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ABSTRACT. This paper presents an efficient algorithm called SolveFuzzySystem, or SFS, for finding real solutions of poly-
nomial systems whose coefficients are symmetrical L-R fuzzy numbers with bounded support for which the spread func-
tions L and R are bijective. The real solutions of such a system are deduced from solutions of some polynomial systems with
real coefficients. This algorithm is based on new results that are universal because they are independent from the spread
functions. These theoretical results include the management of the fuzzy system’s solutions signs. An implementation in
the Fuzzy package of the free computer algebra software SageMath and a parallel version of the algorithm are described.
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1. INTRODUCTION

Modeling problems with uncertain data has important applications in engineering, economics and social sciences
[1, 12]. As fuzzy functions involved in equations can be approximated by fuzzy polynomials [2, 3], the problem of
solving fuzzy polynomial systems is of main importance and has motivated many studies, among them [4, 5, 6, 7].

However, the question of the meaning of a solution was soon raised. In 1990, Buckley and Qu [4] conclude that too
often the extension principle approach is too restrictive and that a new solution concept is needed so that a quadratic
univariate equation has always a solution. Considering inclusion or non-empty intersection rather than equality of
membership functions has led to a non-unique formulation. The question exists even for linear systems: Friedman
et al. [8] thus distinguish between strong and weak fuzzy solutions, and various algorithms in later papers may give
solutions with unclear meaning. As interval linear systems can be considered as a special case of fuzzy linear systems,
interval analysis techniques have been exploited: Muzzioli and Reynaerts [9] thus study the existence of counterpart in
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the fuzzy linear case for different notions of solutions in interval linear systems solving. However, the methods based
on these techniques face problems due to the improper intervals that may appear. In 2015, Lodwick and Dubois [10]
investigate the semantics and the links between fuzzy linear systems and interval linear systems in a unified approach
that clarifies anomalous or inconsistent results in previous papers.

Some problems are modeled by a system of continuous fuzzy valued functions defined over Rn (see [11]); Liu [2]
proposes a polynomial interpolation that provides an interface between solving these problems and solving fuzzy
polynomial systems. Therefore several authors have been interested in searching for real solutions of polynomial
equations with fuzzy coefficients. Note that their work, and ours too, is based only on Zadeh’s extension principle.
The methods of resolution were initially based on local techniques, firstly for one univariate polynomial [13, 14, 15]
and later for multivariate systems [16, 17]. Abbasbandy et al.[16] study in particular systems of the form

{
ã1,1x y + ã1,2x2 y2 +·· ·+ ã1,d xd yd = ã1,0

ã2,1x y + ã2,2x2 y2 +·· ·+ ã2,d xd yd = ã2,0

and they present several systems coming from applications like cross location of quadratic surfaces or in econom-
ics. In Section 6.2 we detail our method on two of them as illustrations.

Recently, a global approach using classical algebraic techniques has been developed [18, 19, 20, 21]. Indeed, despite
a name that may be confusing, fuzzy numbers benefit from a perfectly formal definition. We revisit this approach and
we significantly strengthen it. In the past, both local and global approaches focused on so-called triangular fuzzy
numbers, that is, with linear spread functions. The results presented here consider more generally symmetric L-R
fuzzy coefficients such as, for example, quadratic fuzzy numbers, that have quadratic spread functions. Like previous
works on this topic, our notion of solution lies on the equality of membership functions.

In a fuzzy algebraic system, the fuzzy coefficients coming from the experiments are generally L-R fuzzy numbers,
given under a representation called "tuple". Although the tuple representation is formal, it cannot be handle by usual
algebraic methods (Gröbner bases [22], triangular decomposition [23], rational univariate representation [24], . . . )
to solve the system. Nevertheless, the tuple representation of any L-R fuzzy number is transformable into another
representation called "parametric", where the coefficients are no longer fuzzy but real. We give the expression of the
parametric representation as a function of the inverse of its spread functions (see Proposition 2.2).

Throughout this paper we consider a fuzzy system (S) formed by s equations of k variables with L-R symmetrical
fuzzy coefficients. We search its real solutions. Obtaining directly the whole set of real solutions of (S) raises a problem
of signs since the coefficients are fuzzy. We overcome this problem by proceeding in two steps. Firstly, without using
the assumption of symmetry on the coefficients, we apply our Theorem 3.4 to find positive real solutions of (S) which
are those of its real transform T (S), a new algebraic system formed by 3 s equations of k variables with real coefficients.
We compare the real transform with the previous results mentioned above for systems restricted to triangular fuzzy
coefficients. Secondly, we introduce a technical tool called induced systems; it allows to compute the whole set of
real solutions of (S) from the positive solutions of 2k fuzzy induced systems with our main Theorem 4.1. By applying
these results and reducing the number of induced systems to solve, we propose an optimized parallelizable algorithm
called SolveFuzzySystem or SFS. Note that in Section 3.6, by the same reasoning, we obtain the real transform of a
polynomial system with more general L-R fuzzy coefficients called trapezoidal.

This paper is organized as follows: Section 2 introduces fuzzy numbers, the specific L-R fuzzy numbers and the
required transformations on representations. Section 3 is devoted to real transforms and induced equations forming
the induced systems. Section 4 applies the results of Section 3 to a fuzzy polynomial system. It establishes the main
Theorem 4.1 which leads to a basic algorithm called BA-SFS. In Section 5, this latter is optimized in Algorithm SFS
then parallelized. The implementation of SFS in the SageMath Fuzzy package [25] is briefly presented in Section 6,
together with examples illustrating SFS and its parallelization.

2. FUZZY NUMBERS

After some generalities, this section recalls the parametric representation of any fuzzy number, and then the special
L-R fuzzy numbers, that may be represented by a tuple. To go further on fuzzy quantities the reader may be interested
in [26]. We give some formulas which express the parametric representation of a L-R fuzzy number in function of its
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tuple representation when the number has a bounded support and bijective spread functions (Proposition 2.2). These
formulas are the key of our algebraic method to solve in R the algebraic fuzzy systems.

2.1. Generalities. The concept of fuzzy sets generalizes the classical concept of characteristic function of a subset
E of the universal set X: as depicted in Zadeh’s seminal paper [27], a fuzzy set Ẽ is a class of objects with a grade of
membership. The grade of membership of an element x is µẼ(x), where µẼ is a function from X to [0,1]. Ẽ is said
convex if each of its r -cuts, defined as the set Ẽr = {x ∈ X |µẼ(x) ≥ r } for a real number r in (0,1], is convex.

Fuzzy numbers are particular fuzzy sets. A fuzzy number is a convex fuzzy set whose membership function from R

to the real interval [0,1] is continuous and such that its core (the interval of values with membership 1) is reduced to a
singleton. This latter requirement is added for the sake of clarity in our study and since most applications handle this
kind of fuzzy numbers. Anyway, we will show in Section 3.6 that our analysis simply extends to fuzzy numbers with an
interval as core that we call trapezoidal fuzzy numbers.

Let n ∈ R. A fuzzy number with core {n} will be denoted by ñ. We define the support of ñ as the support of its
membership function, i.e. the set of a ∈ R such that µñ(a) 6= 0. We denote it by Supp(ñ). For a real number r in (0,1],
the r -cut of ñ is the convex set ñr = {x ∈R |µñ(x) ≥ r } . The 0-cut ñ0 is the closure of Supp(ñ).

The left restriction (resp. right restriction) µñ− (resp. µñ+) is the restriction of µñ to the left (resp. right) of n. Some
families of fuzzy numbers can be characterized from the functions µñ− and µñ+. The most popular family contains
the triangular fuzzy numbers for which the functions µñ− and µñ+ are linear on Supp(ñ). Similarly one speaks of
fuzzy numbers which are gaussian, quadratic,. . .

Throughout the paper, we will consider fuzzy numbers with bounded support.

2.2. Parametric representation. The definition below is adapted from [29] where R. Goetschel and W. Voxman intro-
duces the parametric representation of trapezoidal fuzzy numbers to embed them into a topological vector space.

Definition 2.1. The parametric form of a fuzzy number ñ is an ordered pair [n, n] of functions from the real interval
[0,1] to Rwhich satisfy the following conditions:

(i) n is a bounded left continuous non-increasing function on [0,1],
(ii) n is a bounded left continuous non-decreasing function on [0,1],

(iii) n(1) = n(1) = n.

The fuzzy number ñ defined by functions n and n has membership function µñ : R→ [0,1] such that µñ(x) =
sup{r | n(r ) ≤ x ≤ n(r )} ; for r ∈ (0,1], the r -cut of ñ is [n(r ), n(r )].

