
HAL Id: hal-02457581
https://hal.science/hal-02457581v2

Submitted on 4 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

1D Cahn-Hilliard dynamics : Transition modes and
stability criteria

Mahdi Mcheik, Simon Villain-Guillot

To cite this version:
Mahdi Mcheik, Simon Villain-Guillot. 1D Cahn-Hilliard dynamics : Transition modes and stability
criteria. CCT15 (Conference on Chaos, Complexity and Transport 2015 ), Jun 2015, Marseille, France.
�10.1142/9789813202740_0014�. �hal-02457581v2�

https://hal.science/hal-02457581v2
https://hal.archives-ouvertes.fr


1D Cahn-Hilliard dynamics :

Transition modes and stability criteria

Mahdi Mcheik, Simon Villain-Guillot

Laboratoire Ondes et Matière d�Aquitaine, Université de Bordeaux and

351, cours de la Libération 33405 Talence Cedex, France�

Abstract

The Cahn-Hilliard-Oono equation describes the dynamics of phase separation process of co-

polymers alloys and other binary systems. This process is driven by the minimization of the free

energy. However the lower energy state in rarely reached and only for particular initial states.

Misbah and Politi have proposed a dynamical criterion which leads to �nal states that doesn�t

correspond to the minimization of free energy. In this article we investigate possible transition

modes that may describe the dynamic of "segregation and coalescence" in those systems, in order

to understand the di¤erence between these criteria.
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I. INTRODUCTION

In many systems such as melts of diblock copolymer, which are built by linking two

hetero-polymers, the competition between opposite interactions with long and short range,

may form spatially modulated patterns below a critical temperature (or Flory-Huggins pa-

rameter). Indeed, the interaction between homogeneous polymers is attractive while the

interaction between heterogeneous polymers is repulsive and thus favors segregation ; the

simplest dynamics after a quench tends to reduce the interfaces between homogeneous poly-

mer domains so as to minimize the interfacial free energy. However, as diblock copolymers

are attached to each other, the complete segregation cannot occur as for the usual liquid

gas phase transition or in simple polymer blends, where domain sizes can become in�nite.

This frustration results in the formation of spacially periodic structures. The length of the

phase modulation depends on the relative strength of the two competiting forces ; in other

terms, the dynamics reduces the interfacial free energy until some �nite value of wavelength

for which the two forces counterbalance.

The Cahn-Hilliard-Oono�s equation is particularly adapted to describe the dynamics in

such system. It is a conservative modi�ed di¤usion equation for a scalar order parameter u:

@u

@t
= (r2 �FGL(u)

�u
)� �u =r2(�u+ u3 �r2u)� �u: (1)

The order parameter u can correspond to a rescaled density of atoms or relative con-

centration of polymers, �u + u3 derives from the Landau free energy which characterizes

the short ranges repulsive interactions and the entropy of mixing, and the Oono�s term �u

describes the non-local long-range interaction which tends to homogenize the system and

forbid the full segregation. The competition between the two parts of the dynamics results

in the formation of a spatially peridically modulated state.

This conservative dynamics derives from the free energy :

F(u(r)) =
Z
FGLdr +

Z
Fintdr (2)

FGL is the Ginzburg-Landau free energy density FGL = 1
2
(ru(r))2+ �1

2
u2(r)+ 1

4
u4(r)

Fint is the Leibler free energy density (corresponding to Oono�s non-local interaction
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term in the dynamics),

Fint = �

Z
u(r0)g(r0; r)u(r)dr0 .

where g is the kernel of the long range interaction term and is such that

r2g(r0; r) = ��(r0 � r).

This dynamics is driven by the minimization of the free energy (1). However direct

simulations for one dimension dynamics show that the �nal solutions are not unique and

they depend on the initial states. Moreover, starting with initial random conditions, the

associated �nal free energies don�t correspond to the lower energy state. This lower energy

is found numerically only when � is large (Swift-Hohenberg limit). Otherwise, for large 1D

systems, and starting with initial random conditions, numerical simulations show that many

di¤erent domain sizes may coexist, due to the very slow dynamics. Therefore it is important

to study the distribution of those solutions.

