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Introduction

Consider the second order strictly hyperbolic operator

L = ∂ 2 t - n j,k=1 ∂ j (a jk (t, x)∂ k ), with 0 < λ 0 |ξ| 2 ≤ n j,k=1
a jk (t, x)ξ j ξ k ≤ Λ 0 |ξ| 2 and a jk (t, x) = a kj (t, x).

It is well-known that, if the coefficients a jk are Lipschitz-continuous in t and measurable in x, then the Cauchy problem related to L is well-posed in the energy space. In particular, a constant C > 0 exists, such that

sup 0≤t≤T ( u(t, •) H 1 + ∂ t u(t, •) L 2 ) ≤ C( u(0, •) H 1 + ∂ t u(0, •) L 2 + T 0 Lu(s, •) L 2 ds), (1) 
estnoloss for all u ∈ C([0, T ]; H 1 ) ∩ C 1 ([0, T ]; L 2 ) with Lu ∈ L 1 ([0, T ]; L 2 ) (see [START_REF] Hörmander | Linear partial differential operators[END_REF]Ch. IX], [START_REF] Hurd | Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients[END_REF]).

In this note we are interested in second order strictly hyperbolic operators having non Lipschitz-continuous coefficients with respect to time.

After the pioneering paper by Colombini, De Giorgi and Spagnolo [START_REF] Colombini | Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps[END_REF], this topic has been widely studied. A result of particular interest has been obtained in [8], where it was proved that, if the coefficients are log-Lipschitz-continuous with respect to t and x, i.e. there exists C > 0 such that

sup t,x |a jk (t + τ, x + y) -a jk (t, x)| ≤ C(|τ | + |y|)(1 + log 1 |τ | + |y| ),
then [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] is no more valid, but the following weaker energy estimate can be recovered:

sup 0≤t≤T ( u(t, •) H 1-θ-βt + ∂ t u(t, •) H -θ-βt ) ≤ C( u(0, •) H 1-θ + ∂ t u(0, •) H -θ + T 0
Lu(s, •) H -θ-βs ds),

(2) estloss for some constants C > 0, β > 0 and for all u ∈ C 2 ([0, T ]; H ∞ ) and θ ∈ ]0, 1 4 [. Remark that, while in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] the norms of u(t) and ∂ t u(t) are estimated by the same norms of u(0) and ∂ t u(0), in (2) the Sobolev spaces in which u(t) and ∂ t u(t) are measured are different and bigger than the spaces in which initial data are, so the estimate is less effective. This phenomenon goes under the name of loss of derivatives. We refer e.g. to the introductions of [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF], [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF] for more details and references about this problem.

Using a result obtained by Tarama in [16] (see also Remark 2.1 below), it is possible to prove that if the coefficients depend only on t and are Zygmundcontinuous, i.e. (3) hyp:Z then (1) is valid. Notice that the Zygmund assumption is weaker than the Lipschitz one. In [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF], the authors and Métivier proved that if the coefficients depend also on the space variable and verify an isotropic Zygmund assumption (i.e. they are Zygmund-continuous both in time and space variables), then the Cauchy problem is well-posed with no loss, but only in the space H 1/2 × H -1/2 . In particular, an estimate similar to (1) holds true, up to replacing the H 1 and L 2 norms respectively with the H 1/2 and H -1/2 norms. See also Remark 2.2 below for more details. The problem whether a Zygmund assumption both in time and space is still enough to recover well-posedness in general spaces H s × H s-1 (and not only for s = 1/2) remains at present largely open. As a partial step in this direction, in this note we consider a stronger hypothesis with respect to the space variable: namely we prove that, if the coefficients are Zygmund-continuous with respect to t and Lipschitz-continuous with respect to x, then an estimate without loss of derivatives, similar to (1), holds true. Then, the Cauchy problem relatd to L is well-posed in any space H s × H s-1 , for all s ∈ ]0, 1].

Two are the main ingredients of the proof of our result. The first one is to resort to Tarama's idea of introducing a new type of energy associated to operator L: this new energy is equivalent to the classical energy, but it contains a lower order term, whose goal is to produce special algebraic cancellations, which reveal to be fundamental in the energy estimates. The second main ingredient, already introduced in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF]] and [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF], is the use of paradifferential calculus with parameters (see e.g. [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF], [13]), in order to deal with coefficients depending also on x and having low regularity in that variable.

We conclude this introduction with a short overview of the paper. In the next section we fix our hypotheses and state our main result, see Theorem 2.1.

In Section 3 we collect some elements of Littlewood-Paley theory, which are needed in the description of the functional classes where the coefficients belong to, and in the construction of paradifferential calculus with parameters. With those tools at hand, we tackle the proof of Theorem 2.1, which is carried out in Section 4.