An addition and a scalar multiplication defined by Zadeh extension principle structure the set of fuzzy numbers;
Stefanini and Sorini [30] recall that they are equivalently expressed with parametric representation as described in the
following lemma:

Lemma 2.1. Let and m̃ = [m,m] and ñ = [n,n] two fuzzy numbers and q ∈R\ {0}. Then

(1) m̃ = ñ if and only if m(r ) = n(r ) and m(r ) = n(r ) for each real r ∈ [0,1];
(2) m̃ + ñ = [m +n, m +n];

(3) q · ñ =
{

[q ·n, q ·n] if q > 0,

[q ·n, q ·n] if q < 0

where, for any function f fromR toR, the product g = q · f represents the function defined as g (r ) = q f (r ) for each r ∈R.

2.3. L-R fuzzy numbers and tuple representation. The well known LR model was introduced by D. Dubois and H.
Prade in [28]. It considers families of special fuzzy numbers in which the arithmetic operations are internal and
express very simply. Inside a given family the fuzzy numbers are represented by a tuple representation recalled below.

A function H defined on the real interval [0,+∞) with values in the real interval (−∞,1] is called a spread function
if H(0) = 1, H(1) = 0, H is continuous and decreasing on its domain.

Definition 2.2. Let L and R be two spread functions. A fuzzy number ñ with a bounded support is said of type L-R, or
is a L-R fuzzy number, if there exist two positive real numbers α and β such that the membership function µñ of ñ is
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given as follows:

µñ(x) =


L

(n−x
α

)
for n −α≤ x < n when α 6= 0

1 for x = n

R
(

x−n
β

)
for n < x ≤ n +β when β 6= 0

0 for x ∈ (−∞,n −α) ∪ (n +β,+∞)

The triplet (n,α,β) is called the tuple representation of the L-R fuzzy number ñ. Real numbers α and β are respectively
called the left spread and the right spread of ñ.

We denote by F(L,R) the family of fuzzy numbers of type L-R. Functions L and R are respectively called the left
spread function and the right spread function of the family F(L,R), and by extension the spread functions of ñ itself.

Inside a given family F(L,R), a tuple (n,α,β) represents a unique element ñ. The addition of fuzzy numbers is an
internal law in F(L,R). The tuple representation of the sum of two L-R fuzzy numbers ñ = (n,α,β) and ñ′ = (n′,α′,β′)
is given by:

ñ + ñ′ = (n +n′,α+α′,β+β′) .

For ñ ∈ F(L,R) the scalar product q · ñ is in F(L,R) if the real q is positive while it is F(R,L) if q is negative. Its tuple
representation is given by:

q · ñ =
{

(q n, q α, q β) ∈F(L,R) if q > 0
(q n,−q β,−q α) ∈F(R,L) if q < 0 .

(1)

The scalar product is an internal law of F(L,R) only when L = R *. The elements of F(L,L) will be called symmetrical
fuzzy numbers.

Note that the inversion of the spreads keeps them positive when q < 0 : −q β and −q α are respectively the left
spread and the right spread of q · ñ. In particular, in F(L,L) we have

− ñ = (−n,β,α) .(2)

Remark 2.3. When all the computations involve products q · (n,α,β) where q ≥ 0, there is no need that L = R.

2.4. From tuple to parametric representation of L-R fuzzy numbers. In this paper, we consider polynomials equa-
tions with coefficients that are fuzzy numbers of a same family F(L,R) satisfying the sufficient requirement that the
spread functions L and R are bijective. Our solving method implies to rewrite algebraically each fuzzy coefficient
ñ ∈F(L,R) from tuple representation (n,α,β) into parametric representation. The change of representation is given by
formulas of Proposition 2.2 below.

The parametric representation of ñ is strongly related to its r -cuts ñr since functions n and n defined by

n(r ) = infr∈[0,1] ñr and n(r ) = supr∈[0,1] ñr

satisfy the requirements of Definition 2.1. This relation appears graphically in Figure 1 where x1 = n(1/2) and x2 =
n(1/2) for a triangular fuzzy number 3̃ = (3,2,3). The graph of functions n and n is obtained by a plane rotation of the
graph of the membership function followed by a vertical symmetry.

*To have F(L,R) =F(R,L), it is necessary that L(x) = R( x
c ) with c > 0; then L = R because 0 = L(1) = R(1) and R strictly monotonous.
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FIGURE 1. Graph of functions 3 and 3 from the graph of a linear membership function

Formally, the transformation is described by the formulas below.

Proposition 2.2. Let ñ = (n,α,β) ∈ F(L,R) where L and R are bijective spread functions. Then the parametric represen-
tation [n,n] of ñ satisfies the following formulas:

(3)

{
n(r ) = n −αL−1(r )
n(r ) = n +βR−1(r ) .

In particular, when the fuzzy number ñ is triangular, we have:

(4) n(r ) = α r +n −α et n(r ) =−βr +n +β .

Proof. For the real number r ∈ [0,1], Definition 2.2 implies r = L
(

n−n(r )
α

)
= R

(
n(r )−n

β

)
. As L and R are bijective, n(r )

and n(r ) satisfy Identity (3) of the proposition.
In the triangular case, we obtain formula (4) because L = R = F where F(x) = 1−x is bijective with F−1 = F. �

3. THE REAL TRANSFORM OF A FUZZY EQUATION

The goal of this paper is to solve in R a system of polynomial equations whose coefficients are symmetrical fuzzy
numbers belonging to a same family F(L,L) where L is bijective. It is performed by transforming independently each
equation in order to obtain polynomial systems with real coefficients so that they can be solved by algebraic methods.
This section is devoted to the transform of only one equation. Note that, in practice, we do not encounter one isolated
multivariate equation. For a system reduced to a unique equation, the number of variable is generally reduced to only
one too. This particular case can be treated with our method or by others such as [13], and recently [21], but it is not
the purpose of this paper.

We will use the following terminology: a variable is said real if its represents any real number; a real variable is said
positive if it represents any positive real number, i.e. belonging to R+; a k-uplet (b1, . . . ,bk ) of real variables or real
numbers is said positive if each component bi is positive. In this section we consider an algebraic equation (E) with
symmetric L-R fuzzy coefficients and k real variables x1, . . . , xk also called the indeterminates.

The problem when computing with real variables and fuzzy numbers comes from the fuzzy numbers expressed
as a product q · ñ because the spreads depend on the sign of q ∈ R (see Lemma 2.1). In the fuzzy equation (E) each

monomial m = xd1
1 · · ·xdk

k (di ∈ N) whose sign is generally a priori unknown, plays the role of q ; note that if each
exponent di is even then m is positive. When the k-uplet x = (x1, . . . , xk ) is positive, the monomial m is necessary
positive.

To avoid this sign problem, Section 3.2 seeks to obtain the real solutions of (E) in Rk from positive solutions in Rk of
2k auxiliary fuzzy equations E(I), where I ∈ {−1,1}k . We called the latter equations the induced equations of E.
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In Section 3.3 and 3.4, as we deal only with positive real variables, the fuzzy coefficients do not need to be sym-
metrical but may lie more generally in a unique family F(L,R) where L and R are bijective. In Section 3.3 a crisp form
of (E) is constructed in order to deduce a collected crisp form of (E) ; in other words, an algebraic system of equations
with real coefficients whose positive solutions are those of (E). The collected crisp form is formed by four equations by
an algorithm that applies only when the fuzzy coefficients are triangular. Moreover Section 3.4 establishes a formula
that provides a particular collected crisp form of (E) formed by only three equations. We call it the real transform of
(E) and denote it by T (E).

To obtain the real solutions of (E), it is necessary and sufficient to collect the positive real solutions of the 2k real
transforms T (E(I)), where E(I) is an induced fuzzy equation of (E). In practice, the equations E(I) are not pairwise
distinct and it is not necessary to solve each of the 2k systems T (E(I)). This subject will be the center of the discussion
of Section 4.

Section 3.5 compares the real transform T (E) to the usual collected crisp form given in literature for the triangular
case. Section 3.6 finally generalizes the results to trapezoidal fuzzy numbers.

3.1. Preliminaries. Let d = (d1, . . . ,dk ) ∈ Nk , x = (x1, . . . , xk ) and xd = xd1
1 · · ·xdk

k the monomial of multidegree d in

the variables x1, . . . , xk . In the same way, for a= (a1, . . . , ak ) ∈Rk , we denote by ad the product ad1
1 · · ·adk

k . For y =
(y1, . . . , yk ), we denote by x×y the classical product (x1 y1, . . . , xk yk ). Note that (x×y)d =xdyd.

In this section, we consider the polynomial equation

(5) (E) :
∑

d∈Expon(E)
ñd x

d = m̃ ,

where the coefficients are given under their respective tuple representations: m̃ = (m,α,β) and ñd = (nd,αd,βd) 6=
(0,0,0) for each d in Expon(E), a finite subset of Nk . For example, when k = 3 and (E): 3̃ x2

1 x2 + 1̃ x4
3 = 6̃, Expon(E) is

the subset {(2,1,0), (0,0,4)} ofN3.
When we search for positive solutions of (E) only, following Case q ≥ 0 in Identities (1), there is no need to impose

L = R: m̃ ∈ F(L,R) and ñd ∈ F(L,R)\{(0,0,0)}, d ∈ Expon(E). We denote by Sol+(E) the set of positive real solutions of
(E):

Sol+(E) = {a ∈R+k | ∑
d∈Expon(E)

ñd a
d = m̃ } .

