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a b s t r a c t

A carbon-black filled SBR was submitted to various uniaxial tension cyclic tests in order to study its cyclic
softening. Stress-softening and stretch creep were monitored during stretch-control tests and ratcheting
tests, respectively. The material softening induced by cyclic loadings appeared to depend on the maxi-
mum loading applied. The cyclic amplitude or equivalently the cyclic energy did not affect the material
softening. The latter experimental result draws our attention since it contrasts with former results of the
literature obtained on natural rubbers and butyl rubbers.

1. Introduction

Rubbers are used in many industrial applications including
tires, seals, shock and vibration absorbers, . . . . They are often sub-
mitted to cyclic loading conditions inducing first, a stress-softening
and second, a fatigue failure recognizable by the appearance of a
crack and its fatal propagation. Prediction of failure lifetime is cru-
cial for design and maintenance of mechanical structures, and it is
well known that the cyclic load history affects the material fatigue.
While many studies focused on the failure lifetime (see [1] for a re-
view), characterizing lifetime [2–4], observing the fracture surface
[5,6], proposing lifetime failure criteria [7–9], fewer discussed the
stress-softening [10–13]. This paper studies the stress-softening
of a carbon-black filled SBR under various cyclic uniaxial tension
conditions.

During the first few cycles of cyclic loadings, filled and crystal-
lizing rubber-like materials undergo a substantial stress-softening,
which is known as the Mullins effect [14,15]. The stress-softening
occurring after these first few cycles evolves slowly, and therefore
is often neglected when modelling the mechanical behaviour of
these materials. Nonetheless, the latter can no longer be neglected
when dealing with fatigue. Study on the fatigue of filled rub-
ber-like materials [10–12] present an obvious dependence of the
material softening to the maximum stretch level ever submitted,
but the cycle amplitude effect remain questionable. In order to

avoid crystallization interference, we worked on a carbon-black
filled SBR. We ran tests at a strain rate of 10�1 s�1, which is low
according fatigue standard in order to reduce a possible viscosity
effect. We applied various loading history in order to decide on
the effect of the cycle amplitude, the overload history and the
underload history, on the stress-softening and stretch creep of
the material.

2. Experiments

Filled styrene butadiene rubbers are often used for tire applica-
tions. In this study, experiments were carried out on a carbon-
black filled SBR supplied by Michelin. The material formulation is
given in Table 1. Normalized dumbbell shape specimens [16]
(25 mm long and 4 mm wide) were punched into plates of 2 mm
of thickness. Loads were measured by a 1 kN load cell. All cyclic
tests were conducted, at room temperature, on an Instron 5802
uniaxial tension machine operated in displacement control mode
at a constant crosshead speed of 500 mm min�1. Local strains were
measured by video extensometry. Below, the various loading con-
ditions that were applied are listed:

� Test A1: Stretch-control cycles with a constant maximum
stretch kmax and a constant minimum load of F = 0. The value
of F = 0 N was chosen in order to avoid compressive loading
resulting into the buckling of the specimen due to its low thick-
ness. The maximum stretch kmax was chosen between 2.0 and
4.0 which corresponds to a strain between 100% and 300%.
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� Test A2: Stretch-control cycles with a constant maximum
stretch kmax and a constant minimum stretch chosen between
1
4 kmax and 3

4 kmax.
� Test A3: Stretch-control cycles with a constant maximum

stretch kmax and a constant minimum load of F = 0 N disrupted
by 1000 consecutive cycles at a lower maximum stretch.
� Test A4: Stretch-control cycles with five cycles of a maximum

stretch kmax and a minimum load of F = 0 N, followed by cycles
of a lower amplitude from a minimum load of F = 0 N to a con-
stant maximum stretch between 1

4 kmax and 3
4 kmax.

� Test B1: Stress-control cycles with a maximum engineering
stress smax and a minimum force F = 0 N. The maximum stress
considered here was smax = 6.2 MPa, which corresponds to
250% of strain during the first cycle.
� Test B2: Stress-control cycles with a maximum engineering

stress smax and a stress amplitude from 1
4 smax to smax.