Main result s:result

Given T > 0 and an integer n ≥ 1, let L be the linear differential operator defined on [0, T ] × R n by

Lu = ∂ 2 t u - n j,k=1 ∂ j (a jk (t, x)∂ k u), ( 4 
) hyp eq
where, for all j, k = 1, . . . , n,

a jk (t, x) = a kj (t, x), ( 5 
) sym cond
and there exist λ 0 , Λ 0 > 0 such that

λ 0 |ξ| 2 ≤ n j,k=1 a jk (t, x)ξ j ξ k ≤ Λ 0 |ξ| 2 , ( 6 
) ellipticity cond
for all (t, x) ∈ [0, T ] × R n and for all ξ ∈ R n . Suppose moreover that there exist constants C 0 , C 1 > 0 such that, for all j, k = 1, . . . , n and for all τ ∈ R,

y ∈ R n , sup t,x |a jk (t + τ, x) + a jk (t -τ, x) -2a jk (t, x)| ≤ C 0 |τ |, ( 7 
) Zyg cont sup t,x |a jk (t, x + y) -a jk (t, x)| ≤ C 1 |y|. ( 8 
) Lip cont
We can now state the main result of this paper.

theorem Theorem 2.1. Under the previous hypotheses, for all fixed θ ∈ [0, 1[, there exists a constant C > 0, depending only on θ and T , such that

sup 0≤t≤T ( u(t, •) H 1-θ + ∂ t u(t, •) H -θ ) ≤ C( u(0, •) H 1-θ + ∂ t u(0, •) H -θ + T 0 Lu(s, •) H -θ ds), ( 9 
) en est for all u ∈ C 2 ([0, T ], H ∞ (R n )).
Some remarks are in order.

r:Tarama

Remark 2.1. If the coefficients a jk depend only on t, this result has been obtained by Tarama in [16], under the hypothesis that there exists a constant C 2 > 0 such that, for all j, k = 1, . . . , n and for all τ ∈ ]0, T /2[,

T -τ τ |a jk (t + τ ) + a jk (t -τ ) -2a jk (t)| dt ≤ C 2 τ. ( 10 
) hyp int
Tarama's hypothesis is weaker than ours, but, when coefficients depend also on the space variable, it is customary to take a pointwise condition with respect to time, like in [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF] above (see also [8], [9], [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF], [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF] in this respect). In particular, it is not clear at present whether or not the pointwise condition [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF] can be relaxed to an integral one, similar to [START_REF] Santo | Martino A new result on backward uniqueness for parabolic operators[END_REF], in our framework. Remark 2.3. Assume ( 7) and the following hypothesis: there exists a constant C 4 > 0 such that, for all j, k = 1, . . . , n and for all y ∈ R n with 0

< |y| ≤ 1, sup t,x |a jk (t, x + y) -a jk (t, x)| ≤ C 4 |y|(1 + log 1 |y| ). ( 12 
) log Lip cont
As a consequence of a result of the present authors and Métivier in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF] (stated for coefficients which are actually log-Zygmund with respect to time), one get that, for all fixed θ ∈ ]0, 1[, there exist a β > 0, a time T > 0 and a constant

C > 0 such that sup 0≤t≤T ( u(t, •) H 1-θ-βt + ∂ t u(t, •) H -θ-βt ) ≤ C( u(0, •) H 1-θ + ∂ t u(0, •) H -θ + T 0 Lu(s, •) H -θ-βs ds), ( 13 
) en with loss est for all u ∈ C 2 ([0, T ], H ∞ (R n )).
The condition ( 12) is weaker than (8) but also (13) is weaker than (9): (13) has a loss of derivatives, while (9) performs no loss. In addition, observe that (13) holds only for θ ∈ ]0, 1[, while (9) holds also for θ = 0.

Preliminary results

s:tools

We briefly list here some tools we will need in the proof of the main result. We follow closely the presentation of these topics given in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF] and [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF].

Littlewood-Paley decomposition

We will use the so called Littlewood-Paley theory. We refer to [2], [3], [START_REF] Métivier | Para-differential calculus and applications to the Cauchy problem for nonlinear systems[END_REF] and [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] for the details. We start recalling Bernstein's inequalities.

Proposition 3.1 ([3, Lemma 2.2.1]). Let 0 < r < R.
A constant C exists so that, for all nonnegative integer k, all p, q ∈ [1, +∞] with p ≤ q and for all function u ∈ L p (R d ), we have, for all λ > 0,

i) if Supp û ⊆ B(0, λR) = {ξ ∈ R d : |ξ| ≤ λR}, then ∇ k u L q ≤ C k+1 λ k+N ( 1 p -1 q ) u L p ; ii) if Supp û ⊆ C(0, λr, λR) = {ξ ∈ R d : λr ≤ |ξ| ≤ λR}, then C -k-1 λ k u L p ≤ ∇ k u L p ≤ C k+1 λ k u L p .
We introduce the dyadic decomposition. Let ψ ∈ C ∞ ([0, +∞[, R) such that ψ is non-increasing and

