

Production of Medical Isotopes From a Thorium Target Irradiated by Light Charged Particles up to 70 MeV

Duchemin C., Guertin, A., Haddad, F., Michel, N. and Métivier, V. Phys. Med. Biol. 60 (2015) 931-946

Charlotte DUCHEMIN

3rd year PhD Student SUBATECH Laboratory Nantes, France

Workshop on Compact Accelerators for Isotope Production The Cockcroft Institute, Warrington (UK)

26th March 2015

Charlotte DUCHEMIN

Workshop, Warrington

Context

SUBATECH Lab

Charlotte DUCHEMIN

Artistic view

Accelerator for the Research in Radiochemistry and Oconlogy at Nantes Atlantique X

SUBATECH Lab PRISMA group

- Sensors development for robotics
- Non destructive analysis of materials
- Radio-isotopes production for medical applications

In close collaboration with the **ARRONAX cyclotron**

Workshop, Warrington

26th March 2015

1

ARRONAX

Particles	Energy (MeV)	Max. current (µA)	Dual beam	
Protons	30-70	2 x 350	Yes	Multi-pa
Deuterons	15-34	2 x 50	Yes	High en
Alphas	68	70	No	High int

- 4 vaults (P2, P3, A1, A2) devoted to isotope production and connected to hot cells through a pneumatic system
- 1 vault (P1) devoted to a neutron activator system
- 1 vault (AX) devoted to physics, radiolysis and radiobiology experiments

Charlotte DUCHEMIN

Workshop, Warrington

Motivations

Measure production cross sections for both projectiles and compare production yields

Charlotte DUCHEMIN

Workshop, Warrington

Cross section measurements @ ARRONAX

First, measurements using <u>deuterons</u> as projectiles. Motivations:

- \rightarrow In some cases, they give higher production yields (i.e. Cu-64)
- \rightarrow Available with ARRONAX up to 35 MeV
- \rightarrow Improvements of data base and referenced cross sections
- \rightarrow Obtain large set of data to constrain theoritical codes like TALYS

Cross section measurements @ ARRONAX

First, measurements using <u>deuterons</u> as projectiles. Motivations:

- \rightarrow In some cases, they give higher production yields (i.e. Cu-64)
- \rightarrow Available with ARRONAX up to 35 MeV
- \rightarrow Improvements of data base and referenced cross sections
- \rightarrow Obtain large set of data to constrain theoritical codes like <u>TALYS</u>^{*}
- Nuclear reaction program \rightarrow light particles on nuclei heavier than carbon.
- Many theoretical models to predict observables as a function of the incident particle energy (from 1 keV to 1 GeV).
- Default models in the code, defined by the authors
- Code can work with few informations: target type, incident particle and energy.
- Other models included in the code can be better to describe the exp. σ .

* Koning A J and Rochman D 2012 Modern nuclear data evaluation with the TALYS code system Nucl. Data Sheets 113 2841

Charlotte DUCHEMIN

Workshop, Warrington

Cross section measurements

$$\boldsymbol{\sigma} = \frac{\mathbf{Act} \cdot \mathbf{A}}{\Phi \cdot \mathbf{X} \cdot \boldsymbol{\rho} \cdot \mathbf{e}_f (1 - e^{-\lambda t})}$$

- A Faraday cup is placed at the end of the stack to measure the intensity during the irradiation
- Flux attenuation all along the stack?

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}' \cdot \frac{\boldsymbol{\chi}' \cdot \operatorname{Act} \cdot \boldsymbol{A} \cdot \boldsymbol{\rho}' \cdot \boldsymbol{e}_{f}' \left(1 - e^{-\lambda' t}\right)}{\boldsymbol{\chi} \cdot \operatorname{Act}' \cdot \boldsymbol{A}' \cdot \boldsymbol{\rho} \cdot \boldsymbol{e}_{f} \left(1 - e^{-\lambda t}\right)}$$

International Atomic Energy Agency (IAEA) - Medical Applications @ Nuclear Data Section

Charlotte DUCHEMIN

Workshop, Warrington

6

Experimental conditions

Typical irradiations :

- \rightarrow Time of irradiation : 30 minutes
- \rightarrow Beam intensity : 100 nA
- \rightarrow Cooling time : around 14 hours

To limit errors :

