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A new method based on time-resolved X-ray diffraction is proposed in order

to measure the elastic strain and stress during ultrasonic fatigue loading

experiments. Pure Cu was chosen as an example material for the experiments

using a 20 kHz ultrasonic fatigue machine mounted on the six-circle

diffractometer available at the DiffAbs beamline on the SOLEIL synchrotron

facility in France. A two-dimensional hybrid pixel X-ray detector (XPAD3.2)

was triggered by the strain gage signal in a synchronous data acquisition scheme

(pump–probe-like). The method enables studying loading cycles with a period

of 50 ms, achieving a temporal resolution of 1 ms. This allows a precise

reconstruction of the diffraction patterns during the loading cycles. From the

diffraction patterns, the position of the peaks, their shifts and their respective

broadening can be deduced. The diffraction peak shift allows the elastic lattice

strain to be estimated with a resolution of�10�5. Stress is calculated by the self-

consistent scale-transition model through which the elastic response of the

material is estimated. The amplitudes of the cyclic stresses range from 40 to

120 MPa and vary linearly with respect to the displacement applied by the

ultrasonic machine. Moreover, the experimental results highlight an increase of

the diffraction peak broadening with the number of applied cycles.

1. Introduction

Many mechanical structures are submitted to repeated load-

ings during their service and can break under stresses lower

than their ultimate tensile stress, especially if deformation is

repeated for a very large number of cycles. This phenomenon,

called the fatigue of materials, can be encountered in many

industrial sectors such as transport and energy. Fatigue design

is thus a crucial step in mechanical engineering and it requires

a precise characterization of material behavior under repeated

loadings to ensure the safety and reliability of the structures

throughout their life. It is presently common to find

mechanical systems subjected to several billion fatigue cycles,

in what is called the gigacycle fatigue or very high cycle fatigue

(VHCF) domain (Bathias & Paris, 2005).

The characterization of the fatigue behavior of materials

requires fatigue tests, during which the specimen is loaded

cyclically, to be conducted at different stress amplitudes until

fracture. Using standard laboratory fatigue rigs operating at a

few tens of Hz, one test typically needs several months or even

more to reach the onset of the VHCF domain. To reduce

the testing time, new approaches using ultrasonic fatigue

machines have been developed during the last decades, which

are based on a severe increase of the loading frequency in

order to characterize the fatigue behavior within a few hours
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only. Ultrasonic fatigue machines typically operate at 20 kHz

and allow generating so-called S/N curves (stress amplitude

versus the number of cycles at failure) in the VHCF domain.

In parallel, other methods based on interrupted tests at

various stress amplitudes with complementary measurement

like self heating have been developed for a fast determination

of the fatigue properties of the materials (Luong, 1995; Munier

et al., 2014). Many authors make use of this technique to

predict the fatigue limit, but the method does not work for all

materials because the relationship between fatigue damage

and self heating remains complex. An alternative is to esti-

mate the amount of energy stored or released by the specimen

during its deformation, which is related to the evolution of

crystal lattice defects and internal stresses. This stored energy

is a better signature of the fatigue damage and can be esti-

mated from the intrinsic dissipation and the mechanical work

supplied to the specimen. The quantification of the last

quantity necessitates the measurement of the evolution of the

stress and the total strain during one fatigue cycle (Chry-

sochoos et al., 2008; Connesson et al., 2011; Mareau et al.,

2013).

The purpose of this paper is to present a time-resolved

X-ray diffraction (XRD) approach which enables the evolu-

tion of the mechanical state of the material to be followed

during a single cycle and throughout high-frequency fatigue

tests.

X-ray diffraction provides information about the mean

value of the elastic strain and the distribution of elastic strain

in the material, at the scale of the diffracting volume. The

mean elastic strain in that volume, deduced from the shift of

diffraction peak positions, allows the macroscopic applied

stress to be estimated thanks to a scale transition model,

whereas the fluctuation of elastic strain, deduced from peak

broadening, provides information about intragranular strain

heterogeneities and dislocation density (Bretheau &

Castelnau, 2006).