ψ(t) = 1 for 0 ≤ t ≤ 11 10 , ψ(t) = 0 for t ≥ 19 10 .
We set, for ξ ∈ R d ,

χ(ξ) = ψ(|ξ|), ϕ(ξ) = χ(ξ) -χ(2ξ). ( 14 
) defchipsi We remark that the support of χ is contained in the ball {ξ ∈ R d : |ξ| ≤ 2}, while that one of ϕ is contained in the annulus {ξ ∈ R d : 1/2 ≤ |ξ| ≤ 2}.
Given a tempered distribution u, the dyadic blocks are defined by

∆ 0 u = χ(D)u = F -1 (χ(ξ)û(ξ)), ∆ j u = ϕ(2 -j D)u = F -1 (ϕ(2 -j ξ)û(ξ)) if j ≥ 1,
where we have denoted by F -1 the inverse of the Fourier transform. We introduce also the operator

S k u = k j=0 ∆ j u = F -1 (χ(2 -k ξ)û(ξ)).
It is well known the characterization of classical Sobolev spaces via Littlewood-Paley decomposition: for any s ∈ R, u ∈ S is in H s if and only if, for all j ∈ N, ∆ j u ∈ L 2 and the series

2 2js ∆ j u 2 L 2 is convergent. Moreover, in such a case, there exists a constant C s > 1 such that 1 C s +∞ j=0 2 2js ∆ j u 2 L 2 ≤ u 2 H s ≤ C s +∞ j=0 2 2js ∆ j u 2 L 2 . ( 15 
) charSob

Lipschitz, Zygmund and log-Lipschitz functions

In this subsection, we give a description of some functional classes relevant in the study of hyperbolic Cauchy problems. Namely, via Littlewood-Paley analysis, we can characterise the spaces of Lipschitz, Zygmund and log-Lipschitz functions. We start by recalling their definitions.

Definition 3.1. A function u ∈ L ∞ (R d ) is a Lipschitz-continuous function if |u| Lip = sup x,y∈R d , y =0 |u(x + y) -u(x)| |y| < +∞, u is a Zygmund-continuous function if |u| Zyg = sup x,y∈R d , y =0 |u(x + y) + u(x -y) -2u(x)| |y| < +∞
and, finally, u is a log-Lipschitz-continuous function if

|u| LL = sup x,y∈R d , 0<|y|≤1 |u(x + y) -u(x)| |y|(1 + log 1 |y| ) < +∞. For X ∈ {Lip , Zyg , LL}, we define u X = u L ∞ + |u| X . Proposition 3.2. Let u ∈ L ∞ (R d ).
We have the following characterisation:

u ∈ Lip(R d ) if and only if sup j ∇S j u L ∞ < +∞, ( 16 
) charLip u ∈ Zyg(R d ) if and only if sup j 2 j ∆ j u L ∞ < +∞, ( 17 
) charZyg u ∈ LL(R d ) if and only if sup j ∇S j u L ∞ j < +∞. ( 18 
) charlogLip
Proof. The proof of ( 17) and ( 18) can be found in [3, Prop. 2.3.6] and [8, Prop.

3.3] respectively. We sketch the proof of ( 16), for reader's convenience. Suppose u ∈ Lip(R d ). We have

D j S k u(x) = D j (F -1 (χ(2 -k ξ)û(ξ)))(x) = F -1 (ξ j χ(2 -k ξ)û(ξ))(x) = 2 k F -1 (2 -k ξ j χ(2 -k ξ)û(ξ))(x) = 2 k R d θ j (2 k y)u(x -y) 2 kd dy where θ j (y) = F -1 (ξ j χ(ξ))(y). From the fact that R d θ j (y) dy = 0 we deduce that |D j S k u(x)| ≤ 2 k | R d θ j (2 k y)(u(x -y) -u(x)) 2 kd dy| ≤ |u| Lip R d |θ j (y)||z| dz, hence sup j ∇S j u L ∞ < C |u| Lip .
Conversely, let the second statement in (16) hold. Remarking that

D j ∆ k u(x) = F -1 (ξ j ϕ(2 -k ξ)û(ξ))(x) = F -1 (ξ j (χ(2 -k ξ) -χ(2 -k+1 ξ))û(ξ))(x),
and, by Bernstein's inequalities,

|∆ k u(x)| ≤ C2 -k+1 ( ∇S k u L ∞ + ∇S k-1 u L ∞ ), we deduce that, for a new constant C > 0, ∆ k u L ∞ ≤ C2 -k sup j ∇S j u L ∞ for all k ≥ 0. Then |u(x + y) -u(x)| ≤ |S k u(x + y) -S k u(x)| + | h>k (∆ h u(x + y) -∆ h u(x))| ≤ ∇S k u L ∞ |y| + 2 h>k ∆ h u L ∞ ≤ C sup j ∇S j u L ∞ (|y| + 2 -k ).
The conclusion follows from choosing k in such a way that 2 -k ≤ |y|.

