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ABSTRACT
Purpose: To examine the effects of low-dose exposure to uranium with a systems biology 
approach, a multiscale high-throughput multi-omics analysis was applied with a protocol for 
chronic exposure to the rat kidney.
Methods: Male and female rats were contaminated for nine months through their drinking 
water with a nontoxic solution of uranyl nitrate. A multiscale approach enabled clinical mon- 
itoring associated with metabolomic and transcriptomic (mRNA and microRNA) analyses. 
Results: A sex-interaction effect was observed in the kidney, urine, and plasma metabo- 
lomes of contaminated rats. Moreover, urine and kidney metabolic profiles correlated and 
confirmed that the primary dysregulated metabolisms are those of nicotinate-nicotinamide 
and of unsaturated fatty acid biosynthesis. Upstream of the metabolic pathways, transcrip- 
tomic profiles of the kidney reveal gene activity focused on gene regulation mechanisms, 
cell signaling, cell structure, developmental processes, and cell proliferation. Examination of 
epigenetic post-transcriptional gene regulation processes showed significant dysregulation 
of 70 micro-RNAs. The multi-omics approach highlighted the activities of the cells' biological 
processes on multiple scales through analysis of gene expression, confirmed by changes 
observed in the metabolome.
Conclusion: Our results showed changes in multi-omic profiles of rats exposed to low doses 
of uranium contamination, compared with controls. These changes involved gene expres­
sion as well as modifications in the transcriptome and the metabolome. The metabolomic 
profile confirmed that the main molecular targets of uranium in kidney cells are the metab- 
olism of nicotinate-nicotinamide and the biosynthesis of unsaturated fatty acids. 
Additionally, gene expression analysis showed that the metabolism of fatty acids is targeted 
by processes associated with cell function. These results demonstrate that multiscale sys­
tems biology is useful in elucidating the most discriminative pathways from genomic to 
metabolomic levels for assessing the biological impact of this low-level environmental 
exposure, i.e. the exposome.

ARTICLE HISTORY
Received 11 September 2018 
Revised 21 December 2018 
Accepted 29 January 2019

KEYWORDS
Systems biology; uranium; 
low-dose; omics; 
sex difference

1. Introduction

The rates of diseases such as metabolic syndrome, 
infertility, neuropsychiatrie disorders, and cancers 
have been rising for decades (Mnif et al. 2011; Schug 
et al. 2011; Campion et al. 2012; Vandenberg 2012; 
Skinner et al. 2013). According to the World Health 
Organization (WHO), in 2012 more than 12 million 
people died because of their unhealthy environment

(WHO Department of Public Health Easdoh 2016). 
Among the many factors that may explain these out- 
comes, the chronic low-dose environmental exposure 
of populations to multiple stressors is a priority policy 
concern for public health improvement. Risk assess- 
ments of these exposures require enhanced efforts, 
especially for identifying early biomarkers of delayed 
disruptive events that are easy to use for diagnostic
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purposes in a large-scale exposed population. In this 
context, ionizing radiations are one of the environ- 
mental stressor sources that could combine with 
chemical exposure to produce synergistic effects. Over 
the past century, military and civil activities have 
added cumulative doses of ionizing radiation 
(MacKenzie 2000; Hu et al. 2010) to those from nat- 
ural sources (telluric and cosmic), thereby heightening 
the risk of adverse effects and delayed diseases 
(European-Commission 2009). Moreover, the risk 
from internal contamination by radionuclides, com- 
pared to external ionizing radiation emitters, is still 
higher, because of its greater cell toxicity (which 
nonetheless varies with its biokinetics and target 
organ). Improvement in radioprotection of popula­
tions chronically exposed to low-dose radionuclide 
contamination has, therefore, become a social and sci- 
entific concern.

Among the radionuclides, uranium is a particularly 
interesting telluric element (~2mg Kg-1 in Europe) 
with its dual toxicity (radioactive as an alpha particle 
emitter and chemical as a heavy metal). Low doses of 
uranium can be easily ingested by mammals from 
many sources including spring water, phosphate fertil- 
izers, nuclear fuel exploitation, and military weapons. 
Depending on where they live, therefore, human pop­
ulations can be chronically exposed to low doses of 
environmental uranium (Pereira et al. 2014; Zhivin 
et al. 2014; Jakhu et al. 2016; Besic et al. 2017; Bigalke 
et al. 2018; Faa et al. 2018).

By definition, low doses induce only small bio- 
logical effects (Hubert 2010). Nevertheless, delayed 
adverse effects of such exposures cannot be ruled out, 
especially when they are chronic or take place during 
a sensitive fetal developmental window (Poore et al. 
2017) or growth (Preston 2004), or are affected by 
sex-dependent differences in toxicology (Gochfeld 
2017). Unfortunately, the absence of any clinical signs 
of low-dose exposure makes understanding these 
effects in complex dynamic systems very challenging, 
in part because of the lack of scientific knowledge and 
in part due to the multiplicity of parameters influenc- 
ing it (i.e. nonlinear low-dose-response relations 
(Calabrese 2004; Tubiana et al. 2009; Lagarde et al. 
2015) that overlap numerous confounding factors