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Abstract

An algorithm is introduced for the search of a volume, in the three-
dimensional space, which maximizes the probability of finding να up elec-
trons and νβ down electrons inside the volume, all the other electrons
being outside of it. This search is performed after a Variational Monte
Carlo sampling of the N -particle density generated by the wave function.

1 Introduction

Quantum Monte Carlo (QMC) methods have been found very successful in
calculating ground-state energies of various molecular systems in recent years.
Many applications were presented, including the study of large clusters[1, 2] and
the determination of reaction paths in organic chemistry[3, 4]. The precision
obtained using these techniques is comparable if not better than this obtained
with more traditional methods like coupled cluster using single and double ex-
citations (CCSD), and complete active space self consistent field improved by
second order perturbation theory (CAS-PT2). But accuracy in total energies
is not always sufficient for a good understanding of the problem. The chemists
need some other tools adapted to their needs, for example the analysis of the
electron density.

∗Current Address: Universiteit Leiden, LION-Instituut Lorentz, Postbus 9506, 2300 RA
Leiden, The Netherlands.
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Methods of partition of space based upon the topological analysis of a local
function, like the electron density[5] or Becke and Edgecombe’s Electron Local-
ization Function (ELF)[6, 7], separate space in different domains. Integrating
the density in the subspaces gives the average electron population in each one
of these domains, and generally one does not get an integral number of elec-
trons. Savin[8], following the early work of Daudel’s loge theory[9], proposed a
complete partition of space obtained by looking at the probabilities of finding a
given number of electrons, ν, in each subspace. Then, Cancès et al.[10] adapted
the level-set algorithm to investigate the volume which maximizes the proba-
bility of finding ν electrons inside the volume Ω and the N − ν other electrons
of the system outside of it (inside Ω̄, the complement of Ω). However, elec-
tron correlation was not considered in these studies. A simple and efficient way
to compute probabilities from correlated wave functions is the use of quantum
Monte Carlo sampling. In this paper, an algorithm for the investigation of such
a volume within the Variational Monte Carlo (VMC) framework is proposed.

The organization of the paper is as follows: In Section 2 the basic features of
VMC needed to understand the present work are briefly presented. Section 3 is
devoted to the definition and presentation of the calculation of the probabilities
inside a volume. Section 4 introduces the volume search algorithm, and Section
5 presents some results obtained on very simple molecules. Finally, in Section
6 a summary of the main results of this work is presented.

2 Variational Monte Carlo

In the Variational Monte Carlo (VMC) method[11] the N -particle probability
density of a trial wave function, Ψ2

T , is sampled by generating a series of electron
configurations via the Metropolis algorithm[12]. The configurations are defined
as the set of the 3N -electronic coordinates:

~R = (~r1, ..., ~rN ). (1)

In other words, a configuration ~R may be viewed as a “snapshot” of the molecule
showing the instantaneous positions of all the electrons.

ΨT can be of any kind (Hartree-Fock, Kohn-Sham, Multi-Configuration. . . ),
and is generally improved by taking account of the electron correlation via a
Jastrow factor[13, 14]:

ψT (~R) = D↑(~R)D↓(~R) exp [
∑
α

∑
〈i,j〉

J(riα, rjα, rij)] (2)

where the sum over α denotes a sum over the nuclei,
∑
〈i,j〉 a sum over the

pair of electrons, and Dσ(σ =↑ or ↓) are determinants made of one-particle
space-orbitals. The exponential term is the Jastrow factor, which is introduced
to reproduce the electron-electron cusp condition of the exact wave function
and, also, to incorporate some explicit coupling between electron-nucleus and
electron-electron coordinates.
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Different expressions for the Jastrow part have been presented in the litera-
ture. Here, the following form was chosen[15]:

J(riα, rjα, rij) =

s(xij) + p(α)(xiα) + c1x
2
iαx

2
jα + c2(x2

iα + x2
jα)x2

ij + c3x
2
ij (3)

with
xij =

rij
1 + bσrij

xiα =
riα

1 + bαriα

s(x) = s1x+ s2x
2 + s3x

3 + s4x
4

p(α)(x) = p
(α)
1 x+ p

(α)
2 x2 + p

(α)
3 x3 + p

(α)
4 x4,

bσ can take two different values depending on the spin of the pairs of electrons

considered. In this latter expression the quantities {bσ, bα, ci, si, p
(α)
i } play the

role of parameters which need to be optimized. A standard approach consists in
searching for parameters minimizing the fluctuations of the local energy defined
as

EL(~R) ≡ HΨT (~R)/ΨT (~R). (4)

This criterion is based on the fact that if ΨT is the exact wave function, it is an
eigenfunction of the Hamiltonian operator. In that case, the local energy is the
associated eigenvalue and the fluctuations entirely vanish. Accordingly, small
fluctuations are associated with “good” trial wave functions[16].

3 Calculation of the probabilities

3.1 Probabilities in VMC

Cancès et al.[10] proposed a partition of space obtained by trying to find the
volume Ω which maximizes the probability of finding ν electrons inside the
volume and theN−ν remaining electrons outside of it (inside Ω̄, the complement
of Ω).

PΩ(ν) =
N !

ν! (N − ν)!

∫
Ω

d1d2 . . . dν

∫
Ω̄

d(ν + 1) . . . dN |Ψ|2 (5)

From the data of the VMC simulation, the computation of the PΩ(ν) is
straightforward. At every step of the VMC simulation, the coordinates of the
electrons (the current configuration) are stored in a file. At the end of the
simulation this file contains all the history of the random walk. As a post-
treatment, this data is used in the following way. For all the configurations one
counts how many electrons are inside Ω. The probability of finding ν electrons
is obtained by calculating the ratio Nν/Nconf , where Nν is the number of times
ν electrons were inside Ω all the other electrons being inside Ω̄, and Nconf is the
total number of configurations.
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3.2 Simple examples
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Figure 1: Probability distributions on a sphere with radius r centered on the
nucleus in the first excited state of 1He. PΩ(0), PΩ(1) and PΩ(2) are given at
the Hartree-Fock level, and in presence of a Jastrow factor.

In the first singlet excited state of the Helium atom (1s12s1), PΩ(0), PΩ(1)
and PΩ(2) were computed for Ω being a sphere centered on the nucleus with
a variable radius r. The probabilities were computed from a VMC simulation
using an Unrestricted Hartree-Fock (UHF) trial wave function improved or not
by a Jastrow factor, and the values of PΩ(0), PΩ(1) and PΩ(2) are plotted on
figure 1 as a function of the radius r of the sphere. As the two electrons are
in different atomic shells, the 1s electron is closer to the nucleus than the 2s
electron. Hence, as in the loge theory[9], there exists a value for the radius
r which maximizes the probability of finding one electron inside Ω and one
electron outside of Ω (r = 1.4 a.u.). The following section presents an algorithm
to perform the search of the volume corresponding to this maximum.

On figure 1 one can also notice the influence of the dynamic electron corre-
lation introduced by the Jastrow factor, which tends to push away the electrons
from each other. In all the region where the probability of having zero or one
electron is predominant (0.0 ≤ r < 1.4 a.u.), the curves with or without the
Jastrow factor are super imposable. For larger spheres (r ≥ 1.4 a.u.) when the
probability of finding two electrons rises the two curves become more and more
separated.

Then a similar computation for the aluminum atom (13 electrons) was per-
formed. The radius of the sphere was varied from r = 0.0 to r = 4.0 Å, and
the PΩ(ν) corresponding to the sphere were computed. Figure 2 shows that the
usual shell structure is recovered. Maxima with a high value (∼ 0.8) are ob-
tained for PΩ(2) and PΩ(10), which correspond respectively to the shells n = 1
and n = 2.
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Figure 2: Probability distributions inside a sphere with radius r centered on the
nucleus of the Aluminum atom.