Following Case q ≤ 0 in Identities (1), for solutions in the whole set of real numbers, the coefficients are necessary
symmetrical fuzzy numbers: m̃ ∈ F(L,L) and ñd ∈ F(L,L)\{(0,0,0)}, d ∈ Expon(E). We denote by Sol(E) the set of real
solutions of (E):

Sol(E) = {a ∈Rk | ∑
d∈Expon(E)

ñd a
d = m̃ } .

We search for Sol(E) by using the r -cuts in order to obtain an algebraic system with real coefficients that can be
solved with classical computer algebra methods.

However, according to Identity (3) of Lemma 2.1, the r -cut of ñdx
d depends on the sign of xd while this sign is as

unknown as those of the indeterminates x1, . . . , xk .
This is why we need to consider the case where the indeterminates x1, . . . , xk are real and positive. But we want to

obtain the whole set of real zeros of (E), not only positive zeros. This is the discussion of Section 3.2. This section aims
to construct Sol(E) from the 2k sets of positive real zeros Sol+(E(I)) of the induced fuzzy equations E(I), where I runs
throughout the k-uplets of {−1,1}k .

After Section 3.2, it will remain to know how to calculate the 2k sets Sol+(E(I)). For this perspective, Section 3.3 and
Section 3.4 suppose that every variable is real and positive. In this context, we seek the formula of the real transform
T (E) of (E). The positive solutions of the real algebraic system T (E) are exactly the positive solutions of the fuzzy
algebraic equation (E). In these two sections the fuzzy equation (E) plays the role of each of its induced equation E(I).

3.2. Solutions of (E) in function of positive solutions of its induced equations. Let a = (a1, . . . , ak ) ∈ Rk . We put
|a| = (|a1|, . . . , |ak |) where |b| denotes the absolute value of b ∈ R. Note that |ad| = |a|d. The k-uplet of signs of the
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components of a is ε(a) = (sign(a1), . . . ,
sign(ak ) ) ∈ {−1,1}k . The value ε(a)d =∏k

i=1 sign(ai )di is the sign 1 or -1 of the real ad and we have

ad = ε(a)d |ad| = ε(a)d |a|d .

The evaluation in the value a of a term ñdx
d consists in replacing the monomial xd by its value ad = ε(a)d |a|d.

According to Identity (3) of Lemma 2.1, when the sign ε(a)d of ad is 1, the r -cut of the fuzzy number ñd a
d is

[ nd(r ) |a|d , nd(r ) |a|d ] ,

and if this sign is −1 then the r -cut is

[ −nd(r ) |a|d , −nd(r ) |a|d ] .

It is therefore impossible to transform ñdxd into its parametric representation without knowing the sign of xd. Our
idea to work around this problem of unknown sign of xd is to introduce an artificial k-uplet I ∈ {−1,1}k for the signs of
the indeterminates. Then the real Id can be mixed in with the coefficient ñd and x can be supposed to be positive. It
leads to construct from (E) 2k fuzzy equations defined below.

Definition 3.1. Let (E) be algebraic equation with k variables and symmetric fuzzy coefficients given by (5). The
induced equations of (E) are the following equations

E(I) :
∑

d∈Expon(E)
Id ñd x

d = m̃ where I ∈ {−1,1}k .(6)

Note that (E) = E((1,1, . . . ,1)). In E(I), the k-uplet I plays the role of the k-uplet ε(a) of the signs of a possible solution
a of (E). For each term Id ñd x

d in the left side of E(I), Id ∈ {−1,1} plays the role of the sign ε(a)d of ad while the sign of
xd itself is considered as positive. In E(I), there is no problem to express the r -cuts of Id ñd x

d with x positive whereas
it is impossible in (E) for ñd x

d with x not necessarily positive.
To describe relationships between the solutions of equations (E) and E(I), for q = (q1, . . . , qk ) ∈ Rk and S ⊂ Rk , we

introduce the following notation:

q⊗S = { q×a= (q1a1, . . . , qk ak ) |a= (a1, . . . , ak ) ∈S } .

Lemma 3.1. Let I ∈ {−1,1}k and E(I) be an induced equation of (E). Then

Sol(E) = I⊗Sol(E(I)) and Sol(E(I)) = I⊗Sol(E) .

Proof. As I× I = (1, . . . ,1), it is sufficient to prove first equality. For b ∈Rk a solution of E(I), we have

m̃ =∑
d

Id ñd b
d =∑

d

ñd (I×b)d .

Hence I×b is a solution of (E).
Conversely, let a ∈ Sol(E). Then b= I×a is a solution of E(I) since

m̃ =∑
d

ñd (I× I×a)d =∑
d

Id ñd (I×a)d .

�

For each a ∈ Rk , there exists I ∈ {−1,1}k such that ε(a) = I and for which the evaluation of E(I) in |a| is identical to
the evaluation of (E) in a. The question of finding all solutions of (E) from the positive solutions of its induced fuzzy
equations E(I) is solved by the following fundamental theorem:

Theorem 3.2. Consider an algebraic equation (E) with symmetrical fuzzy coefficients. Then the set of real solutions of
(E) is formed by the I×b where I runs throughout the set of k-uplets {−1,1}k and b runs throughout the set of positive
solutions of E(I). In other words,

Sol(E) = ⋃
I∈{−1,1}k

I⊗Sol+(E(I)) .
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Proof. It follows from Lemma 3.1 that each I⊗Sol+(E(I)) ⊂ Sol(E). Conversely, if a ∈ Sol(E) then ad = ε(a)d |ad| =
ε(a)d |a|d . It follows that

m̃ =∑
d

ad ñd =∑
d

ε(a)d |a|d ñd .

Putting I = ε(a) and b= |a| ∈R+k , we obtain I×b= ε(a)× (ε(a)×a) =a where b is a solution of E(I). �

Remark 3.2. The fuzzy symmetrical coefficients in (E) being given by their tuple representation, the induced equations
E(I) actually derive directly from (E). For every d in Expon(E) the coefficient Id ñd is equal to ñd itself when Id = 1,
otherwise following (2), it is equal to (−nd ,βd ,αd ) when Id = −1. This ensures that for finding the whole set of real
solutions of (E) it is sufficient to be able to compute positives real solutions of any fuzzy equation.

In practice, the 2k fuzzy equations E(I) are not always pairwise distinct. In particular, in case of each component di

of d= (d1, . . . ,dk ) ∈ Expon(E) being even, all induced equations E(I) are identical to equation (E).

Example 3.1. Let 3̃, 1̃, 6̃ ∈F(L,L). Take k = 3 variables x1, x2, x3 and consider the equation

(E) : 3̃ x2
1 x2 + 1̃ x4

3 = 6̃ .

The 8 = 23 triplets of {−1,1}3 are: I1 = (1,1,1), I2 = (1,1,−1), I3 = (−1,1,1), I4 = (−1,1,−1), I5 = (1,−1,1), I6 = (1,−1,−1), I7 =
(−1,−1,1) and I8 = (−1,−1,−1). There are only two distinct induced equations E(I j ). Indeed, since Expon(E) = {d1 =
(2,1,0),d2 = (0,0,4)}, we have Id2

j = 1 for all j = 1, . . . ,8. Thus the eight I j split up into the two following groups: that

for j = 1, . . . ,4 with Id1
j = 1 and that for j = 5, . . . ,8 with Id1

j = −1. Hence (E) = E(I j ) for j = 1, . . . ,4 and E(I5) = E(I j ) for
j = 5, . . . ,8.

For j = 5, . . . ,8, the tuple representation of the coefficients of E(I j ) is determined with the help of Remark 3.2: with
3̃ = (3,α1,β1), 1̃ = (1,α2,β2) and 6̃ = (6,α,β), we have −3̃ = (−3,β1,α1) and

E(I j ) : (−3,β1,α1)x2
1 x2 + (1,α2,β2)x4

3 = (6,α,β).

According to Theorem 3.2, we have

Sol(E) =
4⋃

j=1
I j ⊗Sol+(E(I1))

⋃ 8⋃
j=5

I j ⊗Sol+(E(I5)) .

The following sections are devoted to finding the positive solutions of (E) that we will apply to each equation E(I),
taking into account Remark 3.2 illustrated in previous example.

3.3. Crisp form of (E) to find Sol+(E). In this section and the following one, we express the positive solutions of (E).
Since there is no need to assume L = R, we consider more generally that the fuzzy coefficients all lie in a unique family
F(L,R) where L and R are bijective.