- \rightarrow Several activity measurements, depending on the half-lives
- \rightarrow Each thickness of the foils have been precisely measured:

Weighted to obtain its mass and scanned to determined its area

Production Cross Section

Charlotte DUCHEMIN

Workshop, Warrington

9

Comparisons with TALYS

Cross section (mb) 420 420 400 320 300 ²³²Th(d,4n)²³⁰Pa Th-232(d,f)Mo-99 UTERONS - TALYS 1.6 Adj. □ 1971,G.R,Choppin+ △ 1986, J, Rama Rao+ • This work This work ---- TALYS 1.6 Default ---- TALYS 1.6 Default --- TALYS 1.6 Adj. Deuteron energy (MeV) Deuteron energy (MeV) Cross section (mb) 000 008 008 008 006 006 006 Th-232(p,3n)Pa-230 Th-232(p,f)Mo-99 - 1952,H,A,Tewes+ PROTONS △ 1961,M,Lefort+ 1962,C,Brun+ - 1981,A,Celler+ D 1971, G.R, Choppin+ 1982,H,Kudo+ 1982.H.Kudo+ 1997, A, Roshchin+ This work 2001,C,U,Jost+ ----- TALYS 1.6 Default 2008,A,Morgenstern+ - TALYS 1.6 Adj. This work ----- TALYS 1.6 Default --- TALYS 1.6 Adj Proton energy (MeV) Proton energy (MeV)

Talys 1.6: Comparison between default and « adjusted »

Charlotte DUCHEMIN

Workshop, Warrington

Thick Target Production Yield (TTY)

The use of protons as projectiles allows to:

- Produce ²²⁵Ac and ²²³Ra
- Obtain higher ²³⁰U production rate than with deuterons

• Obtain higher ⁹⁹Mo and ¹³¹I production rate

Medical isotopes production in a Th target

- Review of the medical radioisotopes products in a thorium target irradiated by protons of 70 MeV
- Production rate using **70 MeV proton beam** @ **350** μ A during 3 days (based on Mo-99 half-life) \rightarrow 90 runs / year

	Radio-isotope	Half-life T _{1/2}	TTY at 70 MeV (MBq/μA.h)	Prod. 350 μA during 3 days (Ci)	Prod. on a dedicated machine at 70 MeV 90 runs/year (Ci)
products products	U-230	20.8 d	0.3	0.2	18
	Ac-225 10.0 d		1.6	1.1	99
	Ra-223	11.435 d	1.8	1.2	108
	I-131	8.0207 d	20.6	14.0	1 260
	Cd-115g	53.46 h	83.1	56.6	5 094
	Mo-99	65.94 h	61.1	41.6	3 744

Activation

Fission

Focus on Mo-99 and K. Abbas estimation

• In 2012, estimation of the Mo-99 cross section up to 40 MeV (K. Abbas et al.) from the experimental values of H. Kudo et al., 1982.

• This work is not in agreement with H. Kudo et al., 1982

 \rightarrow disagreement with the K. Abbas et al., 2012, estimation (\neq up to 50%)

• Mo-99 TTY obtain in this work is up to 25% lower (at 40 MeV) than the one estimate by K. Abbas et al., 2012.

\rightarrow And with other production routes ?

Charlotte DUCHEMIN

Focus on Mo-99 TTY

- Comparison between different production routes with data available in the literature
- Production rate using the parameters available at **ARRONAX** with an irradiation duration of **3 days** (based on Mo-99 half-life)
 - Production rate using **protons** as projectiles
 - 350 µA
 - Production rate using <u>deuterons</u> as projectiles
 - 50 μA
 - Production rate using <u>alphas</u> as projectiles
 - 70 µA

