄(b)‖2

λ̄(b)
dx.
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Consequently we have proven that∫
b

λ(x)ρ∗
(
−µ(x)

λ(x)

)
− λ̄(b)ρ∗

(
− µ̄(b)

λ̄(b)

)
dx ≤ 1

2ζ

∫
b

‖µ(x)‖2

λ(x)
− ‖µ̄(b)‖2

λ̄(b)
dx

≤ 1

2ζ

K∑
k=1

∫
b

µk(x)2

λ(x)
− µ̄k(b)2

¯λ(b)
dx.

Therefore we have to bound, for each k, I =

∫
b

µk(x)2

λ(x)
− µ̄k(b)2

λ̄(b)
dx.

Let us omit the subscript k and consider a β-Hölder function µ.

We have

I =

∫
b

µ(x)2

λ(x)
− µ̄(b)2

λ̄(b)
dx

=

∫
b

µ(x)2

λ(x)
− µ(x)2

λ̄(b)
+
µ(x)2

λ̄(b)
− µ̄(b)2

λ̄(b)
dx

=

∫
b

(
µ(x)2 − µ̄(b)2

)( 1

λ(x)
− 1

λ̄(b)

)
dx︸ ︷︷ ︸

I1

+

∫
b

µ̄(b)2

(
1

λ(x)
− 1

λ̄(b)

)
dx︸ ︷︷ ︸

I2

+

∫
b

1

λ̄(b)

(
µ(x)2 − µ̄(b)2

)
dx︸ ︷︷ ︸

I3

.

We now have to bound these three integrals.

Bounding I1:

I1 =

∫
b

(
µ(x)2 − µ̄(b)2

)( 1

λ(x)
− 1

λ̄(b)

)
dx

=

∫
b

(µ(x) + µ̄(b)) (µ(x)− µ̄(b))

(
1

λ(x)
− 1

λ̄(b)

)
dx

≤
∫
b

2|µ(x)− µ̄(b)|
∣∣∣∣ 1

λ(x)
− 1

λ̄(b)

∣∣∣∣dx
≤ 2Lβ

(√
d

B

)β ∫
b

∣∣∣∣ 1

λ(x)
− 1

λ̄(b)

∣∣∣∣dx.
Since 1/λ is of class C1, Taylor-Lagrange inequality yields, using the fact that there exists x0 ∈ b such that
λ̄(b) = λ(x0): ∣∣∣∣ 1

λ(x)
− 1

λ̄(b)

∣∣∣∣ ≤
∥∥∥∥∥
(

1

λ

)′∥∥∥∥∥
∞

|x− x0| ≤
‖λ′‖∞
λ2

min

√
d

B
.

We obtain therefore

I1 ≤ 2Lβ ‖λ′‖∞
√
d
β+1 1

λ2
min

B−(1+β+d) = O
(
B−(1+β+d)

λ2
min

)
.

Bounding I2:

We have

I2 = µ̄(b)2

∫
b

(
1

λ(x)
− 1

λ̄(b)

)
dx ≤

∫
b

(
1

λ(x)
− 1

λ̄(b)

)
dx

because

∫
b

(
1

λ(x)
− 1

λ̄(b)

)
dx ≥ 0 from Jensen’s inequality.
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Without loss of generality we can assume that the bin b is the closed cuboid [0, 1/B]d. We suppose that for all
x ∈ b, λ(x) > 0.

Since λ is of class C∞, we have the following Taylor series expansion:

λ(x) = λ(0) +

d∑
i=1

∂λ(0)

∂xi
xi +

1

2

∑
i,j

∂2λ(0)

∂xi∂xj
xixj + O(‖x‖2).

Integrating over the bin b we obtain

λ̄(b) = λ(0) +
1

2

1

B

d∑
i=1

∂λ(0)

∂xi
+

1

8

1

B2

∑
i 6=j

∂2λ(0)

∂xi∂xj
+

1

6

1

B2

d∑
i=1

∂2λ(0)

∂x2
i

+ O

(
1

B2

)
.

Consequently∫
b

dx

λ̄(b)
=

1

Bdλ̄(b)

=
1

Bdλ(0)

1

1 +
1

2λ(0)

1

B

d∑
i=1

∂λ(0)

∂xi
+

1

λ(0)

1

B2

1

8

∑
i6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i

+ O

(
1

B2

)

=
1

Bdλ(0)

(
1− 1

2λ(0)

1

B

d∑
i=1

∂λ(0)

∂xi
− 1

λ(0)

1

B2

1

8

∑
i 6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i


+

1

4λ(0)2

1

B2

(
d∑
i=1

∂λ(0)

∂xi

)2

+ O

(
1

B2

))

=
1

Bdλ(0)
− 1

2λ(0)2

1

Bd+1

d∑
i=1

∂λ(0)

∂xi
− 1

λ(0)2

1

Bd+2

1

8

∑
i6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i


+

1

4λ(0)3

1

Bd+2

(
d∑
i=1

∂λ(0)

∂xi

)2

+ O

(
1

B2

)
.