As explained above, algebraic solving of fuzzy equation (E) is usually based on the passage of the L-R representation
of fuzzy numbers to their parametric representation. In the presentation below we significally strengthen this classical
method for triangular fuzzy coefficients by applying it to a generic system and by extending it to more general fuzzy
coefficients.

Following Lemma 2.1, equation (E) rewrites into two equalities on the r -cuts of its left and right members if all
the xd, d ∈ Expon(E), are supposed to represent reals of the same sign. Indeed, according to Rule (3) of this lemma,
the multiplication of a fuzzy number by a scalar q splits into two cases: q ≤ 0 and q ≥ 0. Thus we search only for the
solutions a ∈ R+k since the real q := ad is then positive for each d ∈ Nk . We will apply the results of this section to
every induced equation E(I).

According to Lemma 2.1, the following equivalence applies to any a ∈R+k :

a ∈ Sol+(E) ⇐⇒
[ ∑
d∈Expon(E)

nd(r )ad,
∑

d∈Expon(E)
nd(r )ad

]
= [

m(r ),m(r )
]

.(7)
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This equivalence leads us to consider the following system C (E) of two equations with real coefficients and k + 1
variables x1, . . . , xk ,r , called the crisp form of (E) :

C (E) :


∑

d∈Expon(E)
nd(r )xd = m(r )∑

d∈Expon(E)
nd(r )xd = m(r ) .

Let F be a finite set of equations in R[x1, . . . , xk ,r ]. We put

Sol+k (F) = {a ∈R+k | ∀r ∈ [0,1] (a1, . . . , ak ,r ) ∈ Sol(F)}

where Sol(F) is the set of the solutions of F in Rk+1. Take a = (a1, . . . , ak ) ∈ R+k . According to Equivalence (7), the
k-uplet a is a solution of (E) if and only if for all real r ∈ [0,1] the (k +1)-uplet (a1, . . . , ak ,r ) is a solution of the crisp
form C (E). In other words, Sol+k (C (E)) is the set of the positive solutions of the fuzzy equation (E):

(8) Sol+(E) = Sol+k (C (E)) .

Example 3.2. Let us take again the fuzzy equation (E) of Example 3.1 with triangular fuzzy coefficients. We recall
that their r -cuts are given by the formulas (4) and that Expon(E(I1)) = Expon(E(I5)) = {(2,1,0), (0,0,4)}. The parametric
representations of the coefficients of the two induced equations are then written as follows:

• ñd1 = 3̃ = [α1r +3−α1,−β1r +3−β1] for E(I1);
• ñd1 =−3̃ = [β1r −3−β1,−α1r −3−α1] for E(I5);
• ñd2 = 1̃ = [α2r +1−α2,−β2r +1−β2] and 6̃ = [αr +6−α,−βr +6+β] for E(I1) and E(I5).

Therefore the respective crisp forms of the two distincts induced equation of (E) are:

C (E(I1)) :

{
(α1r +3−α1) x2

1 x2 + (α2r +1−α2) x4
3 = αr +6−α

(−β1r +3−β1 )x2
1 x2 + (−β2r +1−β2) x4

3 =−βr +6+β
and

C (E(I5)) :

{
(β1r −3−β1) x2

1 x2 + (α2r +1−α2) x4
3 = αr +6−α

(−α1r −3−α1) x2
1 x2 + (−β2r +1−β2) x4

3 =−βr +6+β .

In the particular triangular case, illustrated in Example 3.2 above, the crisp form has two equations with linear
expressions w.r.t. the variable r in each side. It is a consequence of formulas (4) restricted to the particular triangular
case. The triangular case is easy because the spread functions are equal to F : x 7→ 1− x, with F−1 = F. The following
theorem deals with 2 indeterminate in the general case, when the spread functions are simply bijective.

Theorem 3.3. Let L and R be two spread functions and

(E) :
∑

d∈Expon(E)
ñd x

d = m̃ ,

be a fuzzy equation with coefficients in the family F(L,R) given by their tuple representations as follows: m̃ = (m,α,β)
and ñd = (nd,αd,βd) for d ∈ Expon(E). If the spread functions L and R are bijective then the crisp form of (E) is given by:

(9) C (E) :


∑
d

nd x
d−m + (α−∑

d
αd x

d)u = 0∑
d

nd x
d−m + (−β+∑

d
βd x

d) v = 0 ,

where u = L−1(r ) and v = R−1(r ) for all r ∈ [0,1]. For a ∈R+k , we have a ∈ Sol+(E) if and only if, for all r ∈ [0,1], system
(9) is satisfied by the (k +2)-uplet (a1, . . . , ak ,L−1(r ),R−1(r )).

Proof. By definition, a spread function H sends [0,1] to itself and if moreover H is bijective then its inverse H−1 is
continuous and decreasing with H−1(1) = 0 and H−1(0) = 1. Suppose that the spread functions L and R are bijective.
As each r belongs to [0,1], we can put u = L−1(r ) and v = R−1(r ). When r runs throughout [0,1] in the increasing
sens, the parameters u and v run throughout the same interval [0,1] in the decreasing sens by definition of the spread
functions. Thus, according to formulas (3), the parametric form of the coefficients of the equation (E) are given by

(10)
nd(r ) = nd−αd u , nd(r ) = nd+βd v for d ∈ Expon(E)
m(r ) = m −αu , m(r ) = m +βv .



10

Then the crisp form C (E) of (E) given in (8) is written as a system of two equations with k +2 variables x1, . . . , xk ,u, v ,
where u and v are dependent on each other:

C (E) :


∑
d

nd x
d−αd u xd = m −αu∑

d
nd x

d+βd v xd = m +βv

By gathering all the terms to the left of the two equalities, we find the crisp form expressed in the form (9) of the
theorem. Last assertion in the theorem about Sol+(E) follows directly from Identity (8). �

What is noteworthy is that Theorem 3.3 only requires that the restrictions on [0,1] of the two spread functions L
and R are bijective.

Our approach allows at the same time to improve and to generalize the methods known so far. For instance, results
in [18] and [20] are restricted to triangular fuzzy numbers. Indeed, the crisp form of (E) with two parameters u =
L−1(r ) and v = R−1(r ) given in Identity (9) is a generalization of the crisp form known in triangular case with only one
parameter r where r ∈ [0,1].

In the aforementioned articles, for each problem to be solved, the algorithm computes the system C (E) in vari-
ables x1, . . . , xk ,r , which is linear w.r.t. r . Then it is rewritten into an equivalent system of four algebraic equations in
x1, . . . , xk with real coefficients called collected crisp form of (E). In next section 3.4, we will show how to get a particular
collected crisp form reduced to three equations instead of four, for any family F(L,R) with bijective spread functions
L and R. This is the real transform of (E). In addition, we explicitly give its formulation from (E).

3.4. The real transform and the positive real solutions of (E). We define here the real transform of a fuzzy equation
(E) and show that its positive real solutions are also those of (E).

Definition 3.3. Let L and R be two spread functions and

(E) :
∑

d∈Expon(E)
ñd x

d = m̃

a fuzzy equation with coefficients in the familyF(L,R) given by their representations in tuple as follows: ñd = (nd,αd,βd)
(d ∈ Expon(E)) and m̃ = (m,α,β). The real transform T (E) of (E) is the following polynomial system over R:

(11) T (E) :



∑
d∈Expon(E)

nd x
d = m∑

d∈Expon(E)
αd x

d = α∑
d∈Expon(E)

βd x
d = β .

This definition naturally extends to a system (S) of fuzzy equations such as (E). We denote by T (S) its real transform,
i.e. the system formed by the real transforms of the equations in (S).

Theorem 3.4. If the two spread functions L and R are bijective then the set of positive real solutions of (E) equals the one
of its real transform T (E); in other words:

Sol+(E) = Sol+(T (E)) .

Proof. Let a ∈ R+k . As the spread functions L and R are bijective, we can apply Theorem 3.3. According to this
theorem, we know that a ∈ Sol+(E) if and only if, for all r ∈ [0,1], the crisp form of (E) expressed in (9) is satisfied by
the (k +2)-uplet (a1, . . . , ak ,L−1(r ),R−1(r )).

With r = 1, we have u = L−1(1) = 0. Then a ∈ Sol+(E) satisfies the equation
∑

d ndx
d = m. Note that when r = 1

we have v = 0 too because R(0) = 1, and we find the same equation and not a second one. This is why we obtain
three equations instead of four. Then, by taking r = 0 we have u = L−1(0) = 1 and v = R−1(0) = 1. By replacing in (9)
the expression

∑
d ndx

d−m by 0 and each variable u and v by 1, we deduce that a positive solution of (E) is also a
positive solution of the real transform T (E) of (E).

