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ON THE EXPONENTIAL DIOPHANTINE EQUATION RELATED TO POWERS OF TWO CONSECUTIVE TERMS OF LUCAS SEQUENCES

Keywords: 2010 Mathematics Subject Classification. 11B39, 11J86 Lucas sequences, Linear forms in logarithms, Baker's method

Let r ≥ 1 be an integer and U := (Un) n≥0 be the Lucas sequence given by U 0 = 0, U 1 = 1, and U n+2 = rU n+1 + Un, for all n ≥ 0. In this paper, we show that there are no positive integers r ≥ 3, x = 2, n ≥ 1 such that U x n + U x n+1 is a member of U.

Introduction

Let r ≥ 1 be an integer and U := (U n ) n≥0 be the Lucas sequence given by U 0 = 0, U 1 = 1, and

U n+2 = rU n+1 + U n (1) 
for all n ≥ 0. When r = 1 U coincides with the Fibonacci sequence while when r = 2 U coincides with the Pell sequence. It is well-known that

U 2 n + U 2 n+1 = U 2n+1 for all n ≥ 0. (2) 
In particular, the identity (2) tells us that the sum of the squares of two consecutive terms of U is also a term of U. When r = 1, we even have U n + U n+1 = U n+2 for all n ≥ 0 since U is the Fibonacci sequence. We thus consider the Diophantine equation

U x n + U x n+1 = U m (3) 
in nonnegative integers (n, m, x) which by Eq. ( 2) has the parametric solution m = 2n + 1 when x = 2 for any r ≥ 1 and even the parametric solution m = n + 2 when x = 1 if r = 1. For r = 1 Luca and Oyono [START_REF] Luca | An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers[END_REF] proved that Eq. ( 3) has no positive integer solutions (n, m, x) with n ≥ 2 and x ≥ 3. Rihane et al. [START_REF] Rihane | On the exponential Diophantine equation P x n + P x n+1 = Pm[END_REF] studied Eq. (3) when r = 2 and proved that there is no positive integer solution (n, m, x) of it with x = 2. In the same spirit, Gómez Ruiz and Luca [START_REF] Gómez Ruíz | An exponential Diophantine equation related to the sum of powers of two consecutive k-generalized Fibonacci numbers[END_REF] studied Eq. ( 3) with

U = {F (k) n } n≥-(k-2)
, which is the k-generalized Fibonacci sequence of recurrence

F (k) n = F (k) n-1 + F (k) n-2 + • • • + F (k) n-k
for all n ≥ 2 with the initial conditions

F (k) -(k-2) = F (k) -(k-2) = • • • = F (k) 0 = 0 and F (k) 1
= 1. When k = 2, this sequence coincides with the sequence of Fibonacci numbers. They proved that Eq. ( 3) has no positive integer solution (k, n, m, x) with k ≥ 3, n ≥ 2, and x ≥ 1. Another related result involving the balancing numbers was studied by Rihane et al. in [START_REF] Rihane | An exponential Diophantine equation related to the difference between powers of two consecutive Balancing numbers[END_REF].

In this paper, we study Eq. (3) in nonnegative integers (r, n, m, x) treating r as an integer parameter. We may assume that r ≥ 3 since the cases r ∈ {1, 2} have been treated already in [START_REF] Luca | An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers[END_REF] and [START_REF] Rihane | On the exponential Diophantine equation P x n + P x n+1 = Pm[END_REF], respectively. The solution with (n, m) = (0, 1) (for any r and x) is obvious so we omit it and suppose that n is positive. Our main result is the following. Theorem 1. There is no positive integer solution (r, n, m, x) of Diophantine equation (3) with r ≥ 3 and x = 2.

Preliminary Results

2.1. The Lucas sequence. Let (α, β)

:= r + √ r 2 + 4 2 , r - √ r 2 + 4 2 ,
be the roots of the characteristic equation x 2 -rx -1 = 0 of the Lucas sequence U = (U n ) n≥0 . We put ∆ = r 2 + 4 = (α -β) 2 for the discriminant of the above quadratic equation. The Binet formula for the general term of U is given by

U n := α n -β n α -β for all n ≥ 0. ( 4 
)
One may prove by induction that the inequality

α n-2 ≤ U n ≤ α n-1 (5) 
holds for all positive integers n. It is also easy to show that the inequality

U n U n+1 < 1 r (6) 
holds for all n ≥ 2. Indeed, it follows from U n+1 = rU n + U n-1 > rU n for n ≥ 2. At one point of the argument we will need the companion Lucas sequence V := {V n } n≥0 given by V 0 = 2, V 1 = r, and V n+2 = rV n+1 + V n for all n ≥ 0. Its Binet formula is

V n = α n + β n for all n ≥ 0. ( 7 
)
There are many relations between members of U and V such as

U 2n = U n V n ; (8) 
U 2 n+1 -U n U n+2 = (-1) n ; (9) V 2 n -∆U 2 n = 4(-1) n ; (10) 
2U m+n = U m V n + U n V m ; (11) gcd(U n , U m ) = U gcd(m,n) . (12) 
We record another one. All such identities follow easily from the Binet formulas Eq. ( 4) and Eq. ( 7) of U and V respectively.

Lemma 1. If n is odd then

U n -1 = U (n-1)/2 V (n+1)/2 if n ≡ 1 (mod 4); U (n+1)/2 V (n-1)/2 if n ≡ 3 (mod 4). ( 13 
)
Both sequences U and V can be extended to negative indices either by allowing n to be negative in the Binet formulas Eq. ( 4) and [START_REF] Bravo | Powers of two in generalized Fibonacci sequences[END_REF] or simply by using the recurrence relation to extend U to negative indices via U -n = -rU -(n-1) + U -(n-2) for all n ≥ 1. The same applies to V. All the above formulas given in Eq. ( 8), [START_REF] Gómez Ruíz | An exponential Diophantine equation related to the sum of powers of two consecutive k-generalized Fibonacci numbers[END_REF], [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], [START_REF] Sánchez | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF], and [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d'interpolation[END_REF] hold when the indices are arbitrary integers, not necessarily nonnegative.

The following lemma is useful. For further details we refer the reader to the book of Koshy [START_REF] Koshy | Fibonacci and Lucas Numbers with Applications[END_REF].

Lemma 2. Let {U n (r)} n≥0 ⊆ Z[r] be the sequence of polynomials defined by U 0 (r) = 0, U 1 (r) = 1, and

U n+2 (r) = rU n+1 (r) + U n (r), for all n ≥ 0.
Then,

U n (r) = 0≤k≤n k ≡n (mod 2) n+k-1 2 k r k . ( 14 
)
Note that the summation range above is only over these k ∈ [0, n] which have different parity than n. We record the following easy but useful consequence of the formula Eq. ( 14).

Lemma 3. We have r | U n if n is even and r | U n -1 if n is odd.
2.2. Logarithmic height. Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -η (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of η. The logarithmic height of η is given by

h(η) := 1 d log a 0 + d i=1 log max{|η (i) |, 1} . 
In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}.

The following are some of the properties of the logarithmic height function h(•), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ ±1 ) ≤ h(η) + h(γ), h(η s ) = |s|h(η) (s ∈ Z). (15) 
2.3. Linear forms in logarithms and continued fractions. The following result on linear forms in three logarithms is due to Mignotte [START_REF] Mignotte | A kit for linear forms in three logarithms[END_REF]. The result is more general (i.e., the conditions on the parameters involved are somewhat more general), but we will only quote it in the form that we need.

Theorem 2. Consider three algebraic numbers γ 1 , γ 2 , and γ 3 , which are all real, greater than 1 and multiplicatively independent. Put

D := [Q(γ 1 , γ 2 , γ 3 ) : Q].
Let b 1 , b 2 , b 3 be coprime positive integers and consider

Γ := b 2 log γ 2 -b 1 log γ 1 -b 3 log γ 3 .
Put

d 1 := gcd(b 1 , b 2 ) = b 1 b 1 = b 2 b 2 , d 3 := gcd(b 3 , b 2 ) = b 2 b 2 = b 3 b 3 .
Let A 1 , A 2 , and A 3 be real numbers such that

A i ≥ max{4, 4.296 log γ i + 2Dh(γ i )}, i = 1, 2, 3, and 
Ω := A 1 A 2 A 3 ≥ 100. Put b := b 1 A 2 + b 2 A 1 b 3 A 2 + b 2 A 3
and log B := max 0.882 + log b , 10 D .

