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ABSTRACT

In Nuclear Magnetic Resonance (NMR) spectroscopy, an ef-
ficient analysis and a relevant extraction of different molecule
properties from a given chemical mixture are important tasks,
especially when processing bidimensional NMR data. To that
end, using a blind source separation approach based on a vari-
ational formulation seems to be a good strategy. However,
the poor resolution of NMR spectra and their large dimension
require a new and modern blind source separation method.
In this work, we propose a new variational formulation for
blind source separation (BSS) based on a β-divergence data
fidelity term combined with sparsity promoting regularization
functions. An application to 2D HSQC NMR experiments
illustrates the interest and the effectiveness of the proposed
method whether in simulated or real cases.

Index Terms— BSS, sparsity, β-divergence, majorization-
minimization (MM), multiplicative algorithm, 2D NMR.

1. INTRODUCTION

Blind source separation (BSS) consists in estimating N
sources from M mixtures (in this work we consider M > N )
without knowing the mixing operator. It was efficiently
studied in many applications such as biology, chemistry, as-
tronomy, telecommunications, etc. [1]. In this paper, we are
interested in nuclear magnetic resonance (NMR) bidimen-
sional data. It is worth noticing that NMR application is a
powerful tool used to characterize and determine properties
of molecules present in a given chemical mixture. NMR 2D
data are nonnegative and characterized by a high sparsity
level presenting crowded spectra with an important spectral
overlap and poor resolution (see Fig. 1). Thus, a robust BSS
approach is still an open question in the 2D NMR context.

Nonnegative matrix factorization (NMF) introduced by
Lee and Seung [2] constitutes one of the most popular ap-
proaches used to estimate nonnegative objects such as in
audio source separation [3]. This concept was exploited in
different applications either based on the classical Frobe-
nius distance [4, 2] or based on the β-divergence family cost
functions [5, 6]. Moreover, different works showed that the
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Frobenius distance associated with regularization functions
is an efficient framework enabling to solve the BSS problem.
Recently, in [7] the Frobenius norm combined with various
regularization functions was proposed and demonstrated its
effectiveness to unmix complex NMR mixtures. In this work,
we propose to investigate a β-NMF approach in which a
β-divergence is associated with regularization functions that
favour sparsity.

This paper is organized as follows: In section 2, we
present the problem statement and the adopted methodol-
ogy based on an MM strategy. Section 3 is devoted to the
proposed algorithm where multiplicative update rules are
derived. The proposed algorithm is applied to blind source
separation of 2D NMR spectra and results are presented in
section 4. Some conclusions are finally drawn in section 5.

2. BLIND SOURCE SEPARATION

2.1. Problem statement

For N sources composed of L samples, represented by the
matrix S ∈ RN×L, let us consider M mixtures represented
by the matrix X ∈ RM×L that follow the model

X = D(AS), (1)

where A ∈ RM×N is a linear operator and D is the degra-
dation model that depends on the application. The problem
considered here is the estimation of A and S from X. It corre-
sponds to an ill-posed inverse problem. In the particular case
of additive noise, model (1) can be re-written as

X = AS + N, (2)

where N ∈ RM×L corresponds to the acquisition noise. The
aim of blind source separation is to identify jointly the sources
S and the mixing matrix A from X in the presence of noise N.
One popular strategy aims to use a variational formulation in
order to make the estimated product AS closed to the given
mixtures X. The corresponding mathematical formulation is
given by

minimize
A, S

Φ(A,S), (3)

where Φ is the objective function. The choice of Φ is the main
lock of our problem.



In the NMR application, the sources correspond to the
Fourier Transform of a Free Induction Decay which explains
the nonnegativity and the sparsity of S. The mixing matrix
A represents the concentration of each source Si1≤i≤N in the
mixture Xj1≤j≤M , hence the nonnegativity of A.

The NMF approach is a standard technique [2, 4] used to
solve the BSS problem. It is given by

minimize
A, S

Φ(A,S) := 1
2‖X−AS‖2F +λAΨA(A)+λSΨS(S),

(4)
where the fidelity term is based on the squared Frobenius
norm and ΨA and ΨS are the regularization functions used
to promote nonnegativity constraint on A and/or S or some
other priors such as sparsity, energy, etc. λA ≥ 0 and λS ≥ 0
are the regularization parameters. This method has been suc-
cessfully used in various works [2, 4]. However, it is related
to the linear model given by Eq.(2). Another objective func-
tion based on the so-called β-divergence (noted β-div) was
proposed in [8, 6] to ensure the blind source separation. It is
defined as

minimize
A, S

Φ(A,S) := β-div(X,AS)+λAΨA(A)+λSΨS(S).