The main challenge of this kind of measurement is the

temporal resolution. At 20 kHz, the duration of one cycle is

50 ms and therefore a temporal resolution in the microsecond

range is necessary to correctly describe a single cycle. Time-

resolved XRD measurements have been developed and used

for several decades in different areas of physics, chemistry,

biology and materials science. The order of magnitude of the

time resolution of these techniques lies between milliseconds

and femtoseconds. The domain between femtosecond and

nanosecond is mainly of interest to the solid-state physicists

(Wark, 1996), particularly through the study of short-term

crystal structure changes (Robinson et al., 2016; Fons et al.,

2014), formation of crystalline structures during chemical

reactions, effect of high pressures related to the propagation

of a shock wave (Luo et al., 2012), rotation of side chains of

proteins, etc. The domain between the microsecond and the

millisecond opens the field to numerous other applications

in engineering and material science (Gorfman, 2014): crack

propagation (Rack et al., 2014, 2016), fatigue of materials

(Park et al., 2007), piezo electric response of materials

(Cornelius et al., 2017), stress measurement in a rotating

engine (Baimpas et al., 2013) or in the outer raceway of a

bearing test (Mostafavi et al., 2017), etc.

The principle of time-resolved XRD is based on pump–

probe methods. The material is loaded by external stress (the

pump) which may be periodic: electric field, temperature field,

mechanical stress, laser pulse. The probe is composed of a

continuous or pulsed X-ray source and a detector, this last one

allowing extremely short exposure times and signal accumu-

lation over several identical cycles. The measurement is

carried out by controlling the delay between the pump and the

probe. There are two ways of performing time-resolved XRD

with pump–probe methods: for the first one, which corre-

sponds to time resolutions under 100 ns, the X-ray source is

pulsed (e.g. synchrotron radiation in pulse mode or X-ray free-

electron laser), and the time resolution of the measurement

is directly associated with the pulse duration. This technique

allows very high resolutions to be reached, of the order of

femtoseconds. In the second method, where the time resolu-

tion is higher than 100 ns, the X-ray source is considered as

continuous (which can be pulsed, but with a frequency much

higher than the data acquisition one), and the time resolution

is directly related to the counting and the data transfer time

of the detector. If the phenomenon to be observed can be

repeated cyclically, it is possible to use stroboscopic methods

to either reconstruct a temporal evolution by changing the

delays between the pump and the probe (especially for very

short times) or simply to increase the number of cycles over

which data are accumulated, i.e. total integration times of

the signal to obtain diffraction patterns with better counting

statistics. In the case of ultrasonic fatigue with the conditions

detailed here, the time resolution needs to be about 1 ms, and

the latter method mentioned above with an X-ray beam that

is assumed to be continuous will be used, as detailed below.

Taking into account the low stress levels in the VHCF domain,

the fatigue damage can be considered constant over

approximately 105 cycles and it will therefore be possible to

apply the stroboscopic method.

The main objective of this paper is to present the devel-

opment and the implementation of a pump–probe method

during ultrasonic fatigue tests with the stroboscopic method in

order to reconstruct loading cycles with the help of diffraction

patterns. After this introduction, the second section of this

paper will be devoted to the experimental methodology. In the

third section, the diffraction pattern correction and analysis

(bad pixel detection, geometrical corrections and diffraction

peak fitting) will be detailed. Finally, in the last section, the

experimental results will be presented and discussed.

2. Experimental methodology

2.1. Experimental setup

The fatigue loading is applied by an ultrasonic fatigue

machine. The technology of this ultrasonic machine is

completely different from that of conventional fatigue

machines and is based on the vibration of a free-standing

specimen in its first longitudinal mode. The specimen vibration
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is induced by a piezoelectric converter and a horn that

amplifies the vibration amplitudes (Fig 1). The machine is

controlled via the tension applied to the piezoelectric

converter and therefore the vibration amplitude is imposed

on one edge of the specimen. The relationship between the

piezoelectric tension amplitude and the displacement on the

upper edge of the specimen is determined by calibration. The

stress distribution along the specimen and the maximum stress

are obtained using a harmonic calculation and assuming

a linear elastic behavior of the material constituting the

specimen. The used elastic hypothesis is not completely

correct because fatigue loading is always accompanied by

irreversible deformation mechanisms which explain fatigue

failure. However, deviations from ideal elastic behavior may

be negligible for small stress amplitudes. Moreover, the total

strain (i.e. elastic + plastic strains) in the center of the

specimen is directly measured by two thermally compensated

strain gages glued on the right and left sides of the bone-

shaped specimen (Fig. 2) and mounted in a Wheatstone half-

bridge. The output gage signal is conditioned and amplified

with a high cut-off frequency of at least 500 kHz.