� Test B3: Stress-control cycles with five cycles of a maximum
engineering stress smax and a minimum load of F = 0 N, followed
by cycles of a lower amplitude from a minimum load F = 0 N to a
constant maximum engineering stress chosen between 1

4 smax

and 3
4 smax.

Tests A1 and B1 will provide with experimental evidences of the
material softening during cyclic loading conditions, and of the ef-
fect of the level of the peak loading. The effect of the amplitude
of the cycles will be studied with tests A2 and B2. Test A3 will show
whether lower stretch cycles may affect the stress-softening at
higher stretches. Finally, the possible effect of an overloading will
be shown by tests A4 and B3.

All specimens were loaded from 500 to 2000 cycles, results are
presented in the next section.

3. Results

3.1. Strain-control tests

Fig. 1 illustrates the stress–strain response of a filled rubber
submitted to a stretch-control cyclic uniaxial tension (Test A1).
During the first cycle, the material exhibits a Mullins effect charac-
terized by a large hysteresis, a large stress-softening, a subsequent
decrease of the tangent modulus and a resulting permanent set.
After the first few cycles, the Mullins effect stabilizes and will
not affect the material until it is submitted to a higher stretch
[15]. During the following cycles, a slow stress-softening along
with a very slow evolution of the tangent modulus is observed.
We characterized the stress-softening, which is the decrease of
the peak stress vs. the number of cycles, by the ratio:

R ¼ sðkmax;NÞ
sðkmax;1Þ

ð1Þ

where N is the cycle number and s is the engineering stress. We
plotted in Fig. 2, the stress-softening ratio R according to kmax and
to the number of cycles. One can notice that the cyclic stress-soft-
ening is increasing with the maximum stretch. We noticed that
after 40 cycles, the stress-softening decreases linearly with ln(N).
A similar result is reported in [11,17], beyond 100 cycles. Also, jd
R/d ln(N)j is increasing with the maximum stretch and therefore
the softening rate increases with the increase of the peak stretch.

The change of the permanent set was also monitored while the
material softens. Fig. 3 shows the stretch at F = 0 N according to the
number of cycles. As reported in Mullins effect studies, the perma-
nent set at the first cycle increases with the increase of the maxi-
mum stretch. During the following cycles, the permanent set
evolves slowly. Its change is dependent of the maximum stretch
applied.

In order to decide on the influence of the stretch amplitude on
the material softening, we carried out four tests with identical
maximum stretch and various stretch amplitudes defined by the
minimum stretch, 1

4 kmax;
1
2 kmax and 3

4 kmax, or the minimum force
F = 0 N (Test A2). We reported in Fig. 4, the stress-softening ratio
R (1) according to the number of cycles for these tests, the maxi-
mum strain being set to 250%. In this figure, the material softening
is similar for all stretch amplitudes.

Dual tests in stress-control mode were conducted and are pre-
sented in the next section.

Table 1
Compounding formulation of the SBR.

Ingredient Phr

SBR gum 100
N347 (carbon-black) 30
6PPD (antioxidant) 1
Stearic acid 2
ZnO 5
CBS 1.2
Sulfur 1.2
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Fig. 1. Stress–strain response of a filled SBR submitted to a cyclic uniaxial tension test at constant maximum stretch (Test A1).



3.2. Ratcheting tests

Fig. 5 shows the stress–stretch behaviour of the material sub-
mitted to a cyclic uniaxial tension with a constant maximum stress
peak and a constant null minimum stress (Test B1). The material
evidences a large change of maximum stretch at the first cycle,
associated to the Mullins effect, then the maximum stretch evolves
slowly. In order to compare, the stretch creep at the maximum
stress for various levels of stress, we introduce the ratcheting
stretch ratio defined by:

S ¼ kmaxðsmax;NÞ
kmaxðsmax;1Þ

ð2Þ

Values of S are plotted vs. the number of cycles for two stress levels
in Fig. 6. As expected the ratcheting stretch increases with the in-
crease of the peak stress. We noted that beyond forty cycles, S
evolves linearly with respect to ln(N). Also, like for R, jd S/d ln(N)j
increases with the stress peak.