For the inverse inclusion, consider the crisp form C (E) as a polynomial system in the variables x and with coeffi-
cients in the ringR[u, v]. Any solution (a1, . . . , ak ) ∈Rk of T (E) is also a solution of C (E) inRk whatever the parameters
u and v may be in the interval [0,1]. Obviously it remains true when they are furthermore connected by the constraint
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L−1(u) = R−1(v) ∈ [0,1]. Hence any positive real solution of the real transform T (E) is also a positive real solution of
the fuzzy equation (E). �

Theorem 3.4 ensures that finding the positive real roots of (E) amounts to finding the positive real roots of its real
transform T (E). Therefore it is no use to develop intermediate computations on parametric representation like the
previous methods did in the specific triangular case.

From Remark 3.2, we immediately deduce the expression of T (E(I)):

Corollary 3.5. Let I ∈ {−1,1}k . The real transform of the induced equation E(I) is given by:

(12) T (E(I)) :



∑
d|Id>0

nd x
d− ∑

d|Id<0
nd x

d = m∑
d|Id>0

αd x
d+ ∑

d|Id<0
βd x

d = α∑
d|Id>0

βd x
d+ ∑

d|Id<0
αd x

d = β .

If, in addition, the spread functions L and R are both bijective then Sol+(E(I)) = Sol+(T (E(I))).

3.5. Comparison with previous methods in the triangular case. Consider a system (S) formed by s polynomial equa-
tions with fuzzy coefficients.

In the specific case of triangular fuzzy numbers as coefficients, the authors of [18] and [20] compute a collected
crisp form of (S) formed by 4 s real algebraic equations. In this part we are interested in the relationship between their
collected crisp form with 4 s equations and our collected crisp system with 3 s equations, that is the real transform of
(S). The respective sets of positive real solutions of these two systems equal Sol(S); it is the principle of any collected
crisp form of (S).

Consider below the system F1 of Section 6 in [20]:

F1 :

{
(2,1,1)x y + (3,1,1)x2 y2 + (2,1,1)x3 y3 = (7,3,3)
(5,1,1)x y + (2,3,1)x2 y2 + (2,2,1)x3 y3 = (9,6,3) .

Applied to first equation, the algorithm proposed in [20] produces the following collected crisp form:
x y +x3 y3 −3+x2 y2 = 0,
x y +2 x2 y2 −4+x3 y3 = 0
−x y −x3 y3 +3−x2 y2 = 0
3 x y +4 x2 y2 −10+3 x3 y3 = 0 ;

and it produces the following collected crisp form of the second equation of F1:
x y +3 x2 y2 +2 x3 y3 −6 = 0,
4 x y −x2 y2 −3 = 0,
−x y −x3 y3 +3−x2 y2 = 0,
6 x y +3 x2 y2 −12+3 x3 y3 = 0 .

Call T1 the system formed of the eight preceding equations.
Furthermore, by applying to F1 our formula (11) defining the real transform, we get T (F1), the following system of

six equations:

T (F1) :



2x y +3x2 y2 +2x3 y3 = 7
x y +x2 y2 +x3 y3 = 3
x y +x2 y2 +x3 y3 = 3
5x y +2x2 y2 +2x3 y3 = 9
x y +3x2 y2 +2x3 y3 = 6
x y +x2 y2 +x3 y3 = 3 .

An easy computation shows the equivalence of the systems T1 and T (F1), whose set of solutions is {(x, y) ∈R | x y =
1}. This phenomenon of equivalence between both approaches may be explained in a very general way as we show
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below by considering the classical computation of the collected crisp form obtained by an application of the algorithm
of [20] on the generic equation (5) of (E).

Let m̃ = (n,α,β) and ñd = (nd,αd,βd) (d ∈ Expon(E)) be the respective tuple representations of the fuzzy coefficients
of (E) that are assumed to be triangular. According to formulas (4), in the triangular case the r -cuts are given by

ñd(r ) = [αdr +nd−αd ,−βdr +nd+βd] for d ∈ Expon(E), and

m̃(r ) = [αr +m −α ,−βr +m +β] .

For a triangular fuzzy number, L = R = F, where F(x) = F−1(x) = 1− x, being known, the previous methods replace
directly L−1(r ) and R−1(r ) by their expression in the variable r in the equations. That’s how they end up in the crisp
form of (E) below expressed as two polynomials in the variable r :

C (E) :

 (
∑
d
αd x

d−α)r +∑
d

(nd−αd)xd−m +α= 0

(β−∑
d
βd x

d)r +∑
d

(nd+βd)xd−m −β= 0 .

A k-uplet (x1, . . . , xk ) ∈Rk is a solution of C (E) for all r ∈ [0,1] if and only if the constant coefficients and the coefficients
w.r.t. the variable r of these independent equations are all zero (because a non-zero polynomial of degree 1 has only
one root). The collected crisp form of (E) is therefore written

∑
d
αd x

d = α∑
d

(nd−αd)xd = m −α∑
d
βd x

d = β∑
d

(nd+βd)xd = m +β .

By applying this transformation to each equation in the system F1, we find the collected crisp form T1 of our ex-
ample. For the generic equation (E), by injecting the first equation into the second one and by noting that the last
equation is the sum of the three other ones, we obtain the real transform T (E) with three equations defined in (11).

3.6. Case of trapezoidal fuzzy numbers. In this section, we extend the definition of fuzzy numbers to trapezoidal
fuzzy numbers by allowing µ−1

ñ ({1}) to an interval [a,b] and no longer the unique value n. As mentioned in Section 2.1
our results adapt to trapezoidal fuzzy numbers with bounded support.

In this context, a fuzzy number ñ with bounded support is of type L-R if its membership function µñ has the fol-
lowing form:

µñ(x) =


L

( a−x
α

)
for a −α≤ x < a when α 6= 0

1 for x ∈ [a,b]

R
(

x−b
β

)
for b < x ≤ b +β when β 6= 0

0 for x ∈ (−∞, a −α) ∪ (b +β,+∞) .

Then the tuple representation of the fuzzy number ñ is the quadruplet (a,b,α,β).
The expression of the parametric representation given in Proposition 2.2 takes the following form for a trapezoidal

number of type L−R whose spread functions L and R are bijective:

(13)

{
n(r ) = a −αu
n(r ) = b +βv where u = L−1(r ) and v = R−1(r ) for r ∈ [0,1] .

Firstly, we seek for the positive real solutions of an equation (E) :
∑

d∈Expon(E) ñd xd = m̃ with trapezoidal fuzzy
coefficients of type L-R, where ñd = (ad ,bd ,αd ,βd ) and m̃ = (a,b,α,β) are their tuple representations. For this purpose,
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we compute its real transform T (E) without resorting to the assumption of symmetry on the coefficients. Applying
the argument of Section 3.4 (here L(1) = R(1) = 0 and L(0) = R(0) = 1), we obtain in the same way:

(14) T (E) :



∑
d

ad x
d = a∑

d
bd x

d = b∑
d
αd x

d = α∑
d
βd x

d = β .

Secondly, the use of the real transform for solving polynomial fuzzy systems will directly transposes to systems with
symmetrical trapezoidal fuzzy coefficients.

The algorithms proposed in this article will remain valid for symmetrical trapezoidal fuzzy numbers. Only the
algorithmic function RealTransform(S), which returns the real transform of a fuzzy (S) system of s equations, will
have to be adapted in order to return the real transform T (S) with 4 s instead of 3 s equations by slightly applying
formula (14) to each equation of (S).

4. REAL SOLVING OF FUZZY POLYNOMIAL SYSTEMS

The resolution of a fuzzy system (S) of s equations with coefficients in F(L,L) follows directly from the results for a
single equation. In Section 3, from equation (E) we deduce 2k fuzzy induced equations E(I) where I runs throughout
the 2k k -uplets of {−1,1}k . By applying Theorem 3.2 the solutions of (E) are deduced from the positive solutions
of every fuzzy induced equation E(I). Corollary 3.5 ensures that the positive solutions of each E(I) are the positive
solutions of its real transform T (E(I)). In this section, for the system S we will consider in the same way 2k real
transforms T (S(I)) of induced systems S(I) with 3 s equations, where I runs throughout the 2k k -uplets of {−1,1}k .

This section establishes the main Theorem 4.1 that expresses the real solutions of a system from the positive so-
lutions of the 2k real transforms of these induced systems. A first algorithm results from a direct application of this
theorem. Then it is discussed how to reduce the number of computational branches by deriving some of the 2k sets
of real solutions of (S) from the positive real solutions of some system T (S(I)) previously processed by the algorithm.
These elements will lead to an optimized algorithm SolveFuzzySystem presented in next section.

4.1. Foundations. Let (E1), . . . , (Es) be the s equations of (S) with symmetrical fuzzy coefficients. For each I ∈ {−1,1}k ,
we denote by S(I) the induced fuzzy system formed by the s induced fuzzy equations E1(I), . . . ,Es(I) according to the
notation of Section 3.2. For each I ∈ {−1,1}k the real transform T (S(I)) of the induced system S(I) is the system formed
by the 3 s equations coming from the real transforms of the induced equations E1(I), . . . ,Es(I).