Notice that, going along the lines of the previous proof, we have actually shown that there exists

C d > 1, depending only on d, such that, if u ∈ Lip(R d ) then 1 C d |u| Lip ≤ ∇S j u L ∞ ≤ C d |u| Lip . Proposition 3.3 ([3, Prop. 2.3.7]). Lip(R d ) ⊆ Zyg(R d ) ⊆ LL(R d ).
In order to perform computations, we will need to smooth out our coefficients, because of their low regularity. To this end, let us fix an even function

ρ ∈ C ∞ 0 (R) such that 0 ≤ ρ ≤ 1, Supp ρ ⊆ [-1, 1] and R ρ(t) dt = 1, and define ρ ε (t) = 1 ε ρ( t ε ).
The following result holds true. Proposition 3.4 ([7, Prop. 3.5]). Let u ∈ Zyg(R). There exists C > 0 such that,

|u ε (t) -u(t)| ≤ C|u| Zyg ε, ( 19 
) estconv1 |u ε (t)| ≤ C|u| Zyg (1 + log 1 ε ), ( 20 
) estconv2 |u ε (t)| ≤ C|u| Zyg 1 ε , (21) estconv3 
where, for 0 < ε ≤ 1,

u ε (t) = (ρ ε * u)(t) = R ρ ε (t -s)u(s) ds. ( 22 
) regintime

Paradifferential calculus with parameters

Let us sketch here the paradifferential calculus depending on a parameter γ ≥ 1.

The interested reader can refer to [15, Appendix B] (see also [13] and [9]). Let γ ≥ 1 and consider

ψ γ ∈ C ∞ (R d × R d ) with the following properties i) there exist ε 1 < ε 2 < 1 such that ψ γ (η, ξ) = 1 for |η| ≤ ε 1 (γ + |ξ|), 0 for |η| ≥ ε 2 (γ + |ξ|); (23) charpsi1 ii) for all (β, α) ∈ N d × N d , there exists C β,α ≥ 0 such that |∂ β η ∂ α ξ ψ γ (η, ξ)| ≤ C β,α (γ + |ξ|) -|α|-|β| . ( 24 
) charpsi2
The model for such a function will be

ψ γ (η, ξ) = χ( η 2 µ )χ( ξ 2 µ+3 ) + +∞ k=µ+1 χ( η 2 k )ϕ( ξ 2 k+3 ), (25) psigamma 
where χ and ϕ are defined in [START_REF] Métivier | Para-differential calculus and applications to the Cauchy problem for nonlinear systems[END_REF] and µ is the integer part of log 2 γ. With this setting, we have that the constants ε 1 , ε 2 and C β,α in (23) and (24) does not depend on γ.

To fix ideas, from now on we take ψ γ as given in (25). Define now

G ψγ (x, ξ) = (F -1 η ψ γ )(x, ξ),
where F -1 η ψ γ is the inverse of the Fourier transform of ψ γ with respect to the η variable. Proposition 3.5 ([14, Lemma 5.1.7]). For all (β, α) ∈ N d × N d , there exists C β,α , not depending on γ, such that

∂ β x ∂ α ξ G ψγ (•, ξ) L 1 (R d x ) ≤ C β,α (γ + |ξ|) -|α|+|β| , ( 26 
) propG1 | • | ∂ β x ∂ α ξ G ψγ (•, ξ) L 1 (R d x ) ≤ C β,α (γ + |ξ|) -|α|+|β|-1 . (27) propG2
Next, let a ∈ L ∞ . We associate to a the classical pseudodifferential symbol

σ a,γ (x, ξ) = (ψ γ (D x , ξ)a)(x, ξ) = (G ψγ (•, ξ) * a)(x), (28) sigmaa 
and we define the paradifferential operator associate to a as the classical pseudodifferential operator associated to σ a,γ (from now on, to avoid cumbersome notations, we will wright σ a ), i.e.

T γ a u(x) = σ a (D x )u(x) = 1 (2π) d R d ξ σ a (x, ξ)û(ξ) dξ.
Remark that T 1 a is the usual paraproduct operator

T 1 a u = +∞ k=0 S k a∆ k+3 u,
while, in the general case,

T γ a u = S µ-1 aS µ+2 u + +∞ k=µ S k a∆ k+3 u. (29) 
paraprod with µ equal to the integer part of log 2 γ.

In the following it will be useful to deal with Sobolev spaces on the parameter γ ≥ 1.

Definition 3.2. Let γ ≥ 1 and s ∈ R. We denote by H s γ (R d ) the set of tempered distributions u such that

u 2 H s γ = R d ξ (γ 2 + |ξ| 2 ) s |û(ξ)| 2 dξ < +∞.
Let us remark that H s γ = H s and there exists

C γ ≥ 1 such that, for all u ∈ H s , 1 C γ u 2 H s ≤ u 2 H s γ ≤ C γ u 2 H s .