Let us now compute the Taylor series development of 1/λ. We have:

∂

∂xi

1

λ(x)
= − 1

λ(x)2

∂λ(x)

∂xi
and

∂2

∂xi∂xj

1

λ(x)
= − 1

λ(x)2

∂2λ(x)

∂xi∂xj
+

2

λ(x)3

∂λ(x)

∂xi

∂λ(x)

∂xj
.

This lets us write

1

λ(x)
=

1

λ(0)
− 1

λ(0)2

d∑
i=1

∂λ(0)

∂xi
xi −

1

2

1

λ(0)2

∑
i,j

∂2λ(0)

∂xi∂xj
xixj +

1

λ(0)3

∑
i,j

∂λ(0)

∂xi

∂λ(0)

∂xj
xixj + O(‖x‖2)

∫
b

dx

λ(x)
=

1

λ(0)

1

Bd
− 1

2λ(0)2

1

Bd+1

d∑
i=1

∂λ(0)

∂xi
− 1

λ(0)2

1

Bd+2

1

8

∑
i 6=j

∂2λ(0)

∂xi∂xj
+

1

6

d∑
i=1

∂2λ(0)

∂x2
i


+

1

λ(0)3

1

Bd+2

1

4

∑
i 6=j

∂λ(0)

∂xi

∂λ(0)

∂xj
+

1

3

d∑
i=1

(
∂λ(0)

∂xi

)2
+ O

(
1

Bd+2

)
.

And then
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I2 ≤
1

12

1

λ(0)3

1

Bd+2

d∑
i=1

(
∂λ(0)

∂xi

)2

+ O

(
1

Bd+2

)
.

Since the derivatives of λ are bounded we obtain that

I2 = O
(
B−2−d

λ3
min

)
.

Bounding I3:

I3 =

∫
b

1

λ̄(b)

(
µ(x)2 − µ̄(b)2

)
dx

=
1

λ̄(b)

∫
b

(µ(x)− µ̄(b))
2

dx

≤ 1

λmin
L2
βd

βB−(2β+d) = O
(
B−(2β+d)

λmin

)
.

Putting this together we have I = O
(

(dL2
β ‖∇λ‖

2
∞)

B−(2β+d)

λ3
min

)
. And finally

L(p̃?)− L(p?) ≤ O
(
KdL2

β ‖∇λ‖
2
∞
B−2β

ζλ3
min

)
.

Lemma 6 (Regularity of η). If η is the distance of the optimum p? to the boundary of ∆K as defined in
Definition 5, and if the µk functions are all β-Hölder and λ of class C1, then η is β-Hölder. More precisely we
have

∀x, y ∈ b, |η(x)− η(y)| ≤
√

K

K − 1

‖λ‖∞ + ‖λ′‖∞
ζλmin(b)2

|x− y|β =
CL

λmin(b)2
|x− y|β .

Proof. Let x ∈ X . Since η(x) = dist(p?b , ∂∆K) we obtain

η(x) =

√
K

K − 1
min
i
p?i (x).

And

p?(x) = argmin〈µ(x), p(x)〉+ λ(x)ρ(p(x))

= ∇(λ(x)ρ)∗(−µ(x))

= ∇ρ∗
(
−µ(x)

λ(x)

)
.

Since ρ is ζ-strongly convex, ∇ρ∗ is 1/ζ-Lipschitz continuous.

Therefore, for x, y ∈ b,

|p?(x)− p?(y)| ≤ 1

ζ

∣∣∣∣µ(x)

λ(x)
− µ(y)

λ(y)

∣∣∣∣
≤ 1

ζ

∣∣∣∣µ(x)− µ(y)

λ(x)

∣∣∣∣+
1

ζ
|µ(y)|

∣∣∣∣ 1

λ(x)
− 1

λ(y)

∣∣∣∣
≤ 1

ζλmin(b)
|x− y|β +

1

ζ

‖λ′‖∞
λmin(b)2

|x− y|

since all µk are bounded by 1 (the losses are bounded by 1).
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Proof of Lemma 2. We consider a well-behaved bin b. There exists x1 ∈ b such that λ(x1) ≥ c1B
−β/3. Since λ

is C∞ on [0, 1]d, it is in particular Lipschitz-continuous on b. And therefore

∀x ∈ b, λ(x) ≥ c1B−β/3 − ‖λ′‖∞ diam(b) ≥ c1B−β/3 − ‖λ′‖∞ diam(b)β/3 = B−β/3.