Then, either

log |Γ| > -790.95ΩD 2 (log B) 2 ,
or one of the following conditions holds: (i) there exist two positive integers r 0 and s 0 such that

r 0 b 2 = s 0 b 1 with r 0 ≤ 5.61A 2 (D log D) 1 3
and

s 0 ≤ 5.61A 1 (D log D) 1 3 ; 
(ii) there exist integers r 1 , s 1 , t 1 , and t 2 , with r 1 s 1 = 0, such that

(t 1 b 1 + r 1 b 3 )s 1 = r 1 b 2 t 2 , gcd(r 1 , t 1 ) = gcd(s 1 , t 2 ) = 1
which also satisfy

|r 1 s 1 | ≤ 5.61δA 3 (D log D) 1 3 , |s 1 t 1 | ≤ 5.61δA 1 (D log D) 1 3 , |r 1 t 2 | ≤ 5.61δA 2 (D log D) 1 3
, where δ := gcd(r 1 , s 1 ).

Moreover, when t 1 = 0 we can take r 1 = 1, and when t 2 = 0 we can take s 1 = 1.

At some point we will need to treat linear forms in two logarithms of algebraic numbers. To set the stage, let γ 1 and γ 2 be real algebraic numbers which are positive and let

D := [Q(γ 1 , γ 2 ) : Q]. Let b 1 ,
b 2 be nonzero integers, let B 1 and B 2 be real numbers larger than 1 such that

log B i ≥ max h(γ i ), | log γ i | D , 1 D , for i = 1, 2,
and put

b = |b 1 | D log B 2 + |b 2 | D log B 1 . Let Γ := b 1 log γ 1 + b 2 log γ 2 . ( 16 
)
The following result of Laurent, Mignotte, and Nesterenko is Corollary 2 in [START_REF] Laurent | Formes linéaires en deux logarithmes et déterminants d'interpolation[END_REF].

Theorem 3. With the above notations assuming furthermore that γ 1 and γ 2 are multiplicatively independent we have

log |Γ| > -24.34D 4 max log b + 0.14, 21 D , 1 2 
2 log B 1 log B 2 . ( 17 
)
Note that the fact that Γ = 0 is already guaranteed by the condition that γ 1 and γ 2 are multiplicatively independent together with the fact that b 1 , b 2 are nonzero integers.

During the calculations we get upper bounds on our variables which are too large, thus we need to reduce them. To do so we use some results from the theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables we use a well-known classical result in the theory of Diophantine approximation due to Legendre. Lemma 4. Let τ be an irrational number, p 0 /q 0 , p 1 /q 1 , p 2 /q 2 , . . . be the sequence of convergents of the continued fraction expansion of τ and M be a positive integer. Let N be a nonnegative integer such that q N > M . Putting a(M ) := max{a i : i = 0, 1, 2, . . . , N } the inequality

τ - u v > 1 (a(M ) + 2)v 2 ,
holds for all pairs (u, v) of positive integers with 0 < v < M . Furthermore, if

τ - u v < 1 2v 2 , then u/v = p k /q k for some k ≥ 0.
For a nonhomogeneous linear form in two integer variables we use a slight variation of a result due to Dujella and Pethő (see [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a). For a real number X, we write X := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer. Lemma 5. Let M be a positive integer, p/q be a convergent of the continued fraction expansion of the irrational number τ such that q > 6M , and A, B, µ be some real numbers with A > 0 and B > 1. Furthermore, let ε := µq -M τ q . If ε > 0, then there is no solution to the inequality

0 < |uτ -v + µ| < AB -w
in positive integers u, v, and w with u ≤ M and w ≥ log(Aq/ε) log B .

Proof of Theorem 1

3.1. The cases n = 1 or x = 1. We assume that n ≥ 1, as the solution with n = 0 is trivial. Since U n+1 < U n+1 + U n < U n+2 , it follows that the Diophantine equation Eq. (3) has no solution with x = 1. Let us assume that n = 1. We then get that

U m = 1 + r x . (18) 
In particular, U m ≡ 1 (mod r). Lemma 3 shows that m ≡ 1 (mod 2) and now Lemma 1 shows that

r x = U m -1 = U (m-δ)/2 V (m+δ)/2
where δ ∈ {±1}, δ ≡ m (mod 4).

We now recall the Primitive Divisor Theorem of Carmichael [START_REF] Carmichael | On the numerical factors of the arithmetic forms α n ± β n Ann[END_REF] (see [START_REF] Yu | Eexistence of primitive divisors of Lucas and Lehmer numbers. With an appendix of M. Mignotte[END_REF] for the most general statement) for the sequence U. It states that if > 12, there is a prime factor p of U which is primitive in the sense that p U k for any positive k < . So, assume m + δ ≥ 14. Since m + δ is even we have U m+δ = U (m+δ)/2 V (m+δ)/2 by the formula Eq. ( 8). Since U m+δ has a primitive prime factor p, the primitive prime p must be a divisor of V (m+δ)/2 , which in turn must divide r = U 2 , a contradiction. Thus, m + δ ≤ 12, therefore m ≤ 13. It thus follows that

r x = U m -1 < α m-1 ≤ α 12 < (r 2 + 4) 6 ,
so, if x ≥ 13, then 3 x-12 ≤ r x-12 < (1 + 4/r 2 ) 6 ≤ (1 + 4/3 2 ) 6 < 9.1, which gives x ≤ 14. Thus, m ≤ 13, x ≤ 14. For each choice of the pair (m, x) with the components in the above ranges, the equation U m (r)-1-r x = 0 is a polynomial equation in r. After a simple computer search, we found no other solutions to equation Eq. [START_REF] Rihane | On the exponential Diophantine equation P x n + P x n+1 = Pm[END_REF] apart from the solution (n, m, x) = (1, 3, 2) which has x = 2 so it is part of the parametric family of solutions indicated at Eq. (2).

So, from now on we assume that n ≥ 2 and x ≥ 3.

3.2.

Calculations when n ∈ [2, 100] and x ∈ [START_REF] Yu | Eexistence of primitive divisors of Lucas and Lehmer numbers. With an appendix of M. Mignotte[END_REF]100]. Using the equation Eq. ( 3) and the inequality Eq. ( 5), we get

α (n-1)x < U x n+1 < U x n + U x n+1 = U m ≤ α m-1 ,
and

α m-2 < U m = U x n + U x n+1 < (U n + U n+1 ) x < U x n+2 < α (n+1)x .
From the above inequalities, we get the following result which we record for future reference.

Lemma 6. The inequalities

(n -1)x + 1 < m < (n + 1)x + 2 (19)
hold for all x ≥ 3 and n ≥ 2.

We next consider Eq. ( 14) given in Lemma 2. We write Eq. (3) as

    0≤k≤n k ≡n(mod 2) n+k-1 2 k r k     x +     0≤k≤n+1 k ≡n+1(mod 2) n+k 2 k r k     x = 0≤k≤m k ≡m(mod 2) m+k-1 2 k r k . ( 20 
)
Assume first that n is even. Then Eq. (20) becomes

n 2 r + n+2 2 3 r 3 + • • • x + 1 + n+2 2 2 r 2 + n+4 2 4 r 4 + • • • x = 1 + m+1 2 2 r 2 + m+3 2 3 r 4 + • • • , which is equivalent to n+2 2 2 r 2 x + n+4 2 4 r 4 x + • • • ≡ m+1 2 2 r 2 + m+3 2 3 r 4 + • • • (mod r x ). ( 21 
)
The above relation implies that

r min{x,4}-2 m+1 2 2 -x n+2 2 2 . (22) 
Similarly, when n is odd, one is led to the analogous divisibility relation

r min{x,4}-2 m+1 2 2 -x n+1 2 2 . ( 23 
)
So, fixing n ∈ [2, 100] and x ∈ [3, 100], inequalities Eq. ( 19) give some range for m. For each (n, x, m), divisibility relations Eq. ( 22) and Eq. (23) (according to whether n is even or odd) give us some possibilities for r ≥ 3 and now one checks whether relation Eq. ( 3) holds for this candidate (n, x, m, r).