Focus on Mo-99 TTY

Alphas Deuterons Protons	Reaction	Author	Energy (MeV)	TTY (MBq/µA.h)	Production Protons: 350 μA Deuterons: 50 μA Alphas: 70 μA during 3 days (Ci)	Production on a dedicated machine with 90 runs/year (Ci)	Specific activity
	¹⁰⁰ Mo(p,p+n) ⁹⁹ Mo	F.Tarkanyi (2012)	38	98.8	67.3	6 057	(\mathbf{i})
	^{nat} U(p,f) ⁹⁹ Mo	M.A.M. Uosif (2005)	70	80.4	54.8	4 932	(
	²³² Th(p,f) ⁹⁹ Mo	This work (2014)	70	61.1	41.6	3 744	\odot
	^{nat} Pb(p,f) ⁹⁹ Mo	J.Kuhnhenn (2001)	70	1.3	0.9	81	(
	¹⁰⁰ Mo(d,p+2n) ⁹⁹ Mo	F.Tarkanyi (2011)	35	76.0	7.4	666	<u>;;</u>
	²³² Th(d,f) ⁹⁹ Mo	This work (2014)	33	6.7	0.7	63	\odot
	¹⁰⁰ Mo(a,a+n) ⁹⁹ Mo	V.N.Levkovskij (1991)	46	2.0	0.3	25	<u>;;</u>
	⁹⁶ Zr(α,n) ⁹⁹ Mo	G.Pupillo (2014)	30	1.6	0.2	18	\odot
Charlotte DUCHEMIN			Worksl	hop, Warringto	on 26tl	n March 2015	15

Conclusion

- New cross section measurements have been made for ²³²Th(p,x) and ²³²Th(d,x) reactions, using the stacked-foils technique at ARRONAX (St Herblain, France).
- Activation: new data have been obtained for Pa-230, Ac-225, Ra-223
- <u>Fission</u>: new data up to 70 MeV using protons first data on the energy range 8-33 MeV using deuterons as projectiles

26 fission products have been detected including Mo-99, Cd-115g and I-131 in both case.

Mo-99 TTY obtained in this work is up to 25% lower than the one estimate by K.Abbas et al., 2012 up to 40 MeV.

3.7 kCi could be annually obtained on a dedicated 70 MeV 350 μ A machine using the reaction Th-232(p,f)Mo-99 and considering 90 runs/year.

but other production routes lead to less contaminants

Some comparisons with the TALYS 1.6 code: default models don't well reproduce the experimental data

other models include in the code are better

checked with protons and deuterons on different targets

Charlotte DUCHEMIN

Workshop, Warrington

THANK YOU FOR YOUR ATTENTION

Production of Medical Isotopes From a Thorium Target Irradiated by Light Charged Particles up to 70 MeV

Duchemin C., Guertin, A., Haddad, F., Michel, N. and Métivier, V. Phys. Med. Biol. 60 (2015) 931–946

The ARRONAX cyclotron is a project promoted by the Regional Council of Pays de la Loire financed by local authorities, the French government and the European Union. This work has been, in part, supported by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex Arronax-Plus n°ANR-11-EQPX-0004 and Labex n°ANR-11-LABX-0018-01.

ARRONAX cyclotron

Workshop, Warrington

ARRONAX cyclotron

C70 Cyclotron build by IBA:

- 4 sectors isochron cyclotron (~ 4m of diameter)
 - RF: 30.45 MHz Acceleration Voltage: 65 kV
 - Max magn. field : 1.6 T Max kin. energy/n: 30-70 MeV

- 2 multi-particle sources:

- · H⁻,D⁻: multicusp, 5 mA max.
- · He²⁺,HH⁺: supernanogan ECR
- Extraction: stripper (⁻) or electrostatic deflector (⁺)

Charlotte DUCHEMIN

Workshop, Warrington

Thick Target Yield (MBq/µAh)

• Determination of the production rate of a radionuclide from its cross section

Charlotte DUCHEMIN

Workshop, Warrington

Thick Target Yield (MBq/ μ Ah)

• Determination of the production rate of a radionuclide from its cross section

Charlotte DUCHEMIN

Workshop, Warrington

Iodine-131 production cross section

Workshop, Warrington

TTY Cd-115g

Charlotte DUCHEMIN

Workshop, Warrington

• The irradiation of a thorium target by light charged particles induced **fission products**

• Exp. production cross sections determined as a function of the energy and their mass A

Charlotte DUCHEMIN

• Exp. production cross sections determined as a function of the energy and their mass A

Charlotte DUCHEMIN

Exp. production cross sections determined as a function of the energy and their mass A
Symetric fission

Charlotte DUCHEMIN

• Using **protons** : same fission products

Charlotte DUCHEMIN

• Using **protons** : same fission products

Charlotte DUCHEMIN

• Using **protons** : same fission products

А

Fission products: the TALYS code

Charlotte DUCHEMIN

Workshop, Warrington

Fission products: the TALYS code

Charlotte DUCHEMIN

Workshop, Warrington