Different specimen materials were tested to develop and

verify the method we introduce in this paper: pure and alloyed

aluminium, dual phase steel and pure copper. Throughout this

paper, results on pure copper will be presented as an illus-

trative example. Pure copper sheets produced by cold rolling

were cut into final sample dimensions as shown in Fig. 2. The

samples were polished mechanically, then electrolytically to

remove surface hardening produced by sample machining that

may lead to peak broadening and peak shape change. Careful

sample polishing also helps eliminating surface residual

stresses that may influence fatigue behavior. The grain size

was determined to be about 10–20 mm by electron microscopy

methods. Two independent Bragg reflections of this face-

centred cubic structure were measured: 311 and 220, corre-

sponding to Bragg angles 2�theo of 41.65� and 35.30�, respec-

tively, for an incoming monochromatic X-ray beam of 16 keV.

To carry out X-ray diffraction, the ultrasonic machine was

installed on the six-circle diffractometer of the DiffAbs

beamline of the SOLEIL synchrotron.

The incoming beam size [full width at half-maximum

(FWHM), horizontal � vertical] was about 290 mm � 220 mm.

The diffraction patterns were acquired with a 2D hybrid pixel

X-ray detector [XPAD3.2, pixel size = 130 mm � 130 mm,

960 � 560 pixels (Le Bourlot et al., 2012; Medjoubi et al.,

2010)]. One of the most interesting features of this detector

is the availability of an externally triggered electronic shutter

that allows photons to be counted within a time interval as

small as �100 ns and with the possibility of accumulating the

X-ray scattered signal for a defined number of triggers. This

allows to precisely synchronize the very short detector time

aperture (1 ms in our case) with the gage signal recording the

total specimen strain, all the while the specimen is deformed

under fatigue. The detector was placed 630 mm away from the

sample surface, with its long dimension along the horizontal

direction [see Fig. 3(a)] as our actual ultrasonic fatigue rig

requires holding the specimen in the vertical direction. A

schematic view of the setup as well as a photograph of the

ultrasonic machine installed on the goniometer is shown in

Fig. 3. The experiment was conducted in reflection geometry,

with a fixed incidence angle (19.3�) between the X-ray beam

and the sample surface corresponding approximately to the

midpoint of the 311 and 220 reflections. Therefore, diffraction

vectors for the mentioned peaks are slightly misaligned with

respect to each other and not exactly perpendicular (but close

to) to the specimen surface.

2.2. Triggering of the detector and XRD data collection

As mentioned in the Introduction, in the case of ultrasonic

cyclic loading, a stroboscopic method is used to reconstruct
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Figure 1
Schematic view of the used ultrasonic fatigue machine. The detailed
sample geometry is shown in Fig. 2.

Figure 2
Geometry of the ultrasonic fatigue sample.



the temporal evolution of the specimen during one cycle.

Therefore, a triggering procedure for the detector was used, as

described in Fig. 4. The ‘zero delay’ trigger signal [labeled as

TRIG in Fig. 4(b)] is set when the gage signal reaches a given

value (0.5 V in our experiments). This corresponds to a given

deformation level (or stress value) within the cyclic fatigue

loading. After a certain adjustable time delay, the system

sends a trigger signal to the XPAD detector to start acquisition

for a short time (here 1 ms). A schematic view of the electronic

chain which assures the triggering of the XPAD detector is

shown in Fig. 4(a). It is composed of a first data acquisition

card which acquires the gage signal and gives a ‘zero delay’

TTL signal (Transistor–Transistor Logic signal) to the input of

the delay line device. After a given delay, the delay time device

triggers (i) the acquisition of the actual gage signal during 1 ms

using the second acquisition card and (ii) the data acquisition

and the time aperture of the XPAD detector for the same

duration. Before arriving at the detector, the signal goes

through a function generator. This step handles the re-shaping

of the input from the delay line to have the right shape (a pulse

wave) with a pulse width that defines the aperture time (1 ms in

this case). This triggering process is repeated exactly the same

way during many cycles (i.e. each 50 ms), until the accumulated

intensity on the XPAD image is sufficient to achieve good

counting statistics in order to reduce the relative uncertainties

of the measured intensities [Fig. 4(b)]. Then, the image is read

and stored. For the next image, the time delay is slightly

increased (here by �t = 1 ms step) and the process is repeated

until a complete cycle is described, i.e. 50 images acquired

[Fig. 4(b)]. Then the results from each image (i.e. diffraction

peak position) are extracted and reported as a function of

the delay time in order to reconstruct a full cycle [Fig. 4(b)]. A

drawback of this procedure is that only 2% of the photons are

used, as one has to wait for 49 ms between two openings of the

electronic shutter.