A computer search with Mathematica in this range for n and x which ran for a few hours found no solutions. For the search we didn't actually checked that formula Eq. ( 20) holds but we checked that Eq. (20) does not hold modulo T , where T is the product of the first 20 primes. The Mathematica function powermod allowed us to compute the powers of r modulo T arising from the binomial formula rather quickly.

From now on, we assume that n ≥ 2, x ≥ 3 and max{n, x} > 100.

3.3.

A small linear form in three logs. We rewrite equation Eq. ( 3) as

α m α -β -U x n+1 = U x n + β m α -β . ( 24 
)
Dividing both sides of the above equation by U x n+1 and using the inequality Eq. ( 6), we obtain

α m (α -β) -1 U -x n+1 -1 = U n U n+1 x + β m (α -β)U x n+1 < 2 U n U n+1 x < 2 r x . (25) 
Put

Λ := α m (α -β) -1 U -x n+1 -1 and Γ := m log α -log(α -β) -x log U n+1 . (26) 
We observe that Λ = e Γ -1, where Λ and Γ are given by (26). Since |Λ| ≤ 2/27, we have that e |Γ| ≤ 27/25 and using the inequality (25) we obtain

|Γ| = m log α -log( r 2 + 4) -x log U n+1 ≤ e |Γ| |e |Γ| -1| ≤ 27|Λ| 25 < 2.2 r x . ( 27 
)
We record the above inequality for future reference.

Lemma 7. With Γ given by formula Eq. (26), inequality Eq. ( 27) holds.

We want to apply Theorem 2 with the following data:

γ 1 := α -β = r 2 + 4, γ 2 := α, γ 3 := U n+1 , b 1 := 1, b 2 := m, b 3 := x.
We need to check that γ 1 , γ 2 , and γ 3 are multiplicatively independent. This we do in the next subsection.

3.4.

Checking that γ 1 , γ 2 , γ 3 are multiplicatively independent. Well, assume they are not and let i, j, k be integers not all zero such that

γ i 1 γ j 2 γ k 3 = 1.

Squaring and rearranging the above relation we get

γ 2j 2 = (γ 2 1 ) -i γ -2k 3 ∈ Q. However, γ 2j
2 is also a unit, so an algebraic integer whose reciprocal is also an algebraic integer, and it is also positive, so it must be 1. Thus, j = 0. It now follows that i and k are both nonzero (since if one of them is, so is the other one) and further γ 3 = γ -i/k 1 . In particular, all prime factors of U n+1 are prime factors of ∆ := r 2 +4. But this is also contemplated by the Primitive Divisor Theorem of Carmichael since primes dividing ∆ are not considered primitive. In particular, U n+1 does not have primitive prime factors so n + 1 ≤ 12. In fact, Theorem C in [START_REF] Yu | Eexistence of primitive divisors of Lucas and Lehmer numbers. With an appendix of M. Mignotte[END_REF] together with Table 1 there show that either n + 1 ∈ {2, 3, 4, 6} or n + 1 ∈ {5, 12} but in this last case, the only such Lucas sequence U for which either one of U 5 or U 12 does not have primitive prime factors is the sequence of Fibonacci numbers, which is not our case. Thus, n + 1 ∈ {2, 3, 6}. Further, for each prime p let z(p) be the index of appearance of p in U defined as the smallest positive integer k such that p | U k . This always exists for our sequence U since α is a quadratic unit. It has the additional property that if is a positive integer then p | U if and only if z(p) | . It is also well-known and easy to prove that if p | ∆, then z(p) = p. Since also z(p) | n + 1 and n + 1 ∈ {2, 3, 6}, it follows that the only possibilities for p are p = 2, 3. Hence, r 2 + 4 = 2 a 3 b . However, 3 cannot divide r 2 + 4 for any positive integer r (because -4 is not a quasartic residue modulo 3), so b = 0 and 2 a = r 2 + 4. Thus, r = 2r 0 is even, a ≥ 3 and the equation simplifies to 2 a-2 = r 2 0 + 1. Hence, r 0 is odd, so r 2 0 ≡ 1 (mod 8), therefore 2 r 2 0 + 1, which leads to a = 3, r 0 = 1, which gives r = 2, is not our case. Hence, indeed γ 1 , γ 2 , γ 3 are multiplicatively independent.

3.5. Applying Theorem 2. Since γ 1 , γ 2 , γ 3 ∈ Q(α), we have D = 2. We also have

r < α < r 2 + 4 < r + 1.
So, we bound the heights of α and √ r 2 + 4 in terms or log(r + 1). Since

h(γ 1 ) = h(α -β) = 1 2 log(r 2 + 4) < log(r + 1), h(γ 2 ) = 1 2 log α < 1 2 log(r + 1), and 
h(γ 3 ) = log U n+1 < log α n = n log α < n log(r + 1),
we can take A 1 := 8.296 log(r + 1), A 2 := 6.296 log(r + 1), A 3 := 8.296n log(r + 1).

Thus Ω := A 1 A 2 A 3 > 433n(log(r + 1)) (28)

In the above chain of inequalities, we used the fact that m < (n + 1)x + 2 < 2nx (see inequality Eq. ( 19)) since n ≥ 2 and x ≥ 3. Further, putting log B := max 0.882 + log 0.12mx (log(r + 1)) 2 , 5 , we have that either the inequality log |Γ| > -790.95 × 434n(log(r + 1)) 3 × 2 2 × (log B) 2 (29) holds, or the other possibilities (i), (ii) from Theorem 2 hold. We treat (i) and (ii) later and deal with the above inequality Eq. (29) at this stage. If log B = 5, then

x < mx < e 5-0.882 0.12 (log(r + 1)) 2 < 512(log(r + 1)) 2 .

(30)

On the other hand, if log B > 5, then

log B := 0.882 + log 0.12mx (log(r + 1)) 2 < log 0.3mx (log(r + 1)) 2 , ( 31 
)
where in the above inequality we used the fact that e 0.882 × 0.12 < 0.3. Thus, we get that log |Γ| > -790.95 × 434n(log(r + 1)

) 3 × 2 2 × log 0.3mx (log(r + 1)) 2 2 > -1.374 × 10 6 n(log(r + 1)) 3 log 0.3mx (log(r + 1)) 2 2 .
Comparing this inequality with Eq. ( 27), we get that x log r -log 2.2 < 1.374 × 10 6 n(log(r + 1)) 3 log 0.3mx (log(r + 1)) (33)

Using the inequality Eq. ( 19), we know that m < (n + 1)x + 2 < (n + 1)(x + 1) (because n ≥ 2), and substituting this in (33) we get that

x < 1.38 × 10 6 n 1 + 1 r log r (log(r + 1)) 2 log 0.3(n + 1)(x + 1) 2 (log r) 2 2 . ( 34 
)
We now turn our attention to the possibilities (i) and (ii). In case (i), there are positive integers r 0 , s 0 , which may be assumed to be coprime, such that r 0 b 2 = s 0 b 1 . So, we get r 0 m = s 0 and since r 0 , s 0 are coprime, we take r 0 = 1, s 0 = m, and we get

m = s 0 < 5.61A 1 (D log D) 1/3 < 5.61 × 8.296 × (2 log 2) 1/3 log(r + 1) < 5.61 × 8.296 × (2 log 2) 1/3 log(r + 1)
< 52 log(r + 1).

Since m > (n -1)x + 1 > x, this situation gives

x < 52 log(r + 1).