Low regularity symbols and calculus

As in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF] and [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF], it is important to deal with paradifferential operators having symbols with limited regularity in time and space.

defsymbol Definition 3.3. A symbol of order m is a function a(t, x, ξ, γ) which is locally bounded on

[0, T ] × R n × R n × [1, +∞[, of class C ∞
with respect to ξ such that, for all α ∈ N n , there exists C α > 0 such that, for all (t, x, ξ, γ),

|∂ α ξ a(t, x, ξ, γ)| ≤ C α (γ + |ξ|) m-|α| . ( 30 
) estsym
We take now a symbol a of order m ≥ 0, Zygmund-continuos with respect to t uniformly with respect to x and Lipschitz-continuos with respect to x uniformly with respect to t. We smooth out a with respect to time as done in ( 22), and call a ε the smoothed symbol. We consider the classical symbol σ aε obtained from a ε via (28). In what follows, the variable t has to be thought to as a parameter.

propsigma Proposition 3.6. Under the previous hypotheses, one has:

|∂ α ξ σ aε (t, x, ξ, γ)| ≤ C α (γ + |ξ|) m-|α| , |∂ β x ∂ α ξ σ aε (t, x, ξ, γ)| ≤ C β,α (γ + |ξ|) m-|α|+|β|-1 , |∂ α ξ σ ∂taε (t, x, ξ, γ)| ≤ C α (γ + |ξ|) m-|α| log(1 + 1 ε ), |∂ β x ∂ α ξ σ ∂taε (t, x, ξ, γ)| ≤ C β,α (γ + |ξ|) m-|α|+|β|-1 1 ε , |∂ α ξ σ ∂ 2 t aε (t, x, ξ, γ)| ≤ C α (γ + |ξ|) m-|α| 1 ε , |∂ β x ∂ α ξ σ ∂ 2 t aε (t, x, ξ, γ)| ≤ C β,α (γ + |ξ|) m-|α|+|β|-1 1 ε 2 ,
where |β| ≥ 1 and all the constants C α and C β,α don't depend on γ.

Proof. We have

σ aε (t, x, ξ, γ) = (G ψγ (•, ξ) * a ε (t, •, ξ, γ))(x),
so that the first inequality follows from ( 26) and (30).

Next, we remark that

∂ xj G ψγ (x, ξ) dx = F -1 η (η j ψ γ (η, ξ))(z) dz = (η j ψ(η, ξ)) |η=0 = 0. (31) intG
Consequently, using also (27),

|∂ xj σ aε (t, x, ξ, γ)| = | ∂ yj G ψγ (y, ξ)(a ε (t, x -y, ξ, γ) -a ε (t, x, ξ, γ)) dy|, ≤ C |∂ yj G ψγ (y, ξ)| |y| dy (γ + |ξ|) m , ≤ C(γ + |ξ|) m .
The other cases of the second inequality can be proved similarly. The third inequality is again a consequence of (26), keeping in mind (20). It is in fact possible to prove that

|∂ α ξ ∂ t a ε (t, x, ξ, γ)| ≤ C α (1 + log 1 ε )(γ + |ξ|) m-|α| .
Next, considering again (31), we have

∂ xj σ ∂taε (t, x, ξ, γ) = R n y ∂ yj G ψγ (y, ξ)(∂ t a ε (t, x -y, ξ, γ) -∂ t a ε (t, x, ξ, γ)) dy, ≤ R n y ∂ yj G ψγ (y, ξ) Rs 1 ε 2 ρ ( t -s ε )(a(s, x -y, ξ, γ) -a(s, x, ξ, γ)) ds dy ≤ Rs 1 ε 2 ρ ( t -s ε ) R n y ∂ yj G ψγ (y, ξ)(a(s, x -y, ξ, γ) -a(s, x, ξ, γ)) dy ds.
so that the fourth inequality easily follows.

The last two inequalities are obtained in similar way, using also (21).

To end this section it is worthy to recall some results on symbolic calculus. Again details can be found in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF], [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF] and [START_REF] Métivier | Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems[END_REF]Appendix B].

propcalsym Proposition 3.7 ([6, Prop. 3.19]). i) Let a be a symbol of order m (see Def. 3.3). Suppose that a is L ∞ in the x variable. If we set T a u(x) = σ a (D x )u(x) = 1 (2π) d R d ξ σ a (x, ξ, γ)û(ξ) dξ, then T a maps H s γ into H s-m γ .
ii) Let a and b be two symbols of order m and m respectively. Suppose that a and b are Lip in the x variable. Then

T a • T b = T ab + R, and R maps H s γ into H s-m-m +1 γ .
iii) Let a be a symbol of order m which is Lip in the x variable. Then, denoting by T * a the L 2 -adjoint operator of T a ,

T * a = T a + R, and R maps H s γ into H s-m+1 γ .
iv) Let a be a symbol of order m which is Lip in the x variable. Suppose

Re a(x, ξ, γ) ≥ λ 0 (γ + |ξ|) m .
with λ 0 > 0. Then there exists γ 0 ≥ 1, depending only on a Lip and λ 0 , such that, for all γ ≥ γ 0 and for all u ∈ H ∞ ,

Re (T a u, u) L 2 ≥ λ 0 2 u 2 H m/2 γ .
4 Proof of Theorem 2.1 s:proof Also for the proof of the main result, we will closely follow the strategy implemented in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF] and [START_REF] Colombini | Guy A well-posedness result for hyperbolic operators with Zygmund coefficients[END_REF].