To define the number of cycles during which photons should

be accumulated in order to measure the elastic strain with an

accuracy required by this mechanical study, different tests

have been carried out, with various counting durations. The

procedure is detailed in Appendix A. It has been found that a

strain resolution of 6 � 10�6 can be reached when the detector

is triggered 20000 times for each cumulated XPAD image.

Doing so, an accumulation during 20000 cycles lasts for 1 s

although the detector captures photons during 20 ms. Taking
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Figure 3
(a) Schematic of the configuration used for the experiment and (b)
photograph of the ultrasonic machine installed on the diffractometer on
the DiffAbs beamline.

Figure 4
(a) Schematic view of the electronics chain used for data acquisition.
(b) Principle of the triggering method.



into account the reading time, the time to obtain one

diffraction image is about 4.5 s. Fifty such images are needed

to reconstruct the shape of a single cycle and the time required

to register them corresponds to 4.5 � 106 cycles performed by

the ultrasonic machine, which is still a small number compared

with the number of cycles at fracture in the gigacycle fatigue

domain (VHCF). Thus, it is supposed that during this acqui-

sition cycle the fatigue properties of the material does not

change.

3. Analysis of diffraction data

3.1. Correction of the intensity data

Since we are interested in very high cycle fatigue, the stress

applied to the sample is relatively low, usually between 10 and

100 MPa. Accordingly, the setup and data treatment should

allow a resolution to be reached for the relative strain fluc-

tuation of the order of 10�5 (or stress fluctuation of �1 MPa),

i.e. capturing peak shifts as small as �0.001�. Measuring at

such an angular resolution requires additional correction

steps taking the device geometry and detector response into

account.

The used XPAD3.2 detector consists of eight modules, each

of them being composed of seven chips (80 � 120 pixels on

each chip). The modules are stacked to form the whole

detector surface, but are assembled slightly tilted and with a

gap of about 3.5 mm in between each of them. A more precise

description of the active area of this detector can be found by

Mocuta et al. (2013). Consequently the diffraction pattern is

read as a 2D image of 960 � 560 pixels (see Fig. 5).

The detector response (conversion of incoming photons to

counts) contains a few irregularities as is the case for all 1D

and 2D detectors. Firstly a line of ‘double’ pixels (their exact

size is in fact 325 mm � 130 mm) exists at the junctions

between each of the chips. The intensity data observed for

such pixels are not necessarily reliable as photons have a

different chance of hitting them and they cover a different

angular range than the regular pixels. The data obtained from

double pixels therefore must be corrected or rejected. In

addition to this, hot, cold and dead pixels exist. Hot pixels

are those which have a high photon count regardless of the

measurement parameters. Cold pixels are those which yield

counts systematically lower than a regular pixel and the dead

pixels stay around zero level at all times. The number of these

pixels (hot, cold and dead) is not static and can evolve through

time with usage. One needs to identify all such pixels and their

data must be rejected.

Criterion I In order to determine such pixels we have

made different measurements under different conditions.

Firstly, an acquisition was made without any sample on the

goniometer and the detector was put at a fixed position away

from the direct incoming beam (i.e. recording an almost ‘flat’

scattering signal). Two hundred such flat-field images were

recorded under these conditions with 60 s of exposure each. A

mean value and a standard deviation were obtained for a

given pixel of (x,y) coordinates based on these 200 images.

A histogram of the mean intensity values �IIðx; yÞ is shown in

Fig. 6. Since the detector receives neither direct nor strongly

diffracted beam, one expects the intensity levels to be rather

uniform across the entire detector. However, because of the

existence of the hot pixels, there are different intensity levels

observed. Therefore we define a reference value (median

value) for the intensity of a given pixel. Subsequently, the

pixels above a certain threshold (1.5� the median value) are

masked as hot pixels and the pixels lower than 0.5� the

median value are masked as cold pixels. With this method,

12807 pixels to be masked are identified.

Criterion II Another analysis was made with the same set

of 200 images to determine a noise model for the whole

acquisition chain, from the X-ray sensitive surface of the

detector up to the image storage in the computer. The
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Figure 5
The raw 2D diffraction pattern of 960 � 560 pixels recorded by XPAD3.2.