(

) 35 
This was in situation (i). In situation (ii), we have integers r 1 , s 1 , t 1 , t 2 with r 1 s 1 = 0 and

(t 1 b 1 + r 1 b 3 )s 1 = r 1 b 2 t 2 , gcd(r 1 , t 1 ) = gcd(s 1 , t 2 ) = 1.
Thus, for us, we have

(t 1 + r 1 x)s 1 = r 1 mt 2 , gcd(r 1 , t 1 ) = gcd(s 1 , t 2 ) = 1.
Reducing the above equation modulo r 1 we get t 1 s 1 ≡ 0 (mod r 1 ) and since gcd(t 1 , r 1 ) = 1, we get that r 1 | s 1 . So, we put s 1 = r 1 s 1 and simplify both sides of the above equation by r 1 to get

(t 1 + r 1 x)s 1 = mt 2 .
Consequently, for us δ = gcd(r 1 , s 1 ) = r 1 . Hence, 

|t 1 s 1 | < 5.61A 1 (D log D)
|r 1 s 1 | < 5.61A 3 (D log D) 1/3 < 5.61 × 8.296(2 log 2) 1/3 n log(r + 1) < 52n log(r + 1).
Assume first that t 2 = 0. Then

x = |t 1 |/|r 1 | ≤ |t 1 | < 52 log(r + 1),
which is the same as (35). Assume next that t 2 = 0. We return to inequality Eq. ( 27) and multiply both sides by t 2 and get

|mt 2 log γ 2 -t 2 log γ 1 -xt 2 log γ 3 | < 2.2|t 2 | r
x . We substitute mt 2 by t 1 s 1 + (r 1 s 1 )x inside the left-hand side above and then the left-hand side above becomes log γ

t1s 1 2 γ t2 1 + x log γ r1s 1 2 γ t2 3 < 2.2|t 2 | r x . (37) 
Inequality ( 37) is of the form

|Γ 1 | < 2.2|t 2 | r x , where Γ 1 := log η 1 + x log η 2 , (38) 
and

η 1 := γ t1s 1 2 γ t2 1 , η 2 := γ r1s 1 2 γ t2 3 .
We check that η 1 and η 2 are multiplicatively independent. If not, there are integers i, j not both zero such that η i 1 η j 2 = 1. This gives γ

t1s 1 2 γ t2 1 i γ r1s 1 2 γ t2 3 j = 1.
If i = 0, this gives a multiplicative dependence among γ 1 , γ 2 , γ 3 with the exponent of γ 1 being the nonzero integer -t 2 i, a contradiction with the main result of Subsection 3.4. Thus, i = 0, so j = 0, and we get again a multiplicative relation among γ 2 , γ 3 (the exponent of γ 3 being the nonzero integer -t 2 j), which is the same contradiction. Thus, indeed η 1 and η 2 are multiplicatively independent and they are also positive. So, we are in position to apply Theorem 3 to the left-hand side of inequality Eq. (38). We compute log B i for these choices. We have, by the properties [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF], Since | log γ i |/2 ≤ h(γ i ) holds for i = 1, 2, 3, it follows, by the absolute value inequality, that the same inequalities are satisfied by the numbers | log η i |/2 for i = 1, 2. Thus, since D = 2, we can take log B 1 := 66(log(r + 1)) 2 , log B 2 := 66n(log(r + 1)) 2 .

h
We bound

1 2 log B 2 + x 2 log B 1 = 1 132(log(r + 1)) 2 1 n + x < x + 1 132(log(r + 1)) 2 .
Hence, we take b :=

x + 1 132(log(r + 1)) 2 . Now Theorem 3 gives log |Λ| > -24.34 × 2 4 (max{log b + 0.14, 10.5}) 2 × (66(log(r + 1)) 2 ) × (66n(log(r + 1)) 2 )

> -1.627 × 10 6 n(log(r + 1)) 4 M 2 , ( 39 
)
where x + 1 88(log(r + 1)) 2 .

Comparing inequality (39) with inequality (38), we get

x log r -log(2.2|t 2 |) < 1.627 × 10 6 n(log(r + 1)) 4 log
x + 1 88(log(r + 1)) The first summand in the right-hand side is < 5 for all r ≥ 3. Using inequality Eq. (32), we get that

x < 1.63 × 10 6 n 1 + 1 r log r (log(r + 1)) 3 log x + 1 88(log(r + 1)) 2 2 . ( 41 
)
To summarise, either we are in the first situation of Theorem 2 and log B = 5, in which case inequality Eq. (30) holds, or log B > 5 in which case inequality Eq. ( 34) holds, or we are in the exceptional case (i) for which inequality Eq. ( 35) holds, which is contained in inequality Eq. ( 30), or we are in the exceptional situation (ii) in which case either inequality Eq. ( 40) holds, or inequality Eq. ( 63) holds. Since inequality Eq. ( 30) is contained in inequality Eq. ( 40), it follows, using the inequality 1/88 < 0.12, that we proved the following result.

Lemma 8. One of the following inequalities holds:

x < 3.3 × 10 6 (log(r + 1)) 2 ;

(42)

x < 1.38 × 10 6 n 1 + 1 r log r (log(r + 1)) 2 log 0.3(n + 1)(x + 1) 2 (log(r + 1)) 2 2 ;

(43)

x < 1.63 × 10 6 n 1 + 1 r log r (log(r + 1)) 3 log 0.12(x + 1) (log(r + 1)) 2 2 .

(44) 3.6. More inequalities in terms of n and x. We put

κ := nx + 1 -m (45) 
Later we shall show that κ is positive except possibly if r = 3. In this section, assuming that it is positive, we show how it gives some lower bounds for x in terms of n.

Lemma 9. The following holds:

(i) κ = 1; (ii) If κ = 2 and n ≥ 3 then x ≥ r max{2,n-3} ; (iii) If κ ≥ 3, then κ ≥ n/2.
Proof. (i). If κ = 1, then m = nx. So the equation (3) becomes

U x n + U x n+1 = U nx . If p is prime dividing U n (which exists since n > 1), then p | U x
n and p | U n | U nx , so from the above equation we get p | U n+1 , a contradiction since gcd(U n , U n+1 ) = U gcd(n,n+1) = 1 by relation [START_REF] Koshy | Fibonacci and Lucas Numbers with Applications[END_REF].

(ii) In this case m = nx -1 so the equation (3) becomes

U x n + U x n+1 = U nx-1 . In particular, U nx-1 -U x n+1 ≡ 0 (mod U 2 n ).
We study this congruence. In what follows for three algebraic integers a, b, c, we write a ≡ b (mod c) if (a -b)/c is an algebraic integer. Write

U n = α n -β n α -β as α n = β n + √ ∆U n .
Then

α nx = (β n + √ ∆U n ) x ≡ β nx + xβ n(x-1) √ ∆U n (mod ∆U 2 n ). Thus, U nx-1 = α nx α -1 -β nx-1 √ ∆ ≡ (β nx + xβ n(x-1) √ ∆U n )α -1 -β nx-1 α -β (mod √ ∆U 2 n ) ≡ β nx α -1 -β nx β -1 α -β + xβ n(x-1) α -1 U n (mod U 2 n ) ≡ β nx + xβ n(x-1) α -1 U n (mod U 2 n ). On the other hand, U x n+1 = α n+1 -β n+1 √ ∆ x ≡ (β n + √ ∆U n )α -β n+1 √ ∆ x (mod U 2 n ) ≡ (β n + U n α) x (mod U 2 n ) ≡ β nx + xβ n(x-1) αU n (mod U 2 n ). Thus, U nx-1 -U x n+1 ≡ (β nx + xβ n(x-1) α -1 U n ) -(β nx + xβ n(x-1) αU n ) (mod U 2 n ) ≡ xβ n(x-1) (α -1 -α)U n (mod U 2 n ) ≡ -xβ n(x-1 rU n (mod U 2 n ).
In the last step above, we used the fact that α

-1 -α = -β -α = -r. Since the expression U nx-1 -U x n+1 is divisible by U 2 n , we get that U 2 n | β n(x-1) xrU n . Since β is a unit, we get that U n | xr. For n = 2, this gives us nothing since U 2 = r. For n = 3, U 3 = r 2 + 1 is coprime to r, so U 3 | x, which gives x ≥ r 2 + 1 > r 2 . For n = 4, we have that U 4 = r(r 2 + 2) divides rx, so r 2 + 2 | x giving x ≥ r 2 + 2 > r 2 .
Finally, for n ≥ 5, we have that U n > α n-2 > r n-2 and so x ≥ U n /r ≥ r n-3 . This proves (ii).