Lemma 6 shows that η is β-Hölder continuous (with constant denoted by CL/λ
2
min) and therefore we have

∀x ∈ b, η(x) ≥ c2B−β/3 −
CL

λmin(b)2
diam(b)β = B−β/3.

Lemma 7. If ρ is convex, η is an increasing function of λ.

Proof. As in the proof of Proposition 2 we use the KKT conditions to find that on a bin b (without the index k
for the arm):

µ̄(b) + λ̄(b)∇ρ(p?b) + ξ = 0.

Therefore

p?b = (∇ρ)−1

(
−ξ + µ̄(b)

λ̄(b)

)
.

Since ρ is convex, ∇ρ is an increasing function and its inverse as well. Consequently p?b is an increasing function

of λ̄(b), and since η(b) =
√
K/(K − 1) mini p

?
b,i, η is also an increasing function of λ̄(b).

Proof of Theorem 3. Since B will be chosen as an increasing function of T we only consider T sufficiently large
in order to have c1B

−β/3 < δ1 and c2B
−β/3 < δ2. To ensure this we can also take smaller δ1 and δ2. Moreover

we lower the value of δ2 or δ1 to be sure that δ2
c2

= η( δ1c1 ). These are technicalities needed to simplify the proof.

The proof will be divided into several steps. We will first obtain lower bounds on λ and η for the “well-behaved
bins”. Then we will derive bounds for the approximation error and the estimation error. And finally we will put
that together to obtain the intermediate convergence rates.

As in the proofs on previous theorems we will denote the constants Ck with increasing values of k.

• Lower bounds on η and λ:

Using a technique from Rigollet and Zeevi (2010) we notice that without loss of generality we can index the
Bd bins with increasing values of λ̄(b). Let us note IB = {1, . . . , j1} and WB = {j1 + 1, . . . , Bd}. Since η
is an increasing function of λ (cf Lemma 7), the η(bj) are also increasingly ordered.

Let j2 ≥ j1 be the largest integer such that λ̄(bj) ≤
δ1
c1

. Consequently we also have that j2 is the largest

integer such that η(bj) ≤
δ2
c2

.

Let j ∈ {j1 + 1, . . . , j2}. The bin bj is a well-behaved bin and Lemma 2 shows that λ̄(bj) ≥ B−β/3. Then
λ̄(bj) + (c1− 1)B−β/3 ≤ c1λ̄(bj) ≤ δ1 and we can apply the margin condition (cf Assumption 3) which gives

PX(λ(x) ≤ λ̄(bj) + (c1 − 1)B−β/3) ≤ Cm(c1λ̄(bj))
6α.

But since the context are uniformly distributed and since the λ̄(bj) are increasingly ordered we also have
that

PX(λ(x) ≤ λ̄(bj) + (c1 − 1)B−β/3) ≥ PX(λ(x) ≤ λ̄(bj)) ≥
j

Bd
.

This gives λ̄(bj) ≥
1

c1C
1/6α
m

(
j

Bd

)1/6α

. The same computations give η(bj) ≥
1

c2C
1/6α
m

(
j

Bd

)1/6α

. We note

Cγ
.
= min((c1C

1/6α
m )−1, (c2C

1/6α
m )−1)) and γj

.
= Cγ

(
j

Bd

)1/α

. Consequently λ̄(bj) ≥ γj and η(bj) ≥ γj .
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Let us now compute the number of ill-behaved bins:

#{b ∈ B, b /∈ WB} = Bd P(b /∈ WB)

= Bd P(∀x ∈ B, η(x) ≤ c2B−β/3 or ∀x ∈ B, λ(x) ≤ c1B−β/3)

≤ Bd P(η(x̄) ≤ c2B−β/3 or λ(x̄) ≤ c1B−β/3)

≤ Cm(c6α1 + c6α2 )BdB−2αβ .
= CIB

dB−2αβ

where x̄ is the mean context value in the bin b. Consequently if j ≥ j?
.
= CIB

dB−2αβ , then bj ∈ WB. Let

ĵ
.
= CIB

dB−αβ ≥ j?. Consequently for all j ≥ j?, bj ∈ WB.

We want to obtain an upper-bound on the constant S ¯λ(bj) +
K

η(bj)4λ̄(bj)2
that arises in the fast rate for

the estimation error. For the sake of clarity we will remove the dependency in bj and denote this constant

C = Sλ+
K

λ2η4
.