3.3 Refinement of the definition

In order to give a better description of the chemically important regions of
molecules, it is necessary to take account of the spin of the electrons in the
computations of the probabilities. The volume maximizing the probability of
finding two anti-parallel electrons is a better description of a chemical bond than
the volume maximizing the probability of finding two electrons whatever their
spins. Let PΩ(ν,m) be the probability of finding ν electrons inside Ω, where
m = 2S+1 and S is the sum over the spins of the ν electrons. This way, finding
two anti-parallel electrons with all the other electrons outside of Ω contributes
to PΩ(2, 1), and finding two up electrons or two down electrons, all the other
electrons outside of Ω, both contribute to PΩ(2, 3).

4 Volume search algorithm

Space is represented as a regular three-dimensional regular boolean grid X. 1 is
assigned to the elementary cells of space corresponding to Ω, and 0 is assigned
to the elementary cells of space corresponding to Ω̄. To perform the search, a
trial volume is needed. It can be, for example, a sphere placed in a reasonable
position, like between two atoms. It can also be an atomic basin within Bader’s
Atoms In Molecules (AIM) theory[5], or a valence basin obtained from the
topological analysis of the Electron Localization Function[6, 7].

The volume is moved and distorted in the elementary cells in such a way
that a particular function f(Ω) is maximized. This function is linked to the
maximization of PΩ(ν,m).
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4.1 The maximization function

The following function is maximized during the search process of P (ν,m), for a
N -electron system, with M possible values of m:

f(Ω) = PΩ(ν,m)×
N∏

i = 0
i 6= ν

M∏
j = 1
j 6= m

[1− PΩ(i, j)] (6)

When f(Ω) is maximized, PΩ(ν,m) is maximized. At the same time, all the
other probabilities are minimized. This way a volume is obtained, where the
variance of the average population inside Ω is smaller than that when only
PΩ(ν,m) is maximized. Hence, the algorithm converges faster to a higher value
of PΩ(ν,m).

4.2 Distortions of the volume

In this section, one iteration consists in going through all the cells belonging to
the surface separating Ω and Ω̄. fk is the value of the maximization function at
iteration k with volume Ωk, and f0 is its initial value with the trial volume Ω0.

First, the cells which belong to the surface separating Ωk and Ω̄k are identi-
fied. These are the cells which have a value equal to 1, and at least one neighbor
with a value equal to 0.

Then, for each one of these cells, a contraction of Ω is attempted, by removing
the current cell of the boundary (0 is assigned to this cell). If the value of f
computed with the contracted volume is greater than fk, the removal of the cell
is favorable to the maximization of PΩ(ν,m). The move is accepted, fk is set
equal to f and the next cell is treated.

If the contraction of the volume is not favorable to the maximization of f , an
expansion of the volume is attempted by assigning the value 1 to all of the first
neighbors of current cell. If the value of f computed with the expanded volume
is greater than fk the expansion of the volume is favorable to the maximization
of PΩ(ν,m). The move is accepted, fk is set equal to f and the next cell is
treated.

If neither the contraction nor the expansion of the volume were favorable
to maximize f , the volume is not moved at that point, and the next cell is
processed.

Once all the cells of the boundary have been moved, a convergence test is
realized by checking if fk − fk−1 is below a fixed threshold. If convergence is
not reached, the list of cells constituting the boundary between Ωk and Ω̄k is
updated and all the cells of the boundary are treated again.

In this algorithm, note that first the volume is contracted, and only if the
move is not favorable the volume is expanded. This sequence leads to the
smallest volume when the function f is very flat. Moreover, the cells of the
surface are sorted as a function of their distance to the centroid of the volume.
This way the symmetry of the trial volume is preserved if it corresponds to a
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symmetry imposed by the wave function. One can notice that the execution
time is proportional to the number of cells constituting the surface.

4.3 Acceleration of the process

As the computation time is proportional to the number of points of the boundary
between Ω and Ω̄ and to the number of electron configurations (“snapshots”
of the positions of the electrons), the process is accelerated in the following
way. During the first computation of the probabilities, for each elementary
cell the list of configurations which have at least one electron in this particular
cell is associated to the cell. The computation of the probabilities is refreshed
depending only on the configurations which have at least one electron in the
deleted or added cells.