(iii) We may assume that n ≥ 7, otherwise the conclusion is trivial. Recall that V n = α n + β n . Relations Eq. ( 9) and ( 10) are

U 2 n+1 -U n U n+2 = (-1) n and V 2 n -∆U 2 n = 4(-1) n . In particular, U 2 n+1 ≡ (-1) n (mod U n ) and V 2 n ≡ 4(-1) n (mod U n ).
We also use the fact that U -m = (-1) m-1 U m , V -m = (-1) m V m and relation Eq. [START_REF] Sánchez | Linear combinations of factorials and s-units in a binary recurrence sequence[END_REF] which is

2U m+n = U m V n + U n V m .
Armed with these facts, writing m = nx -(κ -1) and

U x n + U x n+1 = U nx-(κ-1)
, we multiply both sides of the above equation by 2 and write

2U x n + 2U x n+1 = 2U nx-(κ-1) = U nx V -(κ-1) + V nx U -(κ-1)
. We square both sides of the above equation and reduce it modulo U n taking into account that U n | U nx and V 2 nx ≡ 4(-1) nx (mod U nx ) ≡ 4(-1) nx (mod U n ), and get 4(-1 9) (with n + 1 := κ -1). Since n ≥ 7 and U is not the Fibonacci sequence, it follows that U n has a primitive divisor p, which must divide one of U κ-2 or U κ . Thus, z(p) = n divides one of κ -2 or κ, so we get κ ≥ n, which is a better conclusion than the one desired. If κ -1 is even and

) nx ≡ 4(U 2 n+1 ) x (mod U n ) ≡ (U nx V -(κ-1) + V nx U -(κ-1) ) 2 (mod U n ) ≡ V 2 nx U 2 -(κ-1) (mod U n ) ≡ V 2 nx U 2 κ-1 (mod U n ) ≡ 4(-1) nx U 2 κ-1 (mod U n ). Thus, U n | 4(U 2 κ-1 -1). The right-hand side is nonzero since κ > 2. If κ -1 is odd, then 4(U 2 κ-1 -1) = 4U κ-2 U κ by relation Eq. (
U n | 2(U 2 κ-1 -1), we then get α n-2 < U n < 2U 2 κ-1 < r(α κ-1 ) 2 < α 2κ-1 , so 2κ -2 ≥ n -2, therefore κ ≥ n/2.
The above argument was based on the fact that r ≥ 2. In particular, if r ≥ 4, then the same argument gives again that α n-2 < U n < 4U 2 κ-1 < r(α κ-1 ) 2 < α 2κ-1 , so κ ≥ n/2. So, the only case when the above arguments fail are when r = 3 and 4 | U n . It then follows that n is even (in fact, n is a multiple of 6, but we shall not need that), so r | U n | 4(U 2 κ-1 -1). But U κ-1 is a multiple of r (since κ -1 is even), so U 2 κ-1 -1 is coprime to r. Thus, r | 4, which is false. This finishes the proof of (iii).

Corollary 4. If κ > 0, then x > n/2. Proof. By Lemma 9, if κ = 2, then x ≥ r min{2,n-3} ≥ 3 min{2,n-3} > n/2 for any n ≥ 2. If κ ≥ 3, then 1 + nx -m = κ ≥ n/2, which leads to 1 + nx -n/2 ≥ m.
Comparing this with the lower bound m > (n -1)x + 1 given by inequality Eq. ( 19), we get x > n/2.

3.7.

Another inequality among r, n, m, x. In this section, we return to inequality Eq. ( 27) and rewrite it in order to deduce a good approximation of log r by a rational number whose denominator is a multiple of r 2 . Let's get to work. We need approximations of log α and log √ r 2 + 4 in terms of log r. With z := 4/r 2 , we have |z| ≤ 4/9 and log(1

+ z) = z + ζ 1 , |ζ 1 | ≤ k≥2 z k k = z 2 2 1 + (2/3)z + (2/4)z 2 + • • • .
The expression in parenthesis above is smaller than

c 1 := 1 + (2/3)(4/9) + (2/4)(4/9) 2 + • • • = (-4/9 -log(1 -4/9)) × 2 × (9/4) 2 .
Hence,

log r 2 + 4 = log r + 2 r 2 + ζ 1 2 := log r + 2 r 2 + ζ, |ζ| = |ζ 1 | 2 < c 1 4 z 2 = 4c 1 r 4 < 5.81 r 4 . For α, we write log α = log r + log 1 2 + 1 4 + 1 r 2 = log r + log(1 + z 1 ), z 1 := 1 4 + z 4 - 1 2 . Note that |z 1 | ≤ 1/r 2 . Thus, log(1 + z 1 ) = z 1 + ζ 2 , |ζ 2 | ≤ |z 1 | 2 2 (1 + (2/3)|z 1 | + • • • ) ≤ c 2 2r 4
, where by the previous arguments,

c 2 = (-λ 0 -log(1 -λ 0 )) × 2 × λ -2 0 , with λ 0 := 1 4 + 1 9 - 1 2 .
It remains to expand z 1 . For this, we have

z 1 = 1 2 ( √ 1 + z -1) = 1 2 z 2 + ζ 3 , |ζ 3 | ≤ k≥2 k 1/2 z k . Since | k 1/2 | ≤ 1/4 for all k ≥ 1, it follows that |ζ 3 | ≤ 1 4 k≥2 z k = z 2 4(1 -z) ≤ 36 5r 4 .
Hence,

log α = log r + z 4 + ζ 2 + ζ 3 2 =: log r + 1 r 2 + ζ , |ζ | < c 2 2 + 36 10 1 r 2 < 3.64 r 4 .
The following estimate is the main result of this section.

Lemma 11. If r ≥ 4, then κ > 0. Furthermore,

x > κr 2 log r + 1 1 + 5/r . ( 48 
)
Proof. We shall use the approximations given in Lemma 10 but we also need an approximation of log U n+1 . We have

log U n+1 = log α n+1 α -β 1 - β α n+1 = (n + 1) log α -log( r 2 + 4) + ζ , (49) 
where

ζ = log 1 - β α n+1 . Since β = -α -1 , it follows that |β/α| = 1/α 2 . Thus, |ζ | ≤ 1 α 2n+2   1 + k≥1 1 k(α 2n+2 ) k   ≤ 1 α 2n+2 1 + 1 2(1 -1/α 2n+2 ) < 1.51 α 2n+2 , ( 50 
)
where for the last inequality we used the fact that α > r ≥ 3 and n ≥ 2. Inserting estimates Eq. ( 46) and Eq. ( 47) together with Eq. ( 49) into inequality Eq. ( 27), we get

|Γ| = m log α -log( r 2 + 4) -x((n + 1) log α -log( r 2 + 4) + ζ ) = (m -x(n + 1)) log α + (x -1) log( r 2 + 4) -xζ = (m -x(n + 1)) log r + 1 r 2 + ζ + (x -1) log r + 2 r 2 + ζ -xζ = (m -nx -1) log r + (m -nx -1) + (x -1) r 2 + (m -x(n + 1))ζ + (x -1)ζ + xζ .
We recognise the coefficient of log r as the number we denoted -κ in (45). Using inequality Eq. ( 27), we get

-κ log r + -κ + (x -1) r 2 < 2.2 r x + |m -x(n + 1)||ζ | + |x -1||ζ| + x|ζ |. Inequality Eq. (19) shows that m -x(n + 1) ∈ [-2x + 2, 2]. In particular, |m -x(n + 1)| ≤ 2(x -1).
We thus get, by estimates Eq. ( 46) and Eq. ( 47) together with Eq. ( 49), that

-κ log r + -κ + (x -1) r 2 < 4 r x + 7.28(x -1) r 4 + 5.81(x -1) r 4 + 1.51x r 6 .
Since x ≥ 3 and r ≥ 3, we get that the last term satisfies

1.51x r 6 ≤ 1.51 × (3/2) 3 2 (x -1) r 4 < 0.26(x -1) r 4 .
Hence,

-κ log r + -κ + (x -1) r 2 < 2.2 r x + 13.35(x -1) r 4 . ( 51 
)
Assume that κ ≤ 0. We then get that Thus, if r ≥ 5 or r = 4 and x ≥ 4, then κ > 0 and now Lemma 9 applies. We will show at the end of this proof that κ ≥ 0 for (r, x) = (4, 3) as well. Multiplying both sides of estimate (51) by r 2 , we get

x -1 r 2 ≤
| -κ(r 2 log r + 1) + (x -1)| < (x -1) 13.35 r 2 + 2.2 r x-2 (x -1)
.