Approximate energy ss:approx

First of all we regularize the coefficients a jk with respect to t via (22) and we obtain a jk,ε . We consider the 0-th order symbol

α ε (t, x, ξ, γ) = (γ 2 + |ξ| 2 ) -1 2 (γ 2 + j,k a jk,ε (t, x)ξ j ξ k ) 1 2 .
We fix ε = 2 -ν , and we write α ν and a jk, ν instead of α 2 -ν and a jk, 2 -ν respectively. From Prop. 3.7, point iv), we have that there exists γ ≥ 1 such that, for all w ∈ H ∞ ,

T γ α -1/2 ν w L 2 ≥ λ 0 2 w L 2 and T γ α 1/2 ν (γ 2 +|ξ| 2 ) 1/2 w L 2 ≥ λ 0 2 w H 1 γ ,
where λ 0 has been defined in [START_REF] Colombini | Guy Time-dependent loss of derivatives for hyperbolic operators with non regular coefficients[END_REF]. We remark that γ depends only on λ 0 and sup j,k a jk Lip , in particular γ does not depend on ν. We fix such a γ (this means also that µ is fixed in (29)) and from now on we will omit to write it when denoting the operator T and the Sobolev spaces

H s . We consider u ∈ C 2 ([0, T ], H ∞ ).
We have

∂ 2 t u = j,k ∂ j (a jk (t, x)∂ k u) + Lu = j,k ∂ j (T a jk ∂ k u) + Lu, where Lu = Lu + j,k ∂ j ((a jk -T a jk )∂ k u).
We apply the operator ∆ ν and we obtain

∂ 2 t u ν = j,k ∂ j (T a jk ∂ k u ν ) + j,k ∂ j ([∆ ν , T a jk ]∂ k u) + ( Lu) ν ,
where u ν = ∆ ν u, ( Lu) ν = ∆ ν ( Lu) and [∆ ν , T a jk ] is the commutator between the localization operator ∆ ν and the paramultiplication operator T a jk . We set

v ν (t, x) = T α -1/2 ν ∂ t u ν -T ∂t(α -1/2 ν ) u ν , w ν (t, x) = T α 1/2 ν (γ 2 +|ξ| 2 ) 1/2 u ν , z ν (t, x) = u ν ,
and we define the approximate energy associated to the ν-th component as

e ν (t) = v ν (t, •) 2 L 2 + w ν (t, •) 2 L 2 + z ν (t, •) 2 L 2 .
We fix θ ∈ [0, 1[ and define the total energy

E θ (t) = +∞ ν=0 2 -2νθ e ν (t). Next ∂ t w ν = T ∂t(α 1/2 ν )(γ 2 +|ξ| 2 ) 1/2 u ν + T α 1/2 ν (γ 2 +|ξ| 2 ) 1/2 ∂ t u ν , so that d dt w ν (t) 2 L 2 = 2 Re T ∂t(α 1/2 ν )(γ 2 +|ξ| 2 ) 1/2 u ν , w ν L 2 + 2 Re T α 1/2 ν (γ 2 +|ξ| 2 ) 1/2 ∂ t u ν , w ν L 2 = 2 Re T αν (γ 2 +|ξ| 2 ) 1/2 T -∂t(α -1/2 ν ) u ν , w ν L 2 + 2 Re R 1 u ν , w ν L 2 + 2 Re T αν (γ 2 +|ξ| 2 ) 1/2 T α -1/2 ν ∂ t u ν , w ν L 2 + 2 Re R 2 u ν , w ν L 2 = 2 Re v ν , T αν (γ 2 +|ξ| 2 ) 1/2 w ν L 2 + 2 Re v ν , R 3 w ν L 2 + 2 Re R 1 u ν , w ν L 2 + 2 Re R 2 u ν , w ν L 2 = 2 Re v ν , T α -1/2 ν T α 3/2 ν (γ 2 +|ξ| 2 ) 1/2 w ν L 2 + 2 Re v ν , R 4 w ν L 2 + 2 Re v ν , R 3 w ν L 2 + 2 Re R 1 u ν , w ν L 2 + 2 Re R 2 u ν , w ν L 2 = 2 Re v ν , T α -1/2 ν T α 2 ν (γ 2 +|ξ| 2 ) u ν L 2 + 2 Re v ν , T α -1/2 ν R 5 u ν L 2 + 2 Re v ν , R 4 w ν L 2 + 2 Re v ν , R 3 w ν L 2 + 2 Re R 1 u ν , w ν L 2 + 2 Re R 2 u ν , w ν L 2 .
It is a straightforward computation, from the results of symbolic calculus recalled in Prop. 3.7, to verify that all the operators R 1 , R 2 , R 3 , R 4 and R 5 are 0-th order operators. Consequently,