This paper is composed of three parts; in the �rst part we focus on di¤erent transition

modes for coarsening, in the second part we show two criteria that we used to de�ne stability

and the last part is dedicated to the statical study of domain sizes of �nal solutions.

II. TRANSITION MODE AT COARSENING STAGE

In this section, we will focus on di¤erent transition modes that can a¤ect the dynamics of

the Cahn-Hilliard equation during the coarsening regime which follows the spinodal decom-

position. During this last stage of the dynamics, we believe that the upper limit of the wave

number q of the steady-state solution results from the Ostwald ripening, i.e from the dif-

fusion between domains. This process generates interface displacements in both directions,

and leads to the creation of a pro�le of larger wavelength.

We have simulated the dynamics numerically, focusing on the question of the stability

of stationary (or frozen) solutions obtained from direct simulation in small boxes. We have

used the same pseudo-spectral algorithm used by M. Nicoli (IFABM4), as this method is

known for its stability and accuracy. But we have used another criterion [6] to con�rm if

these solutions remain absolutely stable for larger boxes when perturbed by small amplitude
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FIG. 1: In blue numerical solution of CHO equation starting from random initial state (� = 10�4

and � = 20), in red hyperbolic tangentes combination used to simulate the numerical solution.

noise, i.e. we have studied the evolution of perturbation superimposed above these frozen

patterns replicated in larger commensurate boxes .

Starting from random initial conditions, or starting close to the expected solution, the

stationary solutions of CHO equation obtained for long time simulation, are, in the case

of small simulation box (typically smaller than 8 lambda CH), close to elliptical sine Sn

function. Therefore we make use of the expansion of Sn in terms of hyperbolic tangents, to

simulate the process of coarsening by the motion of tanh interfaces.

Sn�(x) =
X
i

(�1)itanh(s(x� i:�=2))

where s is extracted from the numerical simulation looking at the the tangent for small

values of the order parameter u(x) (see FIG 1) and � is the known wavelength.

The third parameter needed for our expansion is the amplitude that can be adjusted

easily from the numerics.

The resulting pro�les �t very closely the numerical results (as can be seen in the FIG 1),

the errors (amplitude and tangent) for di¤erent value of � are less than 1 % while error on

energy is reasonably small for � < 10�2 and � > 2�CH . The coarsening process can then be
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simulated by looking solely at the motion of tanh interfaces whose only degree of freedom

are the positions.

FIG. 2: This four pictures illustrate the dynamics extracted from direct numerical simulation of

CHO equation acording transition mode "2!1", when � = 10�8

Figures 2 show one possible transition mode "2!1", as seen in a simulation of CHO
equation starting with 4 interfaces and wavelength 15, merge into a pattern of double

wavelength. The two inner kinks vanish together in symmetrical way, while the outer kinks

move to the center at the same velocity. Other modes were seen during visualizations of

numerical simulations of CHO dynamics, for example "3!2", "5!3" and some other can
be obtained with this procedure such as "5!4","7!6" and so on...
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III. COALESCENCE AND MOTION

One possible scenario for coarsening is the symmetric di¤usion, where the transfer of

matter between neighboring domains can be described in term of the motion of interfaces.

This symmetric process naturally conserves matter. The dynamics of these tanh interfaces

is indeed very close to the numerical simulation of the full CHO equation. The correlated

motion of the tanh interfaces a¤ects the shape (or parameters) of the entire pro�le, even if

is the nearest interfaces are more impacted ; in that sense, hyperbolic tangent has a non-

local e¤ect on the entire pro�le. For example, the evolution of the tangent of the pro�le at

u(x) = 0 depends on the distance between interfaces ; or the amplitude increases with �,

this variation being more important for small � as we can notice in Fig 3.

The �gures 3, 4 and 5 shows interface�s motion that allow the merging respectively of 2

into 1, 3 into 2, and 5 into 3 patterns.