If one cell b has to be removed from Ω, for each element of the list of con-
figurations which have at least one electron in b, the associated values of ν and
m are computed and the corresponding value in the array P containing the
probabilities is decreased. The values of the probabilities are now independent
on the cell b and this cell can be deleted without changing any value of P . The
contributions of the configurations associated to the cell b are added by com-
puting again the values of ν and m for each one of these configurations in the
new volume.

If one cell has to be added to Ω, the contributions of the configurations
associated to the cell are removed from P , the cell is added to the volume, then
the contributions due to the configurations associated to the cell are computed
and added to P .

The gain of time is remarkable. For an N electron system in a 80× 80× 80
grid with 106 configurations, there are in average 2N electrons per cell. When
a cell is added or deleted, the computation is performed in average over 2N
configurations instead of all the 106 configurations. As the electron density is
not uniform, the computation of the probabilities is faster in the regions of low
density than in the regions of high density, but the regions of high density are
enclosed in very few elementary cells.

4.4 Regularization

When the computation has converged to the optimal volume, the surface is not
smooth because of the statistical noise coming from the QMC simulation. To
erase the irregularities of the surface, the well known Gaussian or average filters
can be used. In that case a blurred region is obtained between Ω and Ω̄, with
real values in the [0.0, 1.0] interval. Then it is necessary to find which isosurface
is the best for the separation of the volumes.

Another possibility is the use of the median filter which operates as follows:
Each value of the raw data is considered as being at the center of a larger box
containing several elementary cells of the 3D grid (typically 3×3×3 or 5×5×5).
The list of values within this box are sorted, and the middle value of the list is
assigned to the central elementary cell. After the use of this filter, the numerical
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values of the grid are values which belong to the same set as the initial values:
For a boolean grid, the application of this filter does not introduce intermediate
real values between 0 and 1. This technique was used to present the results.

5 Some applications

The inter atomic equilibrium distances were computed with the Gaussian98[17]
series of programs, using the B3LYP density functional[18, 19] and Dunning’s
correlation consistent double-ζ Gaussian basis set[20] (cc-pVDZ): 1.6037 Å in
LiH and 1.1044 Å in N2. The trial wave functions used for the VMC simulations
were composed of the Hartree-Fock determinant built on the cc-PVDZ Gaussian
basis set, and a Jastrow factor optimized both for the given molecule and the
determinantal part of the wave function.

For each molecule, a set of 800 independent walkers was chosen to achieve
a 10,000 step random walk using the Variational Monte Carlo method (VMC).
Every 10 steps1, for each walker the coordinates of the electrons were saved, so
we end up with 800,000 quasi-independent electronic configurations. Symmetry
operations with respect to the xy, yz, and xz planes let us multiply the number
of configurations according to the symmetry of the wave function. For homo-
nuclear diatomic molecules, 6,400,000 configurations were obtained. The errors
were estimated by block averaging: The full set of configurations was divided
into ten different smaller sets of configurations (blocks), and the probabilities
were calculated in the final volume using each block of data. The usual formula
was used to compute the variance of the probabilities, and thus the statistical
error was estimated. The maximum value of this error was 4.10−3, so we report
safely the values of the probabilities with two significant digits.

All the volumes were rendered using the Molekel visualization program[21].

5.1 H2 towards dissociation

It is well known that the Restricted Hartree-Fock (RHF) method does not de-
scribe correctly the dissociation of the dihydrogen molecule. The constraint that
the two electrons have to occupy the same space function imposes the weights of
the ionic (H++H− ↔H−+H+) and covalent (H—H) contributions to be equal to
50%, even towards dissociation. This does not correspond to the physical situa-
tion as the dihydrogen molecule is known to dissociate homolytically. Therefore
the H2 molecule was studied towards dissociation, with an inter-atomic distance
of 4 Å, by sampling with VMC a RHF wave function, and a RHF wave function
improved by a Jastrow factor.