d dt w ν (t) 2 L 2 = 2 Re v ν , T α -1/2 ν T α 2 ν (γ 2 +|ξ| 2 ) u ν L 2 + Q 2 , ( 34 
) estdtwnu with |Q 2 | ≤ Ce ν (t).
Finally, from (32),

d dt z ν (t) 2 L 2 ≤ |2 Re u ν , ∂ t u ν L 2 | ≤ Ce ν (t). ( 35 
) estdtznu
Now we pair the first term in right hand side part of (33) with the first term in right hand side part of (34). We obtain

|2 Re v ν , j,k T α -1/2 ν ∂ j (T a jk ∂ k u ν ) L 2 + 2 Re v ν , T α -1/2 ν T α 2 ν (γ 2 +|ξ| 2 ) u ν L 2 | ≤ C v ν L 2 ζ ν L 2 , where ζ ν = T α 2 ν (γ 2 +|ξ| 2 ) u ν + j,k ∂ j (T a jk ∂ k u ν ) = T γ 2 + j,k a jk,ν ξj ξ k u ν + j,k ∂ j (T a jk ∂ k u ν ) = T γ 2 u ν + j,k (T a jk,ν ξj ξ k u ν + T ∂j a jk ∂ k u ν -T a jk ξj ξ k u ν ).
We have 

j,k T ∂j a jk ∂ k u ν L 2 ≤ C sup j,k a jk Lip ∇u ν L 2 ≤ C(e ν (t)) 1 
T (a jk,ν -a jk )ξj ξ k u ν L 2 ≤ C sup j,k a jk Lip 2 -ν ∇ 2 u ν L 2 ≤ C(e ν (t)) 1 2 
.

From this we deduce

ζ ν L 2 ≤ C(e ν (t)) 1 2 .
Summing up, from (33), ( 34) and (32) we get

d dt e ν (t) ≤ C 1 e ν (t) + C 2 (e ν (t)) 1 2 ( Lu) ν L 2 +|2 Re v ν , j,k T α -1/2 ν ∂ j ([∆ ν , T a jk ]∂ k u) L 2 |. ( 36 
) estdtenu

Commutator estimate

We want to estimate

| j,k 2 Re v ν , T α -1/2 ν ∂ j ([∆ ν , T a jk ]∂ k u) L 2 |.
We remark that

[∆ ν , T a jk ]w = ∆ ν (S µ-1 a jk S µ+2 w) + ∆ ν ( +∞ h=µ S h a jk ∆ h+3 w) -S µ-1 a jk S µ+2 (∆ ν w) - +∞ h=µ S h a jk ∆ h+3 (∆ ν w) = ∆ ν (S µ-1 a jk S µ+2 w) -S µ-1 a jk ∆ ν (S µ+2 w) + +∞ h=µ ∆ ν (S h a jk ∆ h+3 w) - +∞ h=µ S h a jk ∆ ν (∆ h+3 w) = [∆ ν , S µ-1 a jk ] S µ+2 w + +∞ h=µ [∆ ν , S h a jk ] ∆ h+3 w,
where we recall that µ is a fixed constant (depending on γ, which has been chosen at the beginning of Subsection 4.1). Hence we have

∂ j ([∆ ν , T a jk ]∂ k u) = ∂ j ([∆ ν , S µ-1 a jk ] ∂ k (S µ+2 u)) + ∂ j ( +∞ h=µ [∆ ν , S h a jk ] ∂ k (∆ h+3 u)). Consider first ∂ j ([∆ ν , S µ-1 a jk ] ∂ k (S µ+2 u)).
The support of the Fourier transform of

[∆ ν , S µ-1 a jk ] ∂ k (S µ+2 u) is contained in {|ξ| ≤ 2 µ+4 } and [∆ ν , S µ-1 a jk ] ∂ k (S µ+2 u) is identically 0 if ν ≥ µ + 5. From
Bernstein's inequalities and [4, Th. 35] we deduce that

∂ j ([∆ ν , S µ-1 a jk ] ∂ k (S µ+2 u)) L 2 ≤ C 2 µ sup j,k a jk Lip S µ+2 u L 2 .
We have

+∞ ν=0 2 -2νθ | j,k 2 Re v ν , T α -1/2 ν ∂ j ([∆ ν , S µ-1 a jk ] ∂ k (S µ+2 u)) L 2 | ≤ C 2 µ sup j,k a jk Lip µ+4 ν=0 2 -2νθ v ν L 2 ( µ+2 h=0 u h L 2 ) ≤ C 2 µ+(µ+4)θ sup j,k a jk Lip µ+4 ν=0 2 -νθ v ν L 2 µ+4 h=0 2 -hθ u h L 2 ≤ C sup j,k a jk Lip µ+4 h=0 2 -2νθ e ν (t).
Consider then