(5)

2.2. Definition of β-divergence

The β-divergence is a measure of similarity between two ob-
jects u and v [9], denoted as β-div and defined for all (u, v) ∈
(R+)2 and β ∈ R \ {0, 1} as follows

β-div(u|v) = 1
β(β−1)

(
uβ + (β − 1)vβ − βuvβ−1

)
. (6)

An extension of Eq.(6) for β = 1 called the Kullback-Leibler
divergence is defined as β-div(u|v) = u log(uv ) − u + v
[10]. This divergence is commonly used when the problem
statement involves a Poisson noise. When β = 0, the β-
divergence is called the Itakura-Saito divergence, and is de-
fined as β-div(u|v) = u

v − log(uv ) − 1. This divergence was
used especially in audio processing [5]. Note that the case
of β = 2 in Eq.(6) corresponds to the Frobenius distance
1
2‖u− v‖

2. The choice of β varies generally according to the
context and the problem characteristics (type of noise for ex-
ample). Let us define the β-divergence on RL as a separable
function β-div, that can be written for all u = (ui)1≤i≤L ∈
RL+ and v = (vi)1≤i≤L ∈ RL+ as

β-div(u, v) =

L∑
i=1

L∑
j=1

β-div(ui|vj). (7)

2.3. Regularization function

Using a NMF strategy based on the squared Frobenius norm
(Eq.(4)) or a β-divergence (Eq.(5)) with nonnegativity con-
straints, the solution of BSS problem is not unique: multiply-
ing S by a diagonal or a permutation matrix Λ ∈ RM×M

and A by its inverse defines new solutions (S′ = ΛS and
A′ = AΛ−1). Therefore, adding an efficient prior informa-
tion on S and A helps stabilizing the solution.

In the NMR application, only the nonnegativity constraint
is applied on the mixing entries of A. Therefore, the regular-
ization on A can be defined as the indicator function of the
nonnegative set denoted by ι+ and given by

(∀u = (ui)1≤i≤L) ι+(u) =

{
0 if ui ≥ 0 ∀i
+∞ otherwise. (8)

On the other hand, NMR spectra present not only nonnegative
values but also a high sparsity level. Thus, the regularization
function on S should promote the positivity and the sparsity of
the solution. In the long history of sparse signal restoration,
the `p norm defined for all p ∈]0, 1] as

(∀u = (ui)1≤i≤L ∈ RL) `p(u) =

(
L∑
i=1

|ui|p
) 1
p

(9)

is probably the most standard regularization function used to
recover sparse signal especially with p = 1. It was used in
various applications such as Compressive Sensing [11] and
image restoration [12]. Recently, the Shannon entropy given
for every u = (ui)1≤i≤L ∈ RL as Ent(u) =

∑L
i=1 ent(ui)

where

(∀u ∈ R) ent(u) =

 u log(u) if u > 0
0 if u = 0
+∞ otherwise,

(10)

was proposed in [13, 14] as a sparsity promoting penalty in
the NMR context. In this paper, we propose to resolve Eq.(5)
for β > 2 with the aforementioned regularization functions.
In other words, we choose the β-divergence as the data fi-
delity term and the `1 or Ent function as the regularization
term in addition to the nonnegativity constraint. Note that the
choice of β > 2 is related to our optimization method.

3. ALTERNATING ALGORITHM FOR BSS

Many algorithms that adopt an alternating minimization pro-
cedure were proposed so as to solve the BSS problem such as
ICA, SOBI, and NMF, etc. A state-of-the-art of these algo-
rithms used in the NMR context can be found in [15]. Based
on this alternating procedure, we propose to solve Eq.(5)
for β > 2 iteratively as presented in Algo. 1. To build a

Algorithm 1 Generic alternating minimization strategy

For k = 0, 1, . . . Ak+1 = argmin
A

β-div(X,ASk) + λAΨA(A) (I)

Sk+1 = argmin
S

β-div(X,Ak+1S) + λSΨS(S) (II)

multiplicative algorithm that solves Eq.(5), a Majorization-
Minimization strategy [16] can be efficiently used. For that,



the objective function Φ is split into the sum of a convex
and a concave function, both terms being majorized indepen-
dently. Let us mention that in order to majorize the convex
term, Jensen’s inequality will be applied, while the concave
term will be locally majorized by its tangent. This strategy
provides the following update rules for β > 2:

(I) We optimize A and we assume that S is fixed: choosing
ΨA = ι+, the update rule for the mixing matrix A will have
the following expression

Ak+1 =

((
X� (AkS)�(β−2)

)
ST

(AkS)�(β−1)ST

)� 1
β−1

+

� Ak. (11)

We denote by� the Hadamard product between two matrices
(i.e. element-wise) and (.)+ the projection onto the nonnega-
tive set.