Figure 6
Histogram of mean pixel intensities for a set of 200 flat-field images.
The second peak around 5500 intensity corresponds mostly to the
‘double pixels’.



counting of photons falling on a certain pixel shows a Poisson

distribution with the standard error of measured intensities

being equal to �I = K(I)1/2 (Petit et al., 2015). For the recorded

set of flat-field images, Fig. 7 shows the �IIðx; yÞ values versus

the standard error on �IIðx; yÞ, marked as ��IIðx;yÞ. The ��IIðx;yÞ =

½�IIðx; yÞ�1=2 graph is also indicated on the same image. Since

95% of the data points are located near this line, we find

K ’ 1, which is the value expected for a single-photon-

counting detector. Upper and lower limits obtained by

� a tolerance value are also plotted on the graph. The toler-

ance value is chosen to be 0.2� the median value of ��IIðx;yÞ for

this study. As a result, 13395 pixels outside these limits were

found to violate the Poisson error model and therefore

masked. Of these pixels, 3552 are unique, i.e. were not masked

with the Criterion I.

Criterion III Similar to the flat-field study, dark-field

images were recorded during which the shutter for the primary

beam was kept closed. One hundred images were recorded for

each exposure time of 1, 5, 10, 30 and 60 s totalling 500 images.

Since there is basically no electronic noise in these types of

detectors, counted intensity is either due to ambient noise

(cosmic radiation, etc.) or due to pixel fault. Some 426 pixels

with an intensity higher than 500 counts were considered

faulty (usually hot pixels) and masked. It should be noted that

all of these pixels are already masked by the two previous

criteria.

Criterion IV In addition to quantitative criteria intro-

duced above, a careful observation of numerous selected

diffraction patterns was made. During these checks, an

unusual behavior is observed. On the border of the last chip of

a module there is a shift of a few pixels in recorded intensities

along the X direction of the detector, as shown in Fig. 8. In this

figure, the shift of intensity values in the last column of pixels

is marked by a red arrow. This behavior is observed for the last

chips of all the modules and is believed to be a flaw related

either to a manufacturing error or to the reading of the data by

the detector software. Thus the last column of pixels of all the

chips of all modules are masked as a precaution.

The final toll of all masked pixels is 24040 out of a total of

537600. Therefore 4.47% of all the pixels are masked.

Intensity normalization Fig. 9 shows the distribution of

the intensities for the mean of 200 flat-field images, after the
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Figure 8
Zoom of the diffraction pattern shown in Fig. 5 in the vicinity of the last
chip of a module.

Figure 7
Mean intensity of a given pixel, �IIðx; yÞ, versus its standard error, ��IIðx;yÞ

(the black points show all the pixels prior to masking and the blue pixels
are those after applying the criteria I and II).

Figure 9
Average of 200 flat-field images after pixel masking is applied.



mask is applied. According to this there is a clear gradient in

intensity values, especially along the detector y-axis. This could

be due to positioning of the detector relative to its

surroundings, e.g. a part of the goniometer casting a shadow

on the detector. In order to correct for this effect we have

defined a pixel normalization factor, N(x, y), for each of the

non-masked (active) pixels, by dividing the mean value of the

active pixels of the average flat-field images by the mean value

of that particular pixel,

Nðx; yÞ ¼
h�IIðx; yÞiactive

�IIðx; yÞ
:

These normalization factors are multiplied by the intensity

obtained from that particular pixel for all recorded patterns.

3.2. Geometrical adjustments

After the masking and intensity normalization, Bragg

diffraction angle, 2�, and azimuthal angle, �, need to be

calculated. For this calculation the detector is positioned at

zero angular position to receive the attenuated primary beam

directly. The center of the peak caused by the direct beam was

calculated by a 2D Gaussian fit and was accepted as the point

where 2� = 0 and � = 0.

Using this information, along with detector metrology

(pixel size, module, gaps, double pixels) and experimental

(sample-to-detector distance, wavelength of the beam, goni-

ometer angles) parameters, 2� and � values for all the pixels

were calculated. The software pyFAI (Ashiotis et al., 2015) as

well as a custom-made code was used for this purpose. The

‘Distortion’ class of the pyFAI package was used to account

for the gaps and the double pixels in the detector, and the final

2� and � were calculated by the ‘AzimuthalIntegrator’ class.

To show the 2D diffraction images regrouped along the 2� and

� axes the ‘integrate2d’ function was used. Such an image is

given in Fig. 10(a). In order to integrate along the azimuthal

axis (�) and obtain a conventional 1D diffraction pattern, the

‘integrate1d’ function is applied and the result is shown in

Fig. 10(b). The drop in the background level is due to gaps

between the modules where fewer pixels could record inten-

sity from that particular 2�.