Like in stretch-control mode, we ran several tests with an iden-
tical peak stress but various cycle amplitudes to test the cycle

amplitude effect (Test B2). Three tests were run at a maximum
engineering stress of 2.6 MPa and stress amplitude of smax;

1
4 smax

and 1
2 smax. We reported the value of S vs. the number of cycles

for the three tests in Fig. 7. Clearly, the ratcheting stretch is not af-
fected by the cycle stress amplitude.

Next, we studied the possible effect of pre-loadings on the
material softening.

3.3. Effect of a pre-loading

First, we submitted one sample to a cyclic loading at a constant
maximum strain of 250%, and second, we submitted another sam-
ple to five cycles at 250% of strain followed by 1000 cycles at 100%
of strain and then by 500 cycles at 250% of strain (Test A3). For
both tests, we calculated the stress-softening ratio R, defined in
(1), at 250% and plotted it in terms of the cycle number reaching
this level of stretch only. Fig. 8 shows how R evolves in both cases.
Plots are similar for both tests and evidence that the relatively
large number of cycles at a lower stretch did not significantly affect
the material softening at 250%.
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Fig. 2. Stress-softening ratio vs. the number of cycles during cyclic uniaxial tension tests at constant peak stretch (Test A1).
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Fig. 3. Resulting stretch at F = 0 N during cyclic uniaxial tension tests at constant maximum stretch according to the number of cycles and the maximum stretch (Test A1).



In order to study the effect of an overloading, cyclic tests were
preceded by five cycles at a higher stretch (Test A4). Fig. 9 illus-
trates the engineering stress measured at the peak stretch vs. the
number of cycles, for cyclic tension tests at 225%, 175% and 100%
maximum of strain preceded by five cycles at 250%. After a previ-
ous overloading, one notes that the stress at lower stretch remains
constant over the cycles. Also, by comparing Figs. 1 and 9, one no-
tices that the overload induced a large reduction of the stress.
When the pre-stretch is substantial compared to the cyclic peak
stretch, one observes during the first few cycles an increase of
the peak stress. In Fig. 9, such a behaviour appears for the cycles
at 100%. This ‘‘stiffening” effect is the consequence of the material
viscosity. A similar results was reported in [11] for a subsequent
overload. It is worth mentioning here that the overload does not
need to be significantly higher. Fig. 9 shows a frozen stress-soften-
ing for cycles at 225% strain, while the overload reached a strain of
250%. Similar tests were carried out with a single cycle of overload-
ing, it appeared that one cycle was not sufficient to freeze the
stress-softening.

Last, we carried out stress-control tests with an overload (Test
B3). We submitted some samples to five cycles of overload at
4.6 MPa and monitored the stretch ratcheting during the following
cycles reaching a peak of 2.3 MPa and 3.45 MPa, respectively.
Fig. 10 shows a freezing effect of the overload on the ratcheting ef-
fect, which corroborates the result obtained with the stretch-con-
trol tests.

4. Discussion

The first evidence provided by the results presented in the sec-
tion above, is that the stress-softening (resp. stretch creep) occur-
ring during cyclic loadings depends on the maximum stretch (resp.
stress) ever submitted to the material. Figs. 2 and 6 show that
when no previous loading was applied, the stress-softening (resp.
stretch creep) during cyclic loadings is strongly dependent of the
stretch peak (resp. stress peak). Similar results were obtained by
McKenna and Zapas [10] or Yu et al. [12]. McKenna and Zapas
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Fig. 4. Effect of the stretch amplitude: stress-softening ratio vs. the number of cycles for cyclic uniaxial tension with a maximum strain of 250% and various minimum strain
(Test A2).
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Fig. 5. Stress–strain response of a filled SBR submitted to a cyclic uniaxial tension test at constant maximum stress (Test B1).
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Fig. 6. Stretch creep vs. the number of cycles during cyclic uniaxial tension ratcheting tests (Test B1).
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[10] conducted uniaxial tension cyclic tests on filled butyl rubber
for a moderate number of cycles (100) with constant maximum
stretch on one side and with constant maximum stress on the
other side. They observed that the stress-softening and the stretch
creep depend on the maximum stretch and the maximum stress,
respectively. Yu et al. [12] conducted ratcheting tests of 50–150 cy-
cles, on a filled natural rubber with various maximum stresses and
cycle amplitudes and also concluded that the maximum stress le-
vel affects the stretch creep under uniaxial cyclic loading condi-
tions. When an overloading is applied prior to the cyclic loading,
Figs. 9 and 10 showed that the material softening was frozen by
the overloading. Mars and Fatemi [11] explored the cyclic behav-
iour of a filled natural rubber under multiaxial stress conditions.
They also observed that the stress softening could completely
disappear by prescribing an initial substantial overload during 10
cycles. They mentioned that in such a condition, the stress corre-
sponding to the applied stretch is lower than the stress measured