If space is separated into two symmetric subspaces A and B, each containing
one proton (HA and HB), three different situations arise. The first one describes
the homolytic dissociation of H2 with one electron in subspace A and one elec-
tron in subspace B. In the second situation, there are two electrons in subspace

1This number was chosen for convenience. Taking account of the correlation time would
not have changed the values of the averages, but only their error bars.
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A and zero in subspace B, and in the third situation there are two electrons in
subspace B and zero in subspace A. The last two situations correspond to an
ionic dissociation of H2.

From these configurations one can compute the probabilities of finding zero,
one or two electrons in one subspace. With the RHF wave function, one obtains a
probability of 0.50 to find one electron, a probability of 0.25 to find zero electron
and a probability of 0.25 to find two electrons in a subspace. This corresponds
to a half-resonant and half-covalent character. When electron correlation is
included in the calculation via the Jastrow factor, the probability of finding one
electron in a half-space gets close to one (0.96 was obtained). This describes the
high localization of one single electron in each subspace, and thus the homolytic
dissociation of H2.

5.2 LiH

H Li

Ω(2,1)

Ω(2,1)

1.6037 Angstroms

Figure 3: Slice of the surface separating the volumes which maximize the prob-
ability of finding two opposite-spin electrons around Li and around H in LiH.

A Hartree-Fock trial wave function of LiH was sampled with VMC. The
volumes which maximize the probability of finding two anti-parallel electrons
around the lithium atom and around the hydrogen atom are represented in
figure 3. A volume surrounding the Lithium atom is obtained, and the rest of the
space corresponds to the hydrogen atom. Indeed, looking for the volume which
maximizes PΩ(2, 1) around the hydrogen atom and the volume which maximizes
PΩ(2, 1) around the lithium atom consists in maximizing the same function.
Hence there is a virtually unique separation between these two volumes.

PΩ(2,1),Li(2, 1) = PΩ(2,1),H(2, 1) = 0.98. These two probabilities are very
close to one, which may be interpreted as a high localization of the anti-parallel
electron pairs since the variance of the population in each volume is very low.
The values of the probabilities illustrate the strongly ionic interaction between
the Li+ ion and the H− ion.
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5.3 N2

A Hartree-Fock trial wave function, improved by a Jastrow factor was sam-
pled with VMC. In the nitrogen molecule, one can describe the lone pairs
and the core regions as volumes which maximize P (2, 1) (denoted respectively
Ω(2, 1),lone pair and Ω(2, 1),core), and the triple bond as the volume which
maximizes P (6, 1) in the central region of the molecule (denoted Ω(6, 1),bond).
These volumes have been searched, and are displayed on figure 4.

P(6,1)
bond

P(4,1)
bond

P(2,1)
bond

P(2,1)
core

P(2,1)
lone pair

1.1044 Angstroms

Figure 4: Slice of the N2 molecule: Volumes which maximize the probability of
finding two, four or six electrons between the nuclei (Ω(2, 1),bond, Ω(4, 1),bond,
Ω(6, 1),bond), volumes corresponding to the cores (Ω(2, 1),core) and volumes
corresponding to the lone pairs (Ω(2, 1),lone pair).

In the triple bond region, as expected, Ω(2, 1) ⊂ Ω(4, 1) ⊂ Ω(6, 1). From the
values of table 1, the core electrons are, as expected very localized. Hence, we
interpret the high value of PΩ(6,1),bond(7, 2) in the triple bond as one electron
(whatever its spin) coming from a lone pair. This is confirmed by the important
value of PΩ(2,1),lonepair(1, 2) in each lone pair. Identically, the high value of
PΩ(6,1),bond(5, 2) in the triple bond region is due to one electron escaping to a
lone pair region, which is also confirmed by the high value of PΩ(2,1),lonepair(3, 2).