The following main theorem is a direct consequence of Theorem 3.2 and Corollary 3.5:

Theorem 4.1. Let (S) be a fuzzy system with coefficients in the same family F(L,L). If the spread function L is bijective
then the set of solutions of (S) is the union of the I× b for all k-uplets b which are positive real solutions of the real
transform T (S(I)) where I runs throughout {−1,1}k . In other words,

Sol(S) = ⋃
I∈{−1,1}k

{ I×b | b ∈ Sol+(T (S(I))) } = ⋃
I∈{−1,1}k

I⊗Sol+(T (S(I))).

A first algorithm for the real solving of fuzzy systems, called BA-SFS, derives naturally from Theorem 4.1 and the
preceding results. It is given below. Its input is a polynomial system with fuzzy coefficients given in tuple representa-
tion and supposed to belong to a same family F(L,L) whose spread function L is bijective. It is based on the following
functions:

• Multisign( j ) is the natural bijection between {0, . . . ,2k −1} and {−1,1}k : the image of the integer j =∑2k−1
i=0 bi 2i

is the k-uplet I = (co , . . . ,c2k−1) ∈ {−1,1}k with ci = 2bi −1;
• SolPos(SR) returns the positive real solutions of a system SR of polynomial equations with coefficients in
R. It can be based on any known computer algebra method to solve such a system. For example, in the
implementation described in section 6 it is Wu’s method of decomposition into triangular polynomial systems
that is used [31];
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• RealTransform(S, I) applies formula (12) to return the 3 s equations of the real transform of the fuzzy system
S(I) of s equations (it is 4 s equations when the fuzzy numbers are trapezoidal).

Algorithm 1 BA-SFS, a basic algorithm for solving fuzzy systems

Require: S, a polynomial system with fuzzy coefficients in F(L,L) under tuple representation
k, the dimension, i.e. the number of variables

Ensure: sol , the set of real solutions of (S)

sol := { }
for j := 0 to 2k −1 do

I := MultiSign( j )
TRSI := RealTransform(S, I)
PR := SolPos(TRSI)
sol := sol

⋃
I⊗PR

end for

return sol

4.2. Reduction of the number of algebraic systems to solve. By extension of the notation used for one equation, we
denote Expon(S) the set of d in Nk such that xd appears in the left hand side of some equation of (S) with a nonzero
coefficient (the constant in right side can be possibly 0 = (0,0,0)).

In the for loop of Algorithm BA-SFS, the system S(I) may be identical to one considered in some previous step. In
this case, a new calculation of PR, the positive real solutions of S(I), is redundant and it is desirable to avoid it.

The optimized algorithm called SolveFuzzySystem, or SFS, proposed in Section 5 provides every real solution of
(S) avoiding unnecessary calculations.

Thus we first seek to identify, from (S), induced systems S(I) which are identical. Example 3.1 dealing with a single
equation shows how this situation can occur from the eight fuzzy equations that reduces to only two distinct ones.
When, for example, all the components of each k-uplet d of Expon(S) are even, the 2k induced systems S(I) are iden-
tical. Our goal is to automize the recognition of identical induced systems.

For this, let us construct the matrix M(S) of signs where the columns are indexed by the 2k k -uplets I of {−1,1}k

and the lines by the k -uplets d of Expon(S). The element at line d and column I is Id ∈ {−1,1} which replaces the sign
of xd in S(I):

M(S) =


I
...

d . . . Id


Let I1, I2 ∈ {−1,1}k two distinct k -uplets and consider C(I1) and C(I2) the two columns of M(S) respectively indexed by
I1 and I2. If C(I1) = C(I2) then S(I1) = S(I2). Indeed, according to the definition of the induced equations given in (6),
for every equation (E) of the system (S), the coefficient Id1 ñd of each monomial xd appearing in the left hand side of
each equation E(I1) is identical to the coefficient Id2 ñd in E(I2).

The number of distinct systems S(I) among the 2k induced by (S) is thus at most equal to the number of distinct
columns in M(S). The matrix of signs avoids solving many induced systems. Other rapid detections of identical
induced systems can be implemented. Indeed, two systems S(I1) and S(I2) can be identical up to a permutation
of the equations whereas C(I1) 6= C(I2). We can also find equations of the form "a = 0" and "−a = 0" since they have
the same solutions.

Remark 4.1. If two systems are such that S(I1) = S(I2), only one system will be solved, for example Sol = Sol+(S(I1)),
but they will produce two sets of solutions: I1 ⊗Sol and I2 ⊗Sol.
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5. ALGORITHM SolveFuzzySystem

This section proposes an optimized algorithm SolveFuzzySystem, or SFS in contracted form, for computing the
real solutions of a polynomial fuzzy system. The symmetrical coefficients of the system are fuzzy numbers given under
tuple representation and are supposed to belong to a same familyF(L,L) where the spread function L is bijective. After
the description of sequential algorithm SFS in Section 5.1, we discuss its parallelization in Section 5.2.

5.1. The sequential algorithm SolveFuzzySystem. Like in the first algorithm BA-SFS, algorithm SFS consists in iter-
atively going through the columns of the matrix of signs M(S) described in Section 4.2. For each column C(I) indexed
by a k -uplet I of signs, it looks for real solutions of the system (S) from S(I) avoiding unnecessary computations if one
of the previous columns allows it.

For this purpose, it uses the following three vectors, indexed from 0 to 2k −1, which are empty at the beginning of
the algorithm:

• Di st i nctCol umns will contain the distinct columns of the matrix of signs;
• Di st i nctSy stems will contain the distinct fuzzy systems whose positive solutions have been calculated; Its

indexes are related to the indexes of Di st i nctCol umns;
• lb will contain positive real solutions of S(I) such that C(I) is in Di st i nctCol umns; so it will be naturally

indexed by following Di st i nctCol umns.

For a current column I, as explained in Section 4.2, redundant calculations may be avoided in the following cases:

Case 1 If the column C(I) is identical to a previous column C(J) in M(S) then S(I) = S(J). In this case, the algorithm
does not add the column C(I) in the vector Di st i nctCol umns. It uses the positive real solutions of S(J) already
been calculated and stored in l b during a previous step (see Remark 4.1). This is the first step of the algorithm
(see the 4: statement).

Case 2 If S(I) is identical to a system S(J) where C(J) is a column preceding C(I) but being distinct from it, then the
algorithm goes to the following index. It adds the column C(I) to the vector Di st i nctCol umns and the posi-
tive solutions of S(J) already calculated in lb. As it is not relevant to add S(I) to vector Di st i nctSy stems, the
algorithm does not add to it at the corresponding index cpt and its place remains empty. We can then apply
tests (1) and (2) to the following columns of M(S) (see the 7: statement).

Outside of situations 1. and 2., the positive solutions of the fuzzy system S(I) are computed, as in the basic al-
gorithm BA-SFS, with the functions RealTransform and SolPos. At index cpt in the vectors Di st i nctCol umns,
Di st i nctSy stems and lb, the algorithm stores respectively C(I), S(I) (in case 2., the place remains empty) and the
positive solutions of S(I). It will be possible to apply tests (1) and (2) to the following columns of M(S) (see the 9:
statements).

In each step of the for loop, in other words, for each k-uplet I of signs Theorem 4.1 is applied to obtain the real
solutions of (S) associated with the positive real solutions of the induced system S(I).

Functions used by the algorithm SolveFuzzySystem are those of the basic algorithm BA-SFS completed by the
following ones:

• the function SignColumn( j ,S) returns the ( j +1)-th column of the matrix M(S) of signs ( j starts to 0 not 1);
• the function IsIn( e , Di st i nct ) returns −1 if e is not in the vector Di st i nct , otherwise it returns the index of

the first occurrence of e in Di st i nct . This function is called indifferently on the signs columns of M(S) and on
the polynomial systems. For an efficient search on a polynomial system, we order polynomials according to
a total order on the monomials and by assigning the sign + to the dominant monomial (the monomials in a
same polynomial are ordered and the equations in the system are also ordered).