∂ j ( +∞ h=µ [∆ ν , S h a jk ] ∂ k (∆ h+3 u)).
Looking at the support of the Fourier transform, it is possible to see that

[∆ ν , S h a jk ] ∂ k (∆ h+3 u)
is identically 0 if |h+3-ν| ≥ 3. As a consequence, the sum over h is reduced to at most 5 terms: ∂ j ([∆ ν , S ν-5 a jk ] ∂ k (∆ ν-2 u)), . . . , ∂ j ([∆ ν , S ν-1 a jk ] ∂ k (∆ ν+2 u)).

Each of these terms has the support of the Fourier transform contained in the ball {|ξ| ≤ 2 ν+4 }.

We consider the term ∂ j ([∆ ν , S ν-3 a jk ] ∂ k (∆ ν u)): for the other terms the estimate will be similar. Again by Bernstein's inequalities and [4, Th. 35] we infer

∂ j ([∆ ν , S ν-3 a jk ] ∂ k (∆ ν u)) L 2 ≤ C 2 ν sup j,k a jk Lip ∆ ν u L 2 ,
and then

| j,k 2 Re v ν , T α -1/2 ν ∂ j ( +∞ h=µ [∆ ν , S h a jk ] ∂ k (∆ h+3 u)) L 2 | ≤ C sup j,k
a jk Lip (e ν-2 (t) + e ν-1 (t) + e ν (t) + e ν+1 (t) + e ν+2 (t)). 

Thus we have

Final estimate

From (36) and ( 37 The energy estimate (9) easily follows from this last inequality and Grönwall Lemma.

  sup t |a jk (t + τ ) + a jk (t -τ ) -2a jk (t)| dt ≤ C 2 |τ |,

2

  Re v ν , T α -1/2 ν ∂ j ( +∞ h=µ [∆ ν , S h a jk ] ∂ k (∆ h+3 u)) L 2 | ≤ C sup j,k a jk Lip +∞ ν=0 2 -2νθ e ν (t).

2

  Re v ν , T α -1/2 ν ∂ j ([∆ ν , T a jk ]∂ k u) L 2 | ≤ C 3 +∞ ν=02 -2νθ e ν (t), (37) estcomm where C 3 depends on γ, θ and sup j,k a jk Lip .

  ) we obtaind dt E θ (t) ≤ (C 1 + C 3 ) ∂ j ((a jk -T a jk )∂ k u) ν L 2 . ∂ j ((a jk -T a jk )∂ k u) ν L 2 ∂ j ((a jk -T a jk )∂ k u) νNow, using [10, Prop. 3.5] in the case θ ∈ ]0, 1[ and [14, Th. 5.2.8] in the case θ = 0,∂ j ((a jk -T a jk )∂ k u) 2 H -θ ≤ C(sup j,k a jk Lip ) u(t) H 1-θ , ∂ j ((a jk -T a jk )∂ k u) ν L 2 ≤ C 4 E θ (t),

					+∞	+∞
							2 -2νθ e ν (t) + C 2	2 -2νθ (e ν (t))	1 2 ( Lu(t)) ν L 2
					ν=0	ν=0
					+∞	+∞
			≤ (C 1 + C 3 )		2 -2νθ e ν (t) + C 2	2 -2νθ (e ν (t))	1 2 (Lu(t)) ν L 2
					ν=0	ν=0
						+∞
					+C 2	2 -2νθ (e ν (t))	1 2
						ν=0	j,k
	We have				
	+∞				
		2 -2νθ (e ν (t))	1 2	
	ν=0			j,k
			+∞			1	+∞	1
		≤	2 -2νθ e ν (t)	2	2 -2νθ	2 L 2	2 .
			ν=0				ν=0	j,k
	From (15) we deduce	
	+∞					
	ν=0	2 -2νθ	j,k ∂ j,k			
	so that				
		+∞			
			2 -2νθ (e ν (t))	1 2
		ν=0				j,k
	and finally				
			d dt	E θ (t) ≤ C(E θ (t) + (E θ (t))	1 2 Lu(t) H -θ ).

j ((a jk -T a jk )∂ k u) ν 2 L 2 ≤ C j,k ∂ j ((a jk -T a jk )∂ k u) 2 H -θ

We remark that, as a consequence of Bernstein's inequalities,

Moreover, from (20) and, again, Bernstein's inequalities,

We deduce that there exist constants C θ and C θ , depending only on θ, such that

Time derivative of the approximate energy

We want to estimate the time derivative of e ν .

Since

We have

and, from the fifth inequality in Prop. 3.6,

Therefore, we obtain