In the case of the entropy regularization S = 1/mini p
?
i . Since η =

√
K/(K − 1) mini p

?
i , we have that

mini p
?
i =

√
(K − 1)/Kη ≥ η/2. Consequently S ≤ 2/γj and, on a well-behaved bin bj , for j ≤ j2,

C ≤
K + 2 ‖λ‖∞

γ6
j

.
=
CF
γ6
j

, (5)

where the subscript F stands for “Fast”. When j ≥ j2, we have λ̄(bj) ≥ δ1/c1 and η(bj) ≥ δ2/c2 and
consequently

C ≤ K

(δ1/c1)2(δ2/c2)4
+

2 ‖λ‖∞
δ2/c2

.
= Cmax.

Let us notice than λ being known by the agent, the agent knows the value of λ̄(b) on each bin b and can
therefore order the bins. Consequently the agent can sample, on every well-behaved bin, each arm Tγj/2

times and be sure that mini pi ≥ γj/2. On the first bĵc bins the agent will sample each arm λ̄(b)
√
T/Bd

times as in the proof of Proposition 2.

• Approximation Error:

We now bound the approximation error. We separate the bins into two sets: {1, . . . , bj?c} and {dj?e, . . . , Bd}.
On the first set we use the slow rates of Proposition 7 and on the second set we use the fast rates of
Proposition 8.

We obtain that, for α < 1/2,

L(p̃?)− L(p?) ≤ Lβdβ/2
bj?c∑
j=1

B−β−d + ‖ρ‖∞ ‖∇λ‖∞
√
d

bj?c∑
j=1

B−1−d + (KdL2
β ‖∇λ‖

2
∞)

Bd∑
j=dj?e

B−2β−d

λ̄(bj)3

≤ CILβdβ/2B−βB−2αβ + (KdL2
β ‖∇λ‖

2
∞)

 j2∑
j=dj?e

B−2β−d

γ3
j

+

Bd∑
j=j2+1

B−2β−d

(c1/δ1)3

+ O(B−2αβ−β)

≤ CILβdβ/2B−2αβ−β + (KdL2
β ‖∇λ‖

2
∞)

B−2β−d

C3
γ

j2∑
j=dj?e

(
j

Bd

)−1/2α

+B−2β

(
δ1
c1

)3
+ O(B−2αβ−β)

≤ CILβdβ/2B−2αβ−β + (KdL2
β ‖∇λ‖

2
∞)

1

C3
γ

B−2β

∫ 1

CIB−2αβ

x−1/2α dx+ O(B−2αβ−β)

≤

(
CILβd

β/2 +KdL2
β ‖∇λ‖

2
∞

2α

1− 2α

C
(2α−1)/2α
I

C3
γ

)
B−β−2αβ + O(B−2αβ−β) = O

(
B−β−2αβ

)
since α < 1/2. We step from line 3 to 4 thanks to a series-integral comparison.
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For α = 1/2 we get

L(p̃?)−L(p?) ≤
(
CILβd

β/2 +
(
KdL2

β ‖∇λ‖
2
∞

)
(δ3

1c
−3
1 + 2βC−3

γ log(B))
)
B−2β+O(B−2β) = O

(
B−2β log(B)

)
.

And for α > 1/2 we have

L(p̃?)− L(p?) ≤
(
KdL2

β ‖∇λ‖
2
∞

)( 1

C3
γ

2α

2α− 1
+

(
δ1
c1

)3
)
B−2β + O(B−2β) = O

(
B−2β

)
because β + 2αβ > 2β.

Let us note

ξ1
.
=

(
CILβd

β/2 +KdL2
β ‖∇λ‖

2
∞

2α

1− 2α

C
(2α−1)/2α
I

C3
γ

)
;

ξ2
.
=
(
CILβd

β/2 +
(
KdL2

β ‖∇λ‖
2
∞

)
(δ3

1c
−3
1 + 2βC−3

γ log(B))
)

;

ξ3
.
=
(
KdL2

β ‖∇λ‖
2
∞

)( 1

C3
γ

2α

2α− 1
+

(
δ1
c1

)3
)

;

ξapp
.
= max(ξ1, ξ2, ξ3).

Finally we obtain that the approximation error is bounded by ξappB
−min(β+2αβ,2β) log(B) with α > 0.

• Estimation Error:

We proceed in a similar manner as for the approximation error, except that we do not split the bins around
j? but around ĵ.