(II) We optimize S assuming that A is fixed: as mentioned
previously, we propose to apply the nonnegativity constraint,
the `1 norm and the Ent function as penalties on S. Therefore,
the update rule of S will be given as

a) ΨS = ι+

Sk+1 =

(
AT (X� (ASk)�(β−2))

AT (ASk)�(β−1)

)� 1
β−1

+

� Sk (12)

b) ΨS = `1

Sk+1 =

(
AT (X� (ASk)�(β−2))− λS

AT (ASk)�(β−1)

)� 1
β−1

+

� Sk (13)

c) ΨS = Ent

Sk+1 =

(
γ

α
W
(
α

γ
exp(− δ

γ
)

))� 1
β−1

+

� Sk (14)

whereW denotes the Lambert function [17], and

α = AT (ASk)�(β−1) � Sk,
γ = λS

β−1 Sk,
δ = λS(Sk + Sk � log(Sk))− AT (X� (ASk)�(β−2))� Sk.

These updates are computed for β > 2. When β ∈] −∞, 2],
solving Eq.(5) with `1 norm or Ent regularization function is
complicated and the MM strategy can not be applied.

4. EXPERIMENTAL RESULTS

4.1. 2D HSQC NMR data

We process here 2D Heteronuclear Single Quantum Coher-
ence (HSQC) data where 5 mixtures X ∈ R5×1024×2048 and 4
pure sources (Limonene, Nerol, Terpinolene and Caryophyl-
lene) noted S ∈ R4×1024×2048 are acquired on a Bruker
Avance III 600 MHz spectrometer. The real matrix A is given

to us by the chemists who have acquired the data. We propose
to apply the matricization technique of tensors. Therefore,
we will have matrices X ∈ R5×2097152 and S ∈ R4×2097152.

In the synthetic case, we use the 4 sources and mixing
matrix described above, we simulate the model Eq.(2) with
a noise N assumed to be zero-mean Gaussian, i.i.d, with a
known standard deviation σ = 1.9713 × 104. We apply our
algorithm to the obtained synthetic measures X. In the real
data case, we apply it to the measured data X described above.

4.2. Processing

We apply Algorithm 1 with the different updates proposed
in Section 3 (Eq.(11) to (14)) to estimate the 4 sources from
the 5 mixtures. The performances of the proposed approach
are compared to the case when the popular data fidelity term
( 1
2‖X − AS‖2F ) is used. In this case, we implemented the

Block-Coordinate Variable Metric Forward Backward (BC-
VMFB) algorithm [18] as it was used in [15]. Moreover,
both of these algorithms are initialized with a projection of
JADE [19] result onto the nonnegative space, and run for a
maximum of 15000 iterations. The stopping criterion here is
defined by (‖Sk+1 − Sk‖F /‖Sk‖F ) ≤ 10−6 and (‖Ak+1 −
Ak‖F /‖Ak‖F ) ≤ 10−6.

To evaluate efficiently the quality of estimated sources S,
we use the SDR (Signal to Distortion Ratio), SIR (Signal to
Interference Ratio) and SAR (Signal to Artefacts Ratio) [20]
measures expressed in dB. Besides, we compute the Moreau-
Amari index [21] to evaluate the estimation of the mixing
matrix A. Note that our results were obtained with Matlab
R2018b running on Ubuntu 7.4.0-1.

4.3. Results

We present in Table 1 (simulated mixtures) the SDR, SIR
and SAR computed for each source (S1,S2,S3,S4) and the
Amari-index for different objective functions Φ based on β-
divergence (β = 3) and Frobenius norm, with various regu-
larization parameters λS. As we can see, when using Eq.(4),
the highest SDR and SAR values are obtained with the `1
norm. However, it is the Ent regularization function that en-
sures almost the greatest SIR values with specific regulariza-
tion parameter λS. It is clear that the β-divergence improves
SDR, SAR and SIR for both proposed regularization func-
tions. Comparing the Amari-indexes, the best estimation of
mixing matrix A corresponding to the smallest Amari-index is
obtained using the β-divergence function. However, it seems
that the choice of the regularization function ΨS and the reg-
ularization parameter λS still be related to each source Si for
i = 1, ..., 4 and should be adapted. Moreover, the NMF based
on β-divergence presents an efficient choice of data fidelity
term to solve the BSS problem in the 2D NMR.