3.3. Peak fitting

According to equation (2) above one needs 2 ��� values in

order to calculate " hkl
XRD. For the current study, experimentally

measured peak profiles were fitted using a Pearson VII

function,

Ið2�Þ ¼
A

1þ 4 21=m � 1ð Þ 2� � 2 ���
� �2

=k2

h in om
þ B; ð1Þ

having a maximum intensity A + B and a FWHM of k, with B

being the constant background level. Three different functions

were tried (Gauss, Lorentz and Pearson VII) and Pearson VII

produced the best results both at peak onsets and peak

maxima. Moreover, the Pearson VII distribution becomes

identical to the Lorentzian when the form parameter m = 1

and to the Gaussian for m! +1 (practically m > 10).

Parameters A, B, k and m are fitted on experimental data by

minimizing the objective function

Xn

i¼ 1

Iexp � Ið2�; 2 ���;A; k;m;BÞ

Iexp

" #2

;

where n is the number of measurement points in the powder

pattern. The Iexp factor in the denominator represents the

variance (�2
I ) of the measured intensity data according to

Poisson noise, as shown by the discussion of Criterion II in
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Figure 10
(a) 2D diffraction pattern and (b) 2� [vertical axis, common scale with (a)]
versus intensity plot after azimutal integration of the intensity (along �).

Figure 11
Peak fit on the Cu 220 reflection with the Pearson VII function.



Section 3.1. A typical example of peak fitting is shown in

Fig. 11, for a 220 peak. As shown in Appendix A, the errors in

peak positions are�3 � 10�4 degrees corresponding to errors

of �6 � 10�6 in terms of deformation. The data obtained for

the (311) planes give similar results.

3.4. Micromechanical interpretation of diffraction data

One of the objectives of this study is the estimation of the

stress applied to the specimen during the ultrasonic fatigue

test. To obtain this information from the shift of diffraction

peaks, one needs to rely on a scale transition model (e.g.

Letouzé et al., 2002; Faurie et al., 2009). Within the material,

the local stress field (i.e. at a fine intra-granular scale) is

heterogeneous due to many factors, one of them being the

elastic anisotropy at the grain scale. Consequently, lattice

spacings d hkl are also non-uniform and distributed according

to the stress heterogeneity within individual grains or within

grains sharing the same crystallographic orientation. The

grains at the origin of the measured {hkl} diffraction peak,

constituting the diffracting volume denoted hereafter �, are

those for which the normal of an (hkl) plane lies parallel to

the diffraction vector K = kd � ki, with kd and ki being the

diffracted and incident wavevectors of norm 1/�, respectively.

The shift �2 ��� of a diffraction peak during the mechanical test,

or more precisely the shift of its centroid ��� (Le Bourlot, 2012),

exactly provides a measurement of the shift of the mean lattice

spacing �dd hkl within the diffracting volume,

" hkl
XRD ¼

��dd hkl

�dd hkl
¼ �

�2 ���

2 tan ���
; ð2Þ

with �dd hkl = hd hkli�, where h. . .i� denotes the volume average

over grains belonging to � which itself is a function of the

reflection therefore �(hkl). The so-called lattice strain " hkl
XRD

is a projection along K of the mean strain tensor """ over �,

i.e. " hkl
XRD = hn:""":ni�, with n being a unit vector parallel to K.

Next, one has to introduce the (fourth-order) stress concen-

tration tensor B which links the local stress tensor rðxÞ at

position x within the material with the macroscopic (or

applied) stress �rr,

�rr ¼ BðxÞ : rðxÞ: ð3Þ

Combining the above equations, one obtains

" hkl
XRD ¼ n	 n : hS : Bi� : �rr; ð4Þ

with S the elastic compliance tensor of grains, 	 the dyadic

product and : the twice-contracted product. The term hS : Bi�
is usually called the X-ray elastic constant (XEC) in the

literature; it requires an evaluation of the mechanical inter-

action between the grains for B. In the present study, this is

achieved with the self-consistent model which performs very

well for polycrystalline aggregates (Lebensohn et al., 2005,

2011; Brenner et al., 2009). Assuming uniaxial loading condi-

tions for the sample and considering that the diffraction vector

is very close to the surface normal, we can simplify the stress

calculation from 2 ��� measurement to

�long ¼ �
1

SðhklÞ

�2 ���

2 tan ���
; ð5Þ

where �long is the stress along the longitudinal axis of the

sample and S(hkl) is the XEC for the hkl direction in question.