5.2. A parallel version of the algorithm SolveFuzzySystem, The positive solutions of each induced system S(I) are
computed independently of those of the other fuzzy induced systems (with the functions RealTransform and SolPos
successively). This part being the most expensive of the algorithm SFS, its possible parallelization is welcome. It
requires to modify the algorithm in order to identify the distinct induced systems S(I) to be solved, but without per-
forming the resolution, and simultaneously store the useful informations for further application of Theorem 4.1.
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Algorithm 2 SolveFuzzySystem or SFS, an optimized algorithm for solving fuzzy systems

Require: S, a polynomial system with fuzzy coefficients in F(L,L) under tuple representation
k, the dimension, i.e. the number of variables

Data: cpt :=−1, the counter of the number of distinct columns of M(S)
Di st i nctCol umns := [], the distinct columns of M(S) already scanned
Di st i nctSy stems := [], the distinct systems S(I) already met
lb := [], l b[i ] will be the set Sol+(S(I)) when C(I) will be Di st i nctCol umns[i ]
sol := { }

Ensure: sol , the set of real solutions of (S)

# the index j runs throughout the columns of M(S) which are indexed by MultiSign( j )
1: for j := 0 to 2k −1 do
2: I := MultiSign( j )

C := SignColumn( j ) # C is the current column in M(S)
# test if C is equal to a previous column of M(S), for Case 1
i := IsIn( C , Di st i nctCol umns)

3: if i 6= −1 then
4: # lb[i ] contains the positive real solutions of S(I): apply Theorem4.1 to lb[i ] and I

sol := sol
⋃

I⊗ l b[i ]
# move to the next column in M(S) and cpt is not incremented
go to 1:

5: end if

# here C is a new column
cpt := cpt +1
Di st i nctCol umns[cpt ] := C

# test if S(I) is a new system, for Case 2
i := IsIn( S(I) , Di st i nctSy stems )

6: if i 6= −1 then
7: # the i -th system equals S(I). Its positive real solutions in l b[i ] are copied in lb[cpt ] because C is a "new"

column
lb[cpt ] := lb[i ]

8: else
9: # store the new system at cpt index, calculate its positive real solutions and store them in l b[cpt ]

Di st i nctSy stems[cpt ] := S(I)
TRSI := RealTransform(S(I))
lb[cpt ] := SolPos(TRSI)

10: end if

# Apply Theorem 4.1
sol := sol

⋃
I⊗ lb[cpt ]

11: end for

12: return sol

To achieve this aim, we modify the role of vector lb. It will be indexed from 0 to 2k −1, like the columns of M(S),
and lb[ j ] will contain the index in Di st i nctSy stems of the system corresponding to column SignColumn( j ). When
the resolution of a system would have been terminated, its positive solutions will be stored in a new vector SPos, with
same indexes as Di st i nctSy stems.

The general parallel algorithm takes place in the following three steps:



17

(1) Detect efficiently the distinct systems to solve in parallel. Moreover, for each column I of M(S) (and equiva-
lently for each j from 0 to 2k −1), the index of the first previous system equals to the real transform of S(I) is
affected to l b[ j ] (it can be j itself if S(I) is new). The distinct systems are stored in the vector Di st i nctSy stems.
This is realized within the framework of the sequential algorithm SFS modified in the following way:

• in 4: replace the statement sol := sol
⋃

I⊗ l b[i ] by l b[ j ] := lb[i ],
• in 7: replace the statement lb[cpt ] := lb[i ] by lb[ j ] := l b[i ],
• in 9: replace both statements TRSI := RealTransform(S(I)) and lb[cpt ] := SPos

(TRSI) by l b[ j ] := cpt .
(2) In parallel, solves every distinct system of the vector Di st i nctSy stems. For each system SI := Di st i nctSy stems[cpt ],

if it exists (see Remark 5.1 below), we apply the following statements:
TRSI := RealTransform(SI)
SPos[cpt ] := SolPos(TRSI)

(3) Cross over the vector lb to build all the solutions of the system (S) from the results of previous step ; It consists
mainly in applying Theorem 4.1. This last step can also be performed in parallel. Each lb[ j ] owns the value of
the cpt index of positive real solutions of S(I) in the vector SPos where I = MultiSign( j ). This step is realized
by the following loop:

for j := 0 to 2k −1 do
sol := sol

⋃
MultiSign( j )⊗SPos[lb[ j ]]

end for

Remark 5.1. As in algorithm SFS, when C = C(I) is a new column but S(I) is not a new system, nothing is stored at the
corresponding index in Di st i nctSy stems.

A detailed example of this parallel version is given in Section 6.2.

6. IMPLEMENTATION OF THE ALGORITHM SFS AND EXAMPLES

We used the package Fuzzyunder SageMathwritten by J. Marrez [32]. It contains a function resolution_reelle_systemes_flous
that implements algorithm SFS of Section 5. Recall that fuzzy numbers and must lies in a family F(L,L) where L is bi-
jective.

Section 6.1 describes the function resolution_reelle_systemes_flous. Then two complete examples are given
in Section 6.2. The first one details intermediate computations of the function resolution_reelle_systemes_flous.
The second one illustrates on another fuzzy system the computations performed by the parallel version of the algo-
rithm. These examples initially proposed in [16] have been treated by several other authors.

6.1. Representations and main functions implemented inFuzzy. The external representation of data in Fuzzypack-
age is described below:

• a spread function H has a representation rep(H); for example "Quad" if H is quadratic;
• a fuzzy number ñ = (n, a,b) with spread functions L and R is represented by:

rep(ñ) = NombreFlouRed((n, a,b, rep(L), rep(R));
• a term xd is classically represented by rep(xd) = x1∗∗d1 · · ·xk∗∗dk ;
• a monomial m = ñxd is represented by the pair rep(m) = (rep(ñ), rep(xd));
• a polynomial p with fuzzy coefficients is represented by rep(p), the list of the rep(m) where m is a monomial

of p ; i.e. it is a sparse representation;
• a polynomial equation (E) : p = q is represented by the pair rep((E))=(rep(p), rep(q)) ;
• a system (S) formed by s equations (E1), . . . , (Es) is represented by the list

rep((S))=[rep((E1)), . . . , rep((E2))].

For example, with quadratic fuzzy numbers, the system

(15) F :

{
x + (−1,1,1) = (−2,1,1)y2,

x + (3,1,1) = (2,1,1)y2
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is represented by the variable System defined as follows:
LeftSide1 = [(NombreFlouRed(1,0,0,"Quad","Quad"),x),

(NombreFlouRed(-1,1,1,"Quad","Quad"),1)]
RightSide1 = [(NombreFlouRed(-2,1,1,"Quad","Quad"), y**2) ]
LeftSide2 = [(NombreFlouRed(1,0,0,"Quad","Quad"),x),

(NombreFlouRed(3,1,1,"Quad","Quad"),1)]
RightSide2 = [(NombreFlouRed(2,1,1,"Quad","Quad"),y**2) ]
System = [ (LeftSide1, RightSide1 ), (LeftSide2, RightSide2)]

Remark 6.1. The fuzzy equations of system F does not have exactly the same form than the generic equation (E)
studied in our paper. The right side of (E) is not restricted to a fuzzy number m̃. However our results clearly extend to
such a form of equations.

The function resolution_reelle_systemes_flous(S,k) implements the sequential algorithm SFS of this pa-
per. It takes as first parameter the representation of a fuzzy system (S) with s equations. The second parameter k
is the number of variables. It returns the set of k-uplets real solutions of (S). For this, it mainly uses the functions
transformee_reelle() and SolPos() described below.

The function transformee_reelle(S,rep(I)), where rep(I) is a list representing a k-uplet of signs I ∈ {−1,1}k ,
returns the real transform of the induced fuzzy system S(I), that is the system of 3 s equations with real coefficients
obtained by transforming each of its equations E(I) as in Corollary 3.5. It implements our function RealTransform of
the algorithms in Sections 4 and 5.

The function SolPos(Sr) returns the set of positive real solutions of a polynomial system Sr with real coefficients.
The representation of Sr is a list [p1., . . . , pr ] of polynomials such that pi = 0. It first calls the function Wu(Sr) which
implements Wu’s algorithm [31]. This one returns a set Z of polynomial sets called characteristics sets such that
the variety V(Sr) of zeroes of Sr admits a decomposition into triangular polynomial systems of the form V(Sr) =⋃

B∈Z V(B)\V(IB) où IB =∏
b∈B i ni t (b). One can find the definition of the initial i ni t (b) of a polynomial b in ([33]) or in

[20], a paper where Wu’s method is described in order to solve polynomial systems with triangular fuzzy numbers as
coefficients. From the set Z, a function get_zeros(Z) returns the elements in R+k of the variety V(Sr).

6.2. Examples.
Example 1 : We consider the system F given above in (15). As in Example 6.1 of [20], the call resolution_reelle_systemes_flous(F,2)

returns the variety V(F) = {(x =−1, y ±1)}. Here we describe the intermediate computations.
With k = 2 variables x, y , there are the 22 = 4 following multisigns: I0 = [−1,−1], I1 = [−1,1], I2 = [1,−1], I3 = [1,1]. By

taking them in this order corresponding respectively to j = 0,1,2,3 in the algorithm SFS and by ordering the monomi-
als present in F as follows: x,1, y2, the matrix of signs M(F) is

M(F) =


I0 I1 I2 I3

x −1 −1 1 1
1 1 1 1 1
y2 1 1 1 1


Note that in the performance of the algorithm below, a column of M(F) is represented by a line vector.