Both processes occur simultaneously, and one can describe four major cases.
In the first case, one electron of spin σ goes from a lone pair to the triple bond,
and one electron of spin σ goes from the triple bond to the same lone pair, noth-
ing has changed. If the latter electron goes to the other lone pair, this corre-
sponds to the the second case where an electron is transferred from one lone pair
to the other. This contributes to PΩ(2,1),lonepair(1, 2) and PΩ(2,1),lonepair(3, 2). In
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Table 1: Probability distributions in the N2 molecule. PΩ(ν,m),X(ν′,m′) denotes
the probability of finding ν′ electrons with spin multiplicity m′ in the volume
Ω(ν,m),X. Ω(ν,m),X is the volume which maximizes the probability of finding
ν electrons with spin multiplicity m′, in the region X. X can be the bond regions,
a lone pair region or a core region.
Ω(2, 1),bond Ω(4, 1),bond Ω(6, 1),bond
PΩ(2,1),bond(1, 2) = 0.28 PΩ(4,1),bond(3, 2) = 0.22 PΩ(6,1),bond(5, 2) = 0.20
PΩ(2,1),bond(2, 1) = 0.32 PΩ(4,1),bond(4, 1) = 0.23 PΩ(6,1),bond(6, 1) = 0.21
PΩ(2,1),bond(3, 2) = 0.19 PΩ(4,1),bond(5, 2) = 0.19 PΩ(6,1),bond(7, 2) = 0.20

PΩ(4,1),bond(4, 3) = 0.12 PΩ(6,1),bond(6, 3) = 0.11

Ω(2, 1),core Ω(2, 1),lone pair
PΩ(2,1),core(1, 2) = 0.08 PΩ(2,1),lonepair(1, 2) = 0.25
PΩ(2,1),core(2, 1) = 0.85 PΩ(2,1),lonepair(2, 1) = 0.39
PΩ(2,1),core(3, 2) = 0.08 PΩ(2,1),lonepair(3, 2) = 0.20

PΩ(2,1),lonepair(2, 3) = 0.07

the third case, one electron of spin σ goes from a lone pair to the triple bond,
and one electron of spin σ̄ goes from the triple bond to the same lone pair. This
contributes to PΩ(2,1),lonepair(2, 3) in the lone pair and to PΩ(6,1),bond(6, 3) in the
triple bond. Now, if the latter electron goes to the other lone pair, this fourth
case contributes to PΩ(6,1),bond(6, 3), PΩ(2,1),lonepair(1, 2) and PΩ(2,1),lonepair(3, 2).

As a conclusion, from the calculated probabilities one can observe the delo-
calization of two electrons (parallel or anti-parallel) between the lone pairs and
the triple bond.

6 Conclusions

In this paper an implementation of a recent electron localization method is
proposed, based upon the probability distributions of the electrons in volumes
of space. The volumes can overlap, as opposed to localization domains obtained
from the topological analysis of local functions, and this aspect is closer to
the quantum mechanical point of view of the system where the electrons are
delocalized in space. The exposed method can describe bonds, single electrons
and lone pairs, but one can also estimate the delocalization of the electrons.
Further work will focus on the analysis of the probabilities in the regions of
overlap of these volumes, a better understanding of electron delocalization, and
the study of larger systems.

The presented results show that the Variational Monte Carlo method owns
very rich information which can be easily used to interpret the behavior of theN -
particle density even in highly correlated computations. As every wave function
can be sampled with the Metropolis algorithm, the method presented here can
be applied to every wave function (open shell, MCSCF, plane waves, excited
states, solids,. . . ). The wave function ΨT as well as the N -particle density |ΨT |2
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are unchanged under a unitary transformation of the basis functions. The N -
particle density |ΨT |2, as well as the wave function ΨT , is unchanged under a
unitary transformation of the basis functions. As the computed probabilities
depend only on the N -particle density generated by the wave function, this
algorithm can be used after the sampling of a trial wave function expressed
in localized orbitals, widely used in linear scaling algorithms. Moreover, it is
important to point that the calculation of the probabilities can be generalized
to Fixed-Node Diffusion Monte Carlo, using the second order approximation to
correct the mixed estimators of the probabilities.
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