FIG. 3: Transition 2!1: in blue initial state (wavelength 10), in red the �nal state (1 pattern of

double wavelegnth), the discontinued line shows intermediate states

If � = 0; the stationary solution is known analytically to be the elliptical sine Sn. When

interfaces start to move in order to create larger domains, the overall free energy decreases

always monotonically during this process which can be parametrized by the displacement of

the interfaces, from 0 to �initial=4 in the process "2!1".
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FIG. 4: Transition 3!2: in blue initial state (wavelength 15), in red the �nal state (2 patterns of

3x15/2 wavelegnth), the discontinued line shows intermediate states

FIG. 5: Transition 5!3: in blue initial state (wavelength 10), in red the �nal state (3 patterns of

5x10/3 wavelegnth), the discontinued line shows intermediate states

But when � is non zero, the evolution of the overall free energy is not anymore always

deacreasing when domains coarsen. Indeed, for any non zero values of �, we found that for

large enough values of the wavelength, the free energy would increase with further displace-
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FIG. 6: Blue curve: a pro�le of free energy variation in term of displacement of interfaces where

� = 2:4 � 10�4 and � = 4�.

Red-Wine curve : an example where � = 4� and � = 2:6 � 10�4 is slightly greater than some

critical value �c for wchich the dynamics is interrupted. One can see in this case some kind of

potential well that would stop the motion of the interfaces. This well becomes deeper for greater

values of � > �c .

ment of the interfaces along the "2!1" process. For � > �c(�), the pro�le is thus stable

with respect the studied coarsening motion of the interfaces. In other words when further

segregation would cost energy, coarsening dynamics is interrupted [2] and the segregation

remains partial.

In picture 6 we see that for � = 4�, the free energy decreases as function of displacement
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when � � 2:4� 10�4, but a small potential well appears for bigger values (� = 2:6� 10�4)
so we consider that pro�les of periods 4� are instable if � � 2:4 � 10�4 . In Figure 7 we
illustrate the thresholds of stable solutions of given values of � for di¤erent scenarios of

symmetrical segregations ( 2! 1, 3! 2 ..)

FIG. 7: In red, the stable wavelengths associated with the transition mode 2-1, in black, the

wavelengths associated to mode 3-2

These 2 curves are almost identical ; and we obtain identical behaviors for other modes

like merging 7 patterns into 6, 9 into 8, and even 5 into 3. Therefore, we can ensure that

the upper limit of q is given by the symmetric di¤usion, found analytically by Misbah and

Torcini [5]. The others symmetric modes give slightly di¤erent results. We can conclude

that segregation process may be guided by di¤erent modes of transition or with mixture of

mode and not only by "2! 1" symmetric di¤usion.
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IV. CRITERIA FOR THE STABILITY OF STATIONARYMICROSEGREGATED

PATTERNS

A. Minimization of free energy:

A natural criterion for stability is the minimization of free energy since dF
dt
< 0, however

the absolute minimum is rarely reached. In a previous work [4], it has been shown that the

analytic solution of the CH for a �nite system dimension can be a good approximation for the

CHO equation. This hypothesis is veri�ed numerically as shown in 1 . This approximation

enables to compute the free energy expression including the additional term of non-local

interaction (Oono�s term). The stable wavelength �s in then found to scale as the power of

� :

�(�) � �1=3

Another approach uses solutions from direct simulation (with �xed �) for small system

of wavelength �CHO . Starting with only two domains and two interfaces, we vary � in such

a way that the system can dissipate the perturbation due to the small expansion � and relax

to a steady state. This approach allow us to follow the free energy as function of the period.

The steady state for a given � corresponds to the lowest energy reached F�(�).

It is clear that for � = 0, no minimum is attain. The free energy decreases as a function of

the wavelength, leading to an unconditioned coalescence, i.e. full segregation. This result is

veri�ed analytically since the exact solution is known; the free energy is strictly decreasing

and converge to 0.25. When 0 < � < 1=4 it seems that the free energy reach a unique

minimum in �, that corresponds to the steady state as can be seen for � = 10�5 in Fig

??. In fact, the variation of non-local term in the CHO equation (which represents the long

range interaction) becomes equal to variation the short range interaction term at this precise

period, which characterized the steady state.