The variable Sr is the real transform of the induced fuzzy system F(I) of s = 2 equations, with I ∈ {I0, . . . , I3}; in theory
Sr is formed by 3s = 6 equations. But in practice, some are identical. For example, when I = [−1,−1], the real trans-
form of F(I) is formed by the six equations 2y2−x−1 = 0,−y2+1 = 0,−y2+1 = 0,−2y2−x+3 = 0,−y2+1 = 0,−y2+1 = 0,
that reduces to Sr= [−y2 +1,2y2 − x −1,−2y2 − x +3] by removing duplicates polynomials. It is the first real polyno-
mial system to solve in the program. For obvious practical reasons, this system is the one registered in the variable
DistinctSystems, and not the fuzzy system F(I) as mentioned in the algorithm SFS.
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Now let us present the trace of function resolution_reelle_systemes_flous(F,2) by linking the effective pa-
rameters to formal parameters: S=F and k=2.
At the beginning, we have: cpt = -1, DistinctColumns = [ ] and DistinctSystems = [ ].

j=0 : I=I_{0}=[-1,-1], C=[-1,1,1]
As the column C is new

cpt=cpt+1 ; i.e. cpt =0
DistinctColumns[0] = C
Sr = transformee_reelle(S,I) gives Sr=[-y^2+1,2*y^2-x-1,-2*y^2-x+3]
DistinctSystems[0] = Sr
SolPos(Sr) gives lb[0]=set([(1, 1)]), the positives real solutions of Sr
lb[0]= set([(1, 1)])

the product of I with (1, 1) in lb[0] is added to sol:
sol = set([(-1, -1)])

DistinctColumn=[[1,-1,1]]
DistinctSystems=[[y^2-1,2*y^2-x-1,2*y^2+x-3]]

j=1 : I=I_{1}=[-1,1], C=[-1,1,1]
As C equals DistinctColumns[0]

the product of I with (1, 1) in lb[0] is added to sol:
sol = set([(-1, 1), (-1, -1)])

j=2 : I=I_{2}=[1,-1], C=[1,1,1]
As the column C is new

cpt=cpt+1 ; i.e. cpt =1
DistinctColumns[1] = C
Sr = transformee_reelle(S,I) gives Sr=[2*y^2+x-1,-2*y^2+x+3,-y^2+1]
DistinctSystems[1] = Sr
SolPos(Sr) gives lb[1]= set([]), the positive real solutions of Sr

any product of elements of lb[1] with I is added in sol:
sol = set([(-1, 1), (-1, -1)])

We have
DistinctColumn=[[-1,1,1],[1,1,1]]
DistinctSystems=[[y^2-1,2*y^2-x-1,2*y^2+x-3],[2*y^2+x-1,2*y^2-x-3,y^2-1]]

j=3 : I=I_{3}=[1,1], C=[1,1,1]
C equals DistinctColumns[1].

any product of elements of lb[1] with I is added in sol:
sol = set([(-1, 1), (-1, -1)])

Therefore we find the variety solution V(F) = {(x =−1, y ±1)}.

Example 2 : Detailed example of the parallel version of the algorithm SFS on the following fuzzy system F1:

F1 :

{
(2,1,1)x y + (3,1,1)x2 y2 + (2,1,1)x3 y3 = (7,3,3),

(5,1,1)x y + (2,3,1)x2 y2 + (2,2,1)x3 y3 = (9,6,3)

The solution returned by the function resolution_reelle_systemes_flous(F1,2) of Fuzzy package is the vari-
ety V(F1) = {(x = 1

y , y) | y ∈R\{0})}, like in [20]. We notice that in the first equation (E), the left spread of each coefficient
equals the right spread. Thus, in the real transform of (E), both equations∑

d∈Expon(E)
αd x

d = α and
∑

d∈Expon(E)
βd x

d = β
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are equal to x3 y3+x2 y2+x y = 3. We find again this equation with the right spreads of the second equation of F1. This
is why we will have 4 and not 6 = 3s equations in the real transform of any induced fuzzy equation F1(I). During an
implementation, it is possible to take this into account in order to identify the identical equations once and for all on
the initial fuzzy system and then use the result on each of its induced systems.

We will find V(F1) by applying the parallel version of our algorithm. The multi-signs are the same as for the F system
of the first example and the monomials present in F1 are {x3 y3, x2 y2, x y,1}. The matrix of signs of F1 is the following:

M(F1) =


I0 I1 I2 I3

x3 y3 1 −1 −1 1
x2 y2 1 1 1 1
x y 1 −1 −1 1
1 1 1 1 1


We see that it is sufficient to solve only the systems corresponding to the first two columns; that is, we have the

following identities on fuzzy induced systems: F1(I0) = F1(I3) and F1(I1) = F1(I2). In the performance of the algorithm,
this information ends up in the vector lb. Thus, the number of systems to solve is reduced by half.

In the first step of the parallel algorithm, after the loops j= 0 and j=1, we have:

DistinctColumns = [[1, 1, 1, 1], [-1, 1, -1, 1]]
DistinctSystems=

[[2*x^3*y^3+2*x^2*y^2+5*x*y-9,2*x^3*y^3+3*x^2*y^2+2*x*y-7,
2*x^3*y^3+3*x^2*y^2+x*y-6, x^3*y^3+x^2*y^2+x*y-3],

[2*x^3*y^3-3*x^2*y^2+2*x*y+7,2*x^3*y^3-3*x^2*y^2+x*y+6,
x^3*y^3-x^2*y^2+x*y+3, 2*x^3*y^3-2*x^2*y^2+5*x*y+9]]

lb = [0,1]

After the loops j=2 and j=3, only the vector lb is modified as follows: lb=[0,1,1,0].
As lb[2]=lb[1] the positive real solutions of the third induced system F1(I2) corresponding to lb[2] are those

of the second induced system F1(I1) corresponding to lb[1]; after second step, this positive real solutions will be in
SPos[1]. The same occurs with lb[3]=lb[0].

In the second step, function SolPos is called in parallel on each of both systems stored in DistinctSystems in
order to compute their respective positive real solutions. These solutions are recovered and stored in the vector SPos.
We then have:

SPos=[set([(1/y, ’R+’)]),set([])].
Last step computes in parallel for each j = 0,1,2,3 the products I ⊗ SPos[lb[j]] corresponding to the last

column ”returned solutions” below.

j I lb[j] SPos[j] returned solutions
0 [-1,-1] 0 set([(1/y, ’R+’)]) set([(1/y, ’R-’)])
1 [-1,1] 1 set([]) set([])
2 [1,-1] 1 SPos[1] set([])
3 [1,1] 0 SPos[0] set([(1/y, ’R+’)])

The non-empty solutions are added in the variable sol containing the real solutions of the fuzzy system F1:

sol = set([(1/y, ’R+’), (1/y, ’R-’)])

We find the variety V(F1) = {(x = 1
y , y) | y ∈R\{0})}. As in the sequential version, only two distinct systems are solved.

7. CONCLUSION

Up to now, given a fuzzy system (S) of s equations and k indeterminates, the existing algebraic methods have
performed computations with the parametric representation of the coefficients to obtain the collected crisp form of
(S) formed by 4s real equations. We show that these computations are superfluous and exhibit a formula that defines
an equivalent system with 3s real equations. We call it the real transform T (S) of the system (S). As a main property,
it has the same positive solutions as (S) (Theorem 3.4).
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Unlike the previous methods that were restricted to triangular fuzzy numbers, our results apply to any familyF(L,R)
where the spread functions L and R are bijective. Moreover there is no use to compute the inverse of the spread
functions since the real transform is a universal formula independent from L and R.

For solving equations with symmetrical fuzzy coefficients all in a same family F(L,L), one must face the issue of the
sign of solutions. It is intrinsic to fuzzy numbers, since the product by a real scalar is expressed differently depending
on the sign of this scalar. Our strategy has been to only focus on positive solutions by putting back the issue on the
fuzzy coefficients. Theorem 4.1 made it possible since it expresses the real solutions of (S) from the positive solutions
of at most 2k real systems. From this theorem we devise a first algorithm that automatizes the research of solutions by
avoiding the studies of signs needed in the methods known until then. Our approach is independent of the choice of
the method to calculate the positive solutions of a system of polynomial with real coefficients.

Among the 2k induced systems of (S), some of them are identical. Our examples show that it is not rare to substan-
tially reduce the number of induced systems to solve. We describe a strategy to avoid redundant branches of compu-
tations that leads to an optimized algorithm, SolvingFuzzySystem, that is implemented in the package Fuzzy of the
computer algebra system SageMath.

The most costly part of this algorithm lies in finding the positive solutions of the real transform of the distinct in-
duced systems of (S). We suggest in Section 5.2 a parallelization of the algorithm SolvingFuzzySystem that executes
in parallel these independent computations, then we illustrate its performance with the second example of Section 6.
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