The self-consistent model yields values S(311) =

�2.55 � 10�6 MPa�1 and S(220) = �2.74 � 10�6 MPa�1 for

the 311 and 220 reflections, respectively.

4. Results and discussion

As mentioned in the previous sections, the developed

experimental device and the analysis enable us to reconstruct

the evolution of the diffraction patterns during one cycle and

thus to follow the evolution of two diffraction peaks and

quantify the evolution of their position and their FWHM

(denoted by 2 ��� and k, respectively). Fig. 12 shows their

evolution versus time in the case of an ultrasonic fatigue test

with an imposed displacement amplitude of 3.5 mm. The

abscissa of the plot is denoted ‘Reconstructed time’ and is

defined as the time for a given position in the cycle. Fig. 12

exhibits a sinusoidal evolution of 2 ��� according to the recon-

structed time at a frequency very close to the applied loading

frequency. This sinusoidal fluctuation occurs around a

constant value, noted 2 ���0, of about 41.7381�. The entire

experiment shown in Fig. 12 contains 30 reconstructed fatigue

cycles. During these 30 cycles, the mean value of the 2 ���
amplitude is about 0.0063� with a standard deviation of

0.0004�. As shown in Section 3.4, this evolution of 2 ��� can be

directly related to the lattice elastic strain and the longitudinal

normal stress.

Another interesting parameter obtained by Pearson VII fits

is the FWHM (denoted k). As shown in the graph of Fig. 12,

the peak broadening does not show a very strong cyclic

variation but it can be observed that this value evolves quasi-

linearly with time. This increase could be explained by two

factors: distribution of the elastic strain and the increase in

plastic deformation in the sample (accumulation of defects,

etc.). From Fig. 12, it is possible to estimate an increase of the k

parameter of 0.00055� during the 30 reconstructed cycles. The
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Figure 12
Reconstructed cycles showing the effect of fatigue loading in terms of 2 ���
(blue) and peak width (k, orange) versus reconstructed time for the (311)
plane and a displacement amplitude of 3.5 mm. The red arrow points out
the beginning of a particular cycle (t = 470 s) that is used in the following
images and discussion (see text for details).



standard deviation of this parameter is about 0.00048� which is

close to its increase. In the case of the test presented in Fig. 12,

the slope of the k parameter is about 0.358� s�1 in the

reconstructed time scale and thus 4.1 � 10�12 degrees (or

�2 � 10�14 strain) per cycle really applied to the specimen.

After having estimated the 2 ���0 value, we can calculate the

lattice elastic strain " hkl
XRD by the help of equations (2) and (5)

and plot the temporal evolution of longitudinal normal stress

(�long) to visualize the effect of cyclic loading on the crystal

structure. Fig. 13 represents reconstructed loading cycles for

both of the reflections (311 and 220) for one isolated cycle

shown in Fig. 12 (the considered cycle is identified in Fig. 12 by

a red arrow). The amplitude of the applied displacement on

the edge of the specimen is about 3.6 mm. Fig. 13 shows that

the estimations of the stress from the two Bragg peaks are very

similar. For the (220) and the (311) planes the stress ampli-

tudes are 58.9 MPa and 53.0 MPa, respectively, which corre-

sponds to a relative error of about 10%. This error can most

probably be explained by the weak crystallographic texture in

the specimen that is not taken into account in the calculation

of the XEC in this illustrative example.

Different amplitudes of displacement were also applied to

different samples by the ultrasonic fatigue machine, namely

3.5 mm, 4.9 mm and 6.4 mm. The obtained results during one

reconstructed cycle are shown in Fig. 14 and illustrate clearly

the increase of the longitudinal normal stress by increasing the

vibration amplitude.

To highlight again this effect, Fig. 15 represents the evolu-

tion of the amplitude of the stress with the applied displace-

ment amplitude. In this figure, the longitudinal normal stress

amplitudes are estimated for 30, 25 and 80 reconstructed

cycles for displacement amplitudes of 3.5 mm, 4.9 mm and

6.4 mm, respectively. The error bars give the dispersion on the

stress amplitude during all the reconstructed cycles. Moreover,

the longitudinal stress calculated from the strain gage signal

considering an elastic behavior with a Young modulus E =

120 GPa are also added in Fig. 15 as well as a calculation from

the displacement with a harmonic elastic model. The results

highlight a very good linearity of the measured amplitudes

with respect to the imposed displacement. This linearity is

related to the linearity of the response of the ultrasonic fatigue

machine and the quasi linearity of the mechanical behavior of

the material. However, a difference of 20–25% between the

conventional methods (gage and calibration) and the XRD

method is visible on the graph. This factor between XRD- and

gage-measured stress is constant for a given reflection over all

amplitudes and is likely due to micro-structural reasons that

lead to errors in the estimation of XECs. While estimating the

XECs by the self-consistent model, certain assumptions are

made on the micro-structure. These conditions may not be
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Figure 14
Longitudinal stress versus reconstructed time curve for different imposed
displacements [for the (311) planes] for a single cycle.