without previous overload, which is consistent with our results. Yu
et al. [12] also observed that the stretch creep could disappear
when preceded by an overload. One of the interesting aspects of
Fig. 9 is that it reveals that the overload does not need to be sub-
stantially higher than the cyclic maximum loading, actually it
can be very close. This might be the experimental proof that the
Mullins effect taking place at the first few cycles and the stress-
softening taking place during the following cycles have the same
physical origin, since by imposing a larger Mullins effect, the
stress-softening is stabilized.

The second crucial information provided by our experiments, is
found in Figs. 4 and 7. The cycle amplitude does not affect the
stress-softening or equivalently the stretch creep during cyclic
loadings. This result differs from previous results reported in the
literature [10,12]. In the case of Yu et al. [12] work, a cautious look
at the data plotted in the latter contribution reveals an effect of the
stress amplitude parameter for the higher stress level only. For
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Fig. 9. Effect of the loading history: stress-softening according to the peak stretch and the number of cycles for specimens submitted to a preload of five cycles at a maximum
strain of 250% (Test A4).
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moderate stress (up to 2.5 MPa), their experimental results show
that stress-amplitude does not affect the ratcheting. Moreover,
their material is a crystallizing rubber, and it is well known that
crystallization can improve the fatigue life under non-relaxing uni-
axial tension loading [18] since reducing the stretch amplitude of
the cycles induces a partial melting of the crystallites produced
by the tensile load. Therefore, a permanent crystallization is set
in the material, which obviously may affect its softening. In the
case of SBR, the gum cannot crystallize and we observe that the
stretch amplitude is not a factor in the cyclic softening. A conse-
quence of this result is that the energy cannot be a parameter of
the material softening even though it seems to be a parameter of
fatigue [2,11]. In the case of the results obtained on a butyl rubber
[10], even though crystallization may happen under high strain
loadings, it is unlikely that the reported dependence of the soften-
ing to the cyclic amplitude is due to crystallization. For the mo-
ment, the only parameter that may explain the difference
between our results and those of McKenna and Zapas [10], is the
strain rate. Until now, this question remains open.

5. Conclusion

This work explored the stress-softening of a filled SBR rubber
submitted to uniaxial tension cyclic tests. Stretch-control
and stress-control tests were conducted in order to assess the
parameters controlling the stress-softening and the stretch creep,
respectively. The experimental results provide a complete charac-
terization of the softening of a non-crystallizing filled rubber
submitted to moderate strain rate cyclic uniaxial tension.

On one hand, the material softening and the permanent set in-
duced by cyclic loadings appeared to depend on the maximum
loading. Experimental data showed that the softening increased
with the peak of the cyclic tests and that beyond forty cycles, the
stress-softening evolved linearly with ln(N). Also, by exposing the
material to overloads, we observed that even when the overload
was not substantial, the softening froze. On the other hand, the
material softening was not affected by the cyclic amplitudes,
which shows that the cyclic amplitude or equivalently the cyclic

energy cannot be a parameter controlling the material softening.
Other data confirmed the latter result, the loading history happen-
ing at lower stretches did not affect the stress-softening. These
experimental evidences contrast with former results of the litera-
ture obtained on natural rubbers and butyl rubbers.
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