Let us now turn our attention to the real case. Table 2
shows the average criterion on the 4 sources with the op-



SDR SIR SAR Amari
Data fidelity term λS ΨS S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 index

Squared Frobenius

ι+ 26.376 18.712 15.445 11.759 40.244 29.701 25.512 19.961 40.244 29.701 25.512 19.961 0.01210

0.1
`1 + ι+ 33.530 34.235 25.526 27.906 33.616 36.779 25.867 29.641 50.577 37.769 36.766 32.735 0.02722
Ent +ι+ 26.401 18.866 15.662 12.220 43.238 37.364 33.223 33.612 26.492 18.928 15.741 12.254 0.00901

1
`1 + ι+ 32.406 19.773 16.850 15.531 33.159 20.530 17.293 16.171 40.391 27.771 27.063 24.262 0.04925
Ent +ι+ 25.732 18.141 14.826 10.633 39.248 43.159 30.675 34.554 25.931 18.155 14.944 10.652 0.01979

10
`1 + ι+ 32.544 15.969 10.304 9.3487 63.139 17.351 10.953 10.880 32.548 21.694 19.215 14.960 0.01892
Ent +ι+ 18.692 18.500 15.211 11.683 19.445 27.105 31.901 44.047 26.718 19.153 15.308 11.686 0.08606

β-divergence

ι+ 52.074 38.083 28.571 28.115 59.300 46.037 28.933 29.147 59.300 46.037 28.933 29.147 0.00543

0.1
`1 + ι+ 51.658 37.855 28.558 28.053 59.296 46.038 28.933 29.147 52.479 38.700 39.391 34.579 0.00543
Ent +ι+ 52.074 38.083 28.574 28.115 59.300 46.037 28.933 29.147 52.986 38.841 39.588 34.866 0.00543

1
`1 + ι+ 42.803 32.294 27.523 25.547 59.235 46.171 28.929 29.138 42.903 32.475 33.110 28.050 0.00543
Ent +ι+ 52.071 38.083 28.574 28.115 59.297 46.003 28.933 29.214 52.983 38.841 39.589 34.868 0.00543

10
`1 + ι+ 33.682 22.722 19.549 15.759 55.521 50.985 28.764 29.293 33.711 22.729 20.007 15.961 0.00544
Ent +ι+ 52.055 38.036 28.570 28.091 59.302 46.025 28.932 29.146 52.962 38.788 39.543 34.760 0.00543

Table 1. SDR, SAR, SIR and Amari-index obtained in 2D simulated NMR spectra with various λS multiplied by the standard
deviation of noise σ.

timal regularization parameter λS. The β-divergence com-
bined with `1 norm or Ent function ensures the BSS of the
2D HSQC NMR data (see Fig. 1). However, compared with
simulated data, we have a significant decrease of the SDR,
SIR and SAR values which can probably be explained by
a wrong assumption on D and possibly the linearity of the
model. This raises the question about the choice of the objec-
tive function Φ and requires further investigations to charac-
terize adequately the model in the 2D NMR context.

5. CONCLUSION

In this work, we have presented an NMF strategy based on
a β-divergence to solve the BSS problem for 2D NMR spec-
troscopy data. We proposed to use the `1 and Ent regular-
ization functions to favour the sparsity of the sources. For
both sparsity promoting regularizations, our proposition en-
sures a good separation quality in the context of simulated
data. However, in the real case even better results could be
obtained. To do so, it will be very important to study the
noise model D for 2D HSQC NMR data.

Data fidelity term ΨS SDR SIR SAR Amari-index

Squared Frobenius
`1 04.984 13.956 07.951 0.18037

Ent 05.755 14.434 08.446 0.17926

β-divergence
`1 + ι+ 07.240 11.487 10.574 0.16098
Ent +ι+ 07.220 11.396 10.632 0.16526

Table 2. Average SDR, SIR and SAR on the 4 sources, with
Amari-index computed for 2D real NMR data with optimal
λS found empirically equal to 10× σ.
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Fig. 1. 2D HSQC sources (Limonene (red), Nerol (blue),
Terpinolene (magenta) and Caryophyllene (green)): pure
sources (a), zoom on the most important terpene zone [1300 :
1850, 700 : 1000] estimated sources: using Eq.(4) with `1
norm (b), using Eq.(5) with Ent regularization function (c).
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