Figure 15
Amplitudes of �long measured by the XRD method (for both 220 and 311
reflections), gage method and calibration method plotted with respect to
displacements imposed by the ultrasonic fatigue machine.

Figure 13
Longitudinal stress during an isolated cycle versus reconstructed time for
two reflections (220 and 311).



accurate for the material analyzed due to texture and grain

size distribution. Better estimation of XECs through static

loading measurements and/or by using different micro-

mechanical models which take into account the microstrucural

texture of the material could be possible in future.

5. Conclusion

Using the proposed method of time-resolved XRD, we show

that it is possible to obtain diffraction patterns with a temporal

resolution of�1 ms during an ultrasonic fatigue test where the

loading frequency is about 20 kHz. After geometrical correc-

tion and bad pixel detection, the XRD image enables the

displacement of diffraction peaks and broadening to be

determineed as a function of time. The diffraction peak shift

gives information on the lattice strain with a resolution better

than 10�5. Moreover, using a micro-mechanical homogeniza-

tion technique, the longitudinal normal stress in the center of

the fatigue specimen can be estimated.

The longitudinal normal stress measured by the XRD

method versus the imposed displacement graphs shows very

good linearity confirming the stability of the method at

different levels of loading. The stress values measured by

other methods (strain gage and displacement) are consistently

lower by a factor of 20–25%. This factor between XRD-

and gage-measured stress is constant for a given reflection

over all amplitudes and is likely due to the difficult estimation

of XECs.

APPENDIX A
Effect of intensity measurement uncertainties on peak
position measurement

In order to determine optimal parameters for our experiment

(in terms of signal statistics, signal-to-noise ratio, duration

of the experiment to access VHCF, etc.) we have recorded

diffraction patterns with different exposure times (0.0002,

0.001, 0.004 and 0.02 s) on a polycrystalline Cu sample without

ultrasonic vibration, therefore under a static state of defor-

mation. The measured diffraction patterns were treated and

analyzed as described in Section 3. Pearson VII functions were

used to fit the measured diffraction peaks. Least-squares (LS)

fitting uncertainties obtained for the peak position parameter

(2�) for the 311 reflection are given in Table 1 as �2�;LS.

According to this, the precision on the determination of the

angular position of the diffraction peak (2 ���) is improved up

to ten times between 0.0002 and 0.02 s of exposure. These

uncertainties are characterized by the errors occurring due to

random procedures (counting statistics, etc.) and LS fitting

parameters (choice of the fitting function, initial parameters,

stability of the fit, etc.). They refer to the precision of the

experiment.

To characterize the effect of the random noise in our

diffraction patterns on the accuracy of our scattering angle

measurement we need an initial 2� value. Therefore a

modeling approach is used. An ideal 2D diffraction pattern is

created for the same 311 reflection with the initial value 2�init =

41.65� using the Pearson VII function and the experimental

geometrical parameters for the goniometer. Random counting

errors are added to the intensity values according to the

Poisson model taking into account the simulated exposure

time. After adding the noise the 2D pattern is treated in the

same way as the experimental patterns, using the same

geometrical parameters for the goniometer. The fitted value

after treatment, 2�calc, is then compared with the initially set

value to estimate the systematic error due to noise �2�; syst =

j2�init � 2�calcj.

The larger of the these two types of errors (�2�;LS and

�2�; syst) is propagated to strain calculations using equation (2).

The results are also given in Table 1. According to this, the

final errors on strain for 0.02 s of total exposure is 6.32 � 10�6.

The results are similar for the 220 reflection.

According to these results, 0.02 s of exposure time is chosen

for each recorded image. Since we are counting with a detector

aperture of 10�6 s cycle�1, the 0.02 s photon counting time

corresponds to 0.02 s/10�6 s cycle�1 = 2 � 105 cycles applied

by the machine during the recording of one diffraction image.

Since we are at 20 kHz, then 2 � 105 cycles /2 � 105 cycles s�1

= 1 s of total pattern recording time when the time is needed.
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