Hence,

κ(r 2 log r + 1) < (x -1) 1 + 13.35 r 2 + 2.2 r x-2 (x -1) ≤ (x -1) 1 + 5 r ,
which gives estimate Eq. ( 48). It remains to treat the case (r, x) = (4, 3). By inequality (19), we have m < 3(n + 1) + 1 = 3n + 4 so κ = 3n + 1 -m ≥ -2. So, the only instances in which κ ≤ 0 is possible are when m = 3n + 3, m = 3n + 2, 3n + 1. Well, let us show that this is not possible by proving that

U 3 n + U 3 n+1 < U 3n+1 .
Using the Binet formula Eq. ( 4), this is implied by

α -1 1 + 1 α 6n 3 + α 2 1 + 1 α 6n+6 3 < ∆ 1 - 1 α 6n+3 , with α = 2 +
√ 5 and ∆ = 20. The function of n in the left is decreasing and the function with n in the right is increasing, and the inequality holds at n = 1 (the left-hand side there is < 18.5 and the right side is > 19.5), so it holds for all n ≥ 1. Thus, κ ≥ 2 for r = 4 as well.

3.8. The case n ≤ 100. We first seek bounds on r. Having the bounds in r and n, we get bounds on x using Lemma 8. Finally, for a fixed r we use Baker-Davenport on estimate Eq. ( 27) to lower x. The hope is that in all cases x ≤ 100, a case which has already been treated.

We prove the following result.

Lemma 12. When n ≤ 100, we have r ≤ 1.5 × 10 6 .

Proof. We assume r > 10 6 . Then x > κr 2 log r/1.01 ≥ nr 2 log r/2.02 by Lemma 9 and Lemma 11. We go through the three possibilities of Lemma 8. In case (i), we get

r 2 log r ≤ 1.01 × 3.3 × 10 6 (log(r + 1)) 2 ,
which gives r < 5500, a contradiction. Assume we are in case (ii). Then

x + 1 < 1.38 × 10 6 × 1.001(log(r + 1)) 2 log 0.3(n + 1)(x + 1) 2 (log(r + 1)) 2 . ( 52 
)
The factor 1.001 is an upper bound on the factor 1 + 1/(r log r) which is valid since r is large. Now

x + 1 > x > nr 2 log r 2.02 > nr 2 log(r + 1) log r 2.02 log(r + 1) > nr 2 log(r + 1) 2.03 ,
where the last inequality holds since r > 10 6 . Put y := (x + 1)/(n(log(r + 1)). Then the above inequality is y > r 2 /2.03. Inequality Eq. ( 52) can be rewritten in terms of y as y < 1.38 × 10 6 log(r + 1) × 1.001 log(0.3n 2 (n + 1)y 2 ) 2 < 1.39 × 10 6 log(r + 1)(2 log y + log(30030)) 2 .

We look at the function f (y) := y (2 log y + log(30030)) 2 . Its derivative is 2 log y + log(30030) -4 (2 log y + log(30030)) 3 > 0, so our function f (y) is increasing. Since f (y) < 1.39 × 10 6 log(r + 1), and y > r 2 /2.03, it follows that f (r 2 /2.03) < 1.39 × 10 6 log(r + 1). This gives r 2 < 1.39 × 2.03 × 10 6 (log(r + 1))(2 log(r 2 /2.03) + log(30030)) 2 , which gives r < 370000, a contradiction. Assume we are in case (iii). We use the same substitution y := (x + 1)/(n(log(r + 1)). We then get y < 1.64 × 10 6 (log(r + 1)) 2 (log(0.12n 2 y 2 )) 2 ≤ 1.64 × 10 6 (log(r + 1)) 2 (2 log y + log( 12)) 2 .

The function g(y) := y/(2 log y + log( 12)) 2 is also increasing, so we deduce that r 2 < 2.03 × 1.64 × 10 6 (log(r + 1)) 2 (2 log(r 2 /2.03) + log( 12)) 2 , and this gives r < 1.5 × 10 6 .

Having bounds on n and r, inequalities (i), (ii) and (iii) from Lemma 8 become

x < 3.3 × 10 6 (log(1.5 × 10 6 )) 2 < 7 × 10 8 ; x < 1.39 × 10 6 × 100(log(1.5 × 10 6 )) 2 log(0.3 × 101(x + 1) 2 ) 2 < 3.7 × 10 10 log(30.3(x + 1)) 2 ,
x < 1.64 × 10 6 × 100 × (log(1.5 × 10 6 )) 3 (log(0.12(x + 1)) 2 < 6.5 × 10 11 log(0.12(x + 1)) 2 .

Any one of these inequalities implies that x < 3 × 10 15 . Now we do Baker-Davenport on estimates Eq. ( 27) for n ∈ [2, 100], r ∈ [3, 1500000], and x < 3 × 10 15 . This also gives m < 3 × 10 17 via inequality Eq. ( 19). We return to inequality (27) and rewrite it as follows.

x log U n+1 log α -m + log √ r 2 + 4 log α < 2.2 r x log α . (53) 
Then, we apply Lemma 5 on Eq. ( 53) with the data:

M := 3 × 10 17 , τ := log U n+1 log α , µ := log √ r 2 + 4 log α , A := 2.2 log α
, and B := r.

A computer search in Mathematica reveals that x ≤ 81, which is a contradiction. This computation lasted 16 hours on a cluster of four 16 GB RAM computers.

3.9. The case n > 100. Estimate Eq. ( 27) together with estimate Eq. ( 49) give

|Γ| = |m log α -log( r 2 + 4 -x((n + 1) log α -log( r 2 + 4 + ζ )| < 2.2 r x , which implies, via estimate Eq. (50), that |(m -x(n + 1)) log α + (x -1) log( r 2 + 4)| < 2.2 r x + 1.51x α 2n+2 . (54) 
If r ≥ 4 then κ > 0, so by Lemma 9, we have κ ≥ 2. If κ ≥ 3, then

x ≥ κ(r 2 log r + 1) 1 + 5/r > n4 2 log 4 4.5 > 2n + 2.
The same conclusion holds for κ = 2 since then x ≥ r min{2,n-3} ≥ 4 min{2,n-3} ≥ 2n + 2 for all n ≥ 2. We thus get

|(m -x(n + 1)) log α + (x -1) log( r 2 + 4)| < 4 r 2n+2 + 1.51x α 2n+2 < 1.51x + 2.2 α 2n+2 . (55) 
We prove the following lemma.

Lemma 13. For n > 100, we have r n-2 > x.

Note that Lemmas 9 and 13 show that the case κ = 2 cannot occur for r ≥ 4 provided that n > 100.

Proof. Assume x ≥ r n-2 . We use the bounds given by Lemma 8 on x. In case (i), we get

r 99 ≤ r n-2 ≤ 3.3 × 10 6 (log(r + 1)) 2 .
The function y → y 99 /(log(y + 1)) 2 is increasing for all y ≥ 3 as one can check by computing its derivative. Thus, if the above inequality holds for r, it should hold r = 3 as well, which is false. In case (ii), we have

x < 1.38 × 10 6 n 1 + 1 r log r (log(r + 1)) 2 log 0.3(n + 1)(x + 1) 2 (log(r + 1)) 2

2

.

The expression 1 + 1/(r log r) is smaller than 1.304 at r = 3. Since 1.38 × 1.304 < 1.8, we get

x < 1.8 × 10 6 (log(r + 1)) 2 log 0.3(n + 1)(x + 1) 2 (log(r + 1)) 2

2

.

If x ≤ n, then we get r n-2 ≤ n for r ≥ 3 and n ≥ 101, which is false. Thus, n < x, so we may use 0.3(n + 1) < n < x + 1 to get

x + 1 < 1.8 × 10 6 n(log(r + 1)) 2 (log((x + 1) 3 )) 2

< 1.8 × 3 2 × 10 6 (log(r + 1)) 2 (log(x + 1)) 2 < 1.7 × 10 7 (log(r + 1)) 2 (log(x + 1)) 3 .