In a similar manner to the proofs of Theorems 1 and 2 we only need to consider the terms of dominating
order from Propositions 1 and 4. As before we consider the same event A (cf the proof of Proposition 1)
and we note CA

.
= 4Bd(1 + ‖λρ‖∞). We obtain, for α < 1, using (5):

EL(p̃T )− L(p̃?) =
1

Bd

∑
b∈B

ELb(p̃T )− L(p?b)

=
1

Bd

Bd∑
j=dĵe

ELb(p̃T )− L(p?b) +
1

Bd

bĵc∑
j=1

ELb(p̃T )− L(p?b)

≤ 1

Bd

Bd∑
j=dĵe

2C
log2(T )

T/Bd
+

1

Bd

bĵc∑
j=1

4
√

12K

√
log(T )

T/Bd
+ CAe

− T

12Bd

≤ 2CF

j2∑
j=dĵe

log2(T )

T
γ−6
j +

Bd∑
j=j2+1

2Cmax
log2(T )

T
+ 6
√

3K

√
log(T )

T
Bd/2B−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T

j2∑
j=dĵe

(
j

Bd

)−1/α

+ 2Cmax
log2(T )

T
Bd + 6

√
3K

√
log(T )

T
Bd/2−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T
Bd
∫ 1

CIB−αβ
x−1/α dx+ 2Cmax

log2(T )

T
Bd + 6

√
3K

√
log(T )

T
Bd/2−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T
Bd

α

1− α
Bβ(1−α) + 2Cmax

log2(T )

T
Bd + 6

√
3K

√
log(T )

T
Bd/2−αβ + CAe

− T

12Bd

≤ 2CF
C6
γ

log2(T )

T

α

1− α
Bd+β−αβ + 6

√
3K

√
log(T )

T
Bd/2−αβ + 2Cmax

log2(T )

T
Bd + CAe

− T

12Bd .
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• Putting things together:

We note Cα
.
=

2CF
C6
γ

α

1− α
. This leads to the following bound on the regret:

R(T ) ≤ Cα
log2(T )

T
Bd+β−αβ+6

√
3K

√
log(T )

T
Bd/2−αβ+2Cmax

log2(T )

T
Bd+CAe

− T

12Bd +ξappB
−min(2β,β+2αβ) log(B).

Choosing B =

(
T

log2(T )

)1/(2β+d)

we get

R(T ) ≤ (Cα + 6
√

3K)

(
T

log2(T )

)−β(1+α)/(2β+d)

+ O

(
T

log2(T )

)−β(1+α)/(2β+d)

which is valid for α ∈ (0, 1).

Finally we have

R(T ) = O

((
T

log2(T )

)−β(1+α)/(2β+d)
)
.

D PROOFS OF LOWER BOUNDS

Proof of Theorem 4. We consider the model with K = 2 where µ(x) = (−η(x), η(x))>, where η is a β-Hölder
function on X = [0, 1]d. We note that η is uniformly bounded over X as a consequence of smoothness, so one
can take λ such that |η(x)| < λ. We denote by e = (1/2, 1/2) the center of the simplex, and we consider the loss

L(p) =

∫
X

(
〈µ(x), p(x)〉+ λ‖p(x)− e‖2

)
dx.

Denoting by p0(x) the vector e+ µ(x)/(2λ), we have that p0(x) ∈ ∆2 for all x ∈ X . Further, we have that

〈µ(x), p(x)〉+ λ‖p(x)− e‖2 = λ‖p(x)− p0(x)‖2 + 1/(4λ)‖µ(x)‖2 ,

since 〈µ(x), e〉 = 0. As a consequence, L is minimized at p0 and

L(p)− L(p0) =

∫
X
λ‖p(x)− p0(x)‖2 dx = 1/(2λ)

∫
X
|η(x)− η0(x)|2 dx .

where η is such that p(x) =
(
1/2− η(x)/(2λ), 1/2 + η(x)/(2λ)

)
. As a consequence, for any algorithm with final

variable p̂T , we can construct an estimator η̂T such that

E[L(p̂T )]− L(p0) = 1/(2λ)E
∫
X
|η̂T (x)− η0(x)|2 dx ,

where the expectation is taken over the randomness of the observations Yt, with expectation ±η(Xt), with sign
depending on the known choice πt = 1 or 2. As a consequence, any upper bound on the regret for a policy
implies an upper bound on regression over β-Hölder functions in dimension d, with T observations. This yields
that, in the special case where ρ is the 1-strongly convex function equal to the squared `2 norm

inf
p̂

sup
µ∈Hβ
ρ= `22

E[L(p̂T )]− L(p0) ≥ inf
η̂

sup
η∈Hβ

1/(2λ)E
∫
X
|η̂T (x)− η0(x)|2 dx ≥ CT−

2β
2β+d .

The final bound is a direct application of Theorem 3.2 in Györfi et al. (2006).
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