The minimization of free energy enables to plot this period as a function of � in Figure

9.
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FIG. 8: The black curve illustrates the free energy as function of wavelength L for � = 0, red curve

for � = 10�5, and blue curve for � = 10�4

B. Misbah-Politi criterion:

Misbah and Politi have proposed a criterion for the linear stability/instability of frozen

solutions [2]. The basic idea is to perturb the periodic steady state u0(x; �) = u0(x + �; �)

for which one can de�ne the phase �(x) = qx where q = 2�=�, by adding some perturbation

on u0 : u(x; t) = u0(x) + �u1(x; t). First they rescaled x by introducing slow space variable

X = �x and consequently slow time variable T = �2t ,and a slow phase de�ned as 	(X;T ) =

��(x; t).

Keeping only �rst order terms in � when developping the partial time/space derivatives

in x and t in CHO equation as functions of X and T and using the fact that the stationary

solution u0 satis�es the zero order equation, they found at the �rst order the following phase

di¤usion equation

�@T	 = D@
2
XX	

where D = q2
@q < q (@�u0)

2 > ��:@q < q w2 >
< u20 >

This di¤usion coe¢ cient is proposed as criterion for dynamic stability. If the phase
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FIG. 9: In red asterix, stable wave length found by minimizing of the free energy with respect to

the size of the �nal domains. The results scale like ��1=3

perturbations vanishes (D < 0), the stationary solution u0 is dynamically stable ; otherwise

(D > 0), the perturbation grows and the system will coalesce.

V. STATISTICAL STUDY OF THE CAHN_HILLIARD EQUATION

In this section we look at the results of direct simulation of CHO dynamics in order to

guide our study. Since we have shown beloow that the two criteria of stability, one based on

the minization of the free energy and the other based on the dynamics, give di¤erent �nal

wave lengths, it is important to determine which one is the closest of the direct simulation

result.

The relevant stationary solutions can be found only if the length of the system is larger
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than the natural wavelength. We therefore consider a large system (256 � �CH), for which
the dynamics of pattern formation is followed for long time simulation. The spatial step is

declared in terms of �CH (256 point per �CH) , the time step is dynamically changed to get

more precision and weak white noise is added to speed up the dynamics (annealing). The

wave lengths of �nal solutions are found by measuring the zeros of �nal pro�les, and they

are classi�ed in small intervals of wavelength. We have focused on totally random initial

conditions (of low amplitude < 0:01), so we don�t privilege a priori any particular solution.

In the picture 10 we show some distributions of wavelength of the �nal stable solution

for di¤erent values of �.

FIG. 10: In black, unique wavelength for � = 0:1, in blue, distribution of stable wavelengths for

� = 10�2, in violet, for � = 10�3, in green for � = 10�4, orange for � = 10�5 , and red for

� = 10�6

We can notice that, for high values of �; there is only a unique wavelength ( we noticed

that the �nal solution is obtained quickly, the �nal wave length is close to �CH ). And while

the distribution is becoming larger for smaller �, we still notice the presence of a central

pick value for the most probable wavelength.
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FIG. 11: Stability diagram (q; �) plotted in log-log to be compared to Politi-Torcini results [5] :

in black the stability zone de�ned by the solution of (1 � q2)q2 � � = 0, in red wine, the stable

wavelengths found using Misbah-Politi criterion, the blue-triangles and dark-cyan-triangles lines

represent the stable wavelengths found respectly for transition modes 2! 1 and 3! 2; the upper

and lower limits of stable solution found statically for large system using totally random initial

states are showed in violet and green line-asterix.

We resume all results obtained from criteria discussed above in this picture 11
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VI. CONCLUSION

We have studied numerically a system of large dimension, with the goal of �nding a

good stability criterion ending Cahn-Hilliard-Oono dynamics, as solutions are not unique

and wavelengths may not be the same in di¤erent spatial part of system. In the �rst part,

we have tried to study transition modes and how patterns evolve in there vicinity. We have

found that pure symmetric di¤usion process between identical domains de�nes the upper

limit stability of q or the smallest �nal wavelength. So we think that more complicated

transition modes may be responsible for the creation of larger patterns. In the last part,

we have studied statistically a large dimension system and we have compared two di¤erent

approaches of stability to these statical results. We have found a region of stable wavelengths

that �ts very well with the stability criterion proposed by C. Misbah and P. Politi. This

criterion is more appropriate to predict the �nal stage of the dynamics than the sole free

energy minimization. However it cannot explain the distribution of solution around the

central line of stability.
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