The function (x+1)/(log(x+1)) 3 is increasing for x+1 > e 3 , which is the case for us since x ≥ r 99 ≥ 3 99 . Hence, the above inequality should hold for x + 1 replaced by r n-2 , and that gives r n-2 ≤ 1.7 × 10 7 (log(r + 1)) 2 (log(r n-2 )) 2 < 1.7 × 10 7 n 2 (log(r + 1)) 4 .

Since r n/3 ≥ 3 n/3 > n holds for n > 100, we get that r n/3-2 < 1.7 × 10 7 (log(r + 1)) 4 , so r 95 ≤ r n-6 < 1.7 × 10 7 (log(r + 1)) 2 3 < 5 × 10 21 (log(r + 1)) 12 .

The function y → y 95 /(log(y + 1)) 6 is increasing for y ≥ 3, so the last inequality should hold also for r replaced by 3, which is false. A similar argument works if x is in case (iii) of Lemma 8. We don't give further details.

From Lemma 13 we conclude that if r ≥ 4, then inequality Eq. (55) leads to

|(m -x(n + 1)) log α + (x -1) log( r 2 + 4)| < 1 r n . ( 56 
)
We put Γ 2 := (x -1) log r 2 + 4 -((n + 1)x -m) log α.

We apply Theorem 3 to find a lower bound on log |Γ 2 | with the data:

t := 2, γ 1 := r 2 + 4, γ 2 := α, b 1 := x -1, b 2 := m -(n + 1)x. ( 57 
)
Since γ 1 , γ 2 ∈ Q(α), we take again K := Q(α) with degree D := 2. The fact that γ 1 and γ 2 are multiplicatively independent has already been checked. We take max h(γ 1 ),

| log γ 1 | 2 , 1 2 = 1 2 log(r 2 + 4) < log(r + 1) := log B 1 ,
and

max h(γ 2 ), | log γ 2 | 2 , 1 2 = 1 2 log α < 1 2 log(r + 1) := log B 2 .
Thus,

b := |b 1 | D log B 2 + |b 2 | D log B 1 = x -1 2 log(r + 1) + |(n + 1)x -m| log(r + 1) < 2.5x log(r + 1)
,

where we used the fact that m -(n + 

) 58 
We want an upper bound on r. So, assume r ≥ 10 6 . If log((2.5x)/log(r + 1)) < 10.5, then

x < e 10.5 log(r + 1) 2.5 < 15000 log(r + 1). where we used the fact that r ≥ 10 6 so log(r + 1)/ log r < 1.0001.

We now use the bounds on x given by Lemma 8. In case (i), we have 50r 2 log r ≤ x ≤ 3.3 × 10 6 (log(r + 1)) In the above inequalities we used the fact that r ≥ 10 .

Putting again y := (x + 1)/ log(r + 1), we get y < 1.39 × 10 6 × 196 × (log(r + 1)) 2 log(2.5y) 2 (3 log y) 2 < 2.46 × 10 9 (log(2.5y)) 4 .

The function y → y/(log(2.5y) 4 is increasing for our range for y > 50r 2 > 50 × 10 16 , so we get that the above inequality should hold by replacing y by 50r 2 . Thus, 50r 2 < 2.46 × 10 9 (log(r + 1)) 2 (log(2.5 × 50r 2 )) 4 , so r < 2.6 × 10 8 . A similar argument holds when x is in case (iii). In that case, we may again suppose that n < (x + 1)/ log(r + 1). We get

x + 1 < 1.64 × 10 6 (log(r + 1)) 3 196 log(r + 1) log 2.5x log(r + 1) 2 log 0.12(x + 1) (log(r + 1)) 2 2 , so y < 3.3 × 10 8 (log(r + 1)) 3 (log(2.5y)) 2 (log(0.12y)) 2 . Imposing that the above inequality holds for y replaced by 50r 2 , we get 50r 2 < 1.3 × 10 9 (log(r + 1)) 3 (log(2.5 × 50r 2 ))(log(0.12 × 50r 2 )) 2 , so r < 4.3 × 10 8 .

To summarise, we have proved the following. Having bounds for r it is easy to find bounds for x. For example, n < 195 log(r + 1)(log(2.5x)) 

√ r 2 + 4 log α - x(n + 1) -1 x -1 < 1 r n (x -1) log α < 1 16(x -1) 2 , (59) 
where for the last inequality we used that r n = r 2 r n-2 ≥ 16x by Lemma 13. In particular, the ratio (x(n + 1) -1)/(x -1) is a convergent of log √ r 2 + 4/ log α. Since x < 3 × 10 20 < F 100 , it follows that (x(n + 1) -1)/(x -1) = p k /q k for some k ∈ [0, 99]. So, we apply Lemma 4 on Eq. ( 59) with the data:

M := 3 × 10 20 , τ := log √ r 2 + 4 log α , u := x(n + 1) -1, and v := x -1.
With the help of a computer search in Mathematica, we checked all these possibilities over all the values for 4 ≤ r ≤ 4.3 × 10 8 and found that n ≤ 46, which is a contradiction. This computation lasted 6 hours on a cluster of four 16 GB RAM computers.

3.10. The case r = 3. The case r = 3 is special since there we don't know that κ > 0 so some of the inequalities used for the case r ≥ 4 do not apply. In the case n ≤ 100, Lemma 8 gives

x < 3.3 × 10 6 × (log 4) 2 < 6.4 × 10 

|(m -x(n + 1)) log α + (x -1) log( r 2 + 4)| < 2.2 r x + 1.51x α 2n+2 < 2.2 r x + 1.51 r n+2 < 1 3 min{n-1,x-1} . (60)
We keep the notation r and α although this section only applies to r = 3 for which α = (3 + √ 13)/2. Put := min{n - m x -1 < 1 3 n-1 (x -1)(log 3) < 1 3(x -1) 2 , so again (x(n + 1) -m)/(x -1) = p k /q k is a convergent of log √ r 2 + 4/ log α with x < 2 × 10 16 < F 80 , so k ∈ [0, . . . , 16]. So, everything works fine if = n -1.

In case = x -1, one gets (x -1) log 3 < 375 max log 2.5x log 4 , 10.5 2 , which gives x < 5 × 10 4 . And one wonders how one should finish it off. We can expand another linear form in logarithms which is small, or we may recall the following main theorem from [START_REF] Yu | On a divisibility relation for Lucas sequences[END_REF].

Theorem 5. Assume that s ∈ {1, 2, 4} is minimal such that U m | U s n+1 -U s n . Then m < 20000s 2 . In our instance, since U m = U x n + U x n+1 , one checks that the minimal s is exactly 2x. Thus, m < 80000x 2 , and since m > (n -1)x by estimate (19), we get n ≤ 80000x < 4 × 10 9 . Thus, n < 4 × 10 9 and x < 5 × 10 4 . It is still a large range and we need to reduce it.

We consider the element y := x α 2n . Lemma 13 together with the fact that α > r implies that

y < 1 α n , (61) 
where the last inequality holds for all n > 100. Now, we write x < e y < 1 + 2y, because y is very small. On the other hand, if n is even, then

U x n = α nx (r 2 + 4) x/
1 > 1 - (-1) n α 2n x = exp x log 1 - 1 α 2n
x > e -2y > 1 -2y, because y is very small. Thus, the following inequalities hold in both cases,

U x n -
α nx (r 2 + 4) x/2 < 2yα nx (r 2 + 4) x/2 , and U x n+1 -α (n+1)x (r 2 + 4) x/2 < 2yα (n+1)x (r 2 + 4) x/2 . Now, we return to (3) and rewrite it as α m -β m (r 2 + 4) 1/2 = U m = U x n + U x n+1 = α nx (r 2 + 4) x/2 + α (n+1)x (r 2 + 4) x/2 + U 2 n -α nx (r 2 + 4) x/2 + U x n+1 -α (n+1)x (r 2 + 4) x/2 , or α m (r 2 + 4) 1/2 -α nx (1 + α x ) (r 2 + 4) x/2 = β m (r 2 + 4) 1/2 + U x n -α nx (r 2 + 4) x/2 + U x n+1 -α (n+1)x (r 2 + 4) x/2 < 1 α m + U x n -α nx (r 2 + 4) x/2 + U x n+1 -α (n+1)x (r 2 + 4) x/2 < 1 α m + 2y

α nx (1 + α x ) (r 2 + 4) x/2 .
Multiplying both sides of the above inequality by α -(n+1)x (r 2 + 4) x/2 , we obtain that α m-(n+1)x (r 2 + 4) (x-1)/2 -(1 + α -x ) < (r 2 + 4) x/2 α m+(n+1)x + 2y(1 + α -x ) <

1 2α n + 3y < 3 α n , (62) 
so we may divide both sides of it by 1 + α -x and get α m-(n+1)x (r 2 + 4) (x-1)/2 (1 + α -x ) -1 -1 < 3 α n . Since n > 100, the left-hand side is small (say smaller than 1/2), so we can pass to a logarithmic form and get |(m -(n + 1)x) log α + (x -1) log( r 2 + 4) -log(1 + α

-x )| < 6 α n . ( 63 
)
For us, the parameter x is in [START_REF] Yu | Eexistence of primitive divisors of Lucas and Lehmer numbers. With an appendix of M. Mignotte[END_REF]50000]. Given x, we have m < 2 × 10 14 . So, this is a suitable inequality to apply Baker-Davenport to. To do so, we rewrite Eq. ( 63 A computer search in Mathematica reveals that n ≤ 94, which is the final contradiction. This computations lasted a few hours on a cluster four 16 GB RAM computers.

(η 1 )

 1 ≤ |t 1 s 1 |h(γ 2 ) + |t 2 |h(γ 1 ) ≤ (52 log(r + 1))(1/2 log(r + 1)) + (40 log(r + 1)) log(r + 1) = 66(log(r + 1)) 2 ; h(η 2 ) ≤ |r 1 s 1 |h(γ 2 ) + |t 2 |h(γ 3 ) ≤ 52n log(r + 1)(1/2 log(r + 1)) + (40 log(r + 1))(n log(r + 1)) = 66n(log(r + 1)) 2 .

  M := max{log b + 0.4, 10.5}. In case M = 10.5, we get b < e 10.5-0.4 < 24400, which gives x + 1 < 24400 × 132(log(r + 1)) 2 < 3.3 × 10 6 (log(r + 1)) 2 . (40) Finally, suppose that M = log b + 0.4 = log(e 0.4 b ) < log(1.5b ) = log

Lemma 10 .

 10 For r ≥ 3, we have the following approximations:log r 2 + 4 = log r + 2 r 2 + ζ, |ζ| < α = log r + 1 r 2 + ζ , |ζ | <

Lemma 14 .

 14 If r ≥ 4, then r < 4.3 × 10 8 .

  3 > 100 since n ≥ 2 and r ≥ 3. Then,

	b =	1 6.296 log(r + 1)	+	m 8.296 log(r + 1)	x 6.296 log(r + 1)	+	m 8.296n log(r + 1)
	<	m (log(r + 1)) 2	1 6.296	+	1 8.296	x log(r + 1)	1 6.296	+	2 8.296
	<	0.12mx (log(r + 1)) 2 .							

  Since x > nr 2 log r/(2 + 10/r) ≥ 101r 2 log r/2.02 = 50r 2 log r, we get

		50r 2 log r ≤ x ≤ 15000(log(r + 1)),
	so				
	r 2 <	15000 50	log(r + 1) log r	< 300 × 1.01 = 303,
	so r ≤ 17, a contradiction.				
	Assume next that log(2.5x/ log(r + 1)) > 10.5. We then get
	log |Γ 2 | > -195(log(r + 1)) 2 log	2.5x log(r + 1)	2	.
	Comparing the above inequality with estimate Eq. (56), we get
	n log r < 195(log(r + 1)) 2 log	2.5x log(r + 1)	2	,
	so				
	n < 195	log(r + 1) log r	log(r + 1) log	log(r + 1) 2.5x	2
	< 196 log(r + 1) log	2.5x log(r + 1)

2

,

  6 . The function y → y/ log(2.5y) 2 is increasing for y > e 2 /2.5, which is our case. Hence, the inequality y < 196 log(r + 1) log(2.5y) 2 should hold with y replaced by 50r 2 , which yields 50r 2 < 196 log(r + 1) log(2.5 × 50r 2 ) 2 and gives r < 50, a contradiction.

	1) log	2.5x log(r + 1)	2	log	log(r + 1) (x + 1)	3	2

Thus, n < (x + 1)/ log(r + 1). Since 0.3(n + 1) < n, we conclude that x + 1 < 1.39 × 10 6 (log(r + 1)) 2 196 log(r +

  2 < 195 log(4.3 × 10 8 )(log(2.5x)) 2 < 3900(log(2.5x)) 2 . × 10 20 . Thus, r < 4.3 × 10 8 and x < 3 × 10 20 . Inequality Eq. (56) gives that log

	If x is in case (ii), then
	x < 1.39 × 10 6 (log(4.3 × 10 8 ) 2 (3900(log(2.5x)) 2 )(log(0.3 × 3900(log(2.5x)) 2 (x + 1) 2 )) 2
	< 2.2 × 10 12 (log(2.5x)) 2 (log(1200(x + 1) 2 log(2.5x))) 2 ,
	which gives x < 5 × 10 19 . Finally, if x is as in case (iii), then
	x < 1.64 × 10 6 (log(4.3 × 10 8 ) 3 × 3900(log(2.5x)) 2 × (log(0.12(x + 1))) 2
	< 5.1 × 10 13 (log(2.5x)) 2 (log(0.12(x + 1))) 2 ,
	so x < 3
	Next, if x is in case (i), then

x < 3.3 × 10 6 (log(r + 1)) 2 < 3.3 × 10 6 (log(4.3 × 10 8 )) 2 < 1.4 × 10 9 .

  × 10 11 . Now we can do Baker-Davenport on estimate Eq. (27) and get better bounds on x. In case n > 100, estimate Eq. (54) together with Lemma 13 hold and give

						6 ,
	or				
	x < 1.38 × 10 8 × 100 1 +	1 3 log 3	(log 4) 2 log	0.3 × 101(x + 1) 2 (log 4) 2	,
	< 3.5 × 10 10 (log(16(x + 1) 2 )) 2 ,		
	which gives x < 1.7 × 10 14 , or				
	x < 1.63 × 10 6 × 100 1 +	1 3 log 3	(log 4) 3 log	(log 4) 2 0.12(x + 1)	2
	< 5.7 × 10 8 (0.07(x + 1))	2 ,		
	which gives x < 3.3				

  1, x -1}. The lower bound estimate Eq. (58) still applies and gives log 3 < -log |Γ 2 | < 195 max logIn case the maximum above is 10.5 we get x < 16000 and n < 40000. If the maximum above is not at 10.5, we then get Going via the possibilities (i), (ii), (iii), we get x < 3.3 × 10 6 (log 4) 2 < 7 × 10 6 ; × 10 9 (log 2x)) 2 (log(55(x + 1) 2 )) 2 , which gives x < 2 × 10 16 , or finally x < 1.63 × 10 6 (350(log(2x))

	When = n -1, we get				
		(n -1) log 3 < 375 max log	2.5x log 4	, 10.5
		n <	375 log 3	log	2.5x log 4	2	+ 1 < 350(log(2x)) 2 .
	x < 1.38 × 10 6 350(log(2x)) 2 1 +	1 3 log 3	(log 4) 2 log	(log 4) 2 0.3 × 351(log 2x) 2 (x + 1) 2	2
	< 1.3 2 ) 1 +	1 3 log 3	(log 4) 3 log	0.12(x + 1) (log 4) 2
	Since Lemma 13 still applies, it follows that estimate Eq. (60) gives
	log	√ log α r 2 + 4	-	x(n + 1) -
							2.5x log 4	, 10.5	2	(log 4) 2 .

2 . 2 < 2 × 10 9 (log(2x)) 2 (log(0.07(x + 1))) 2 , which gives x < 3.1 × 10 15 . So, in all instances, x < 2 × 10 16 , and now n < 350(log(2x)) 2 < 6 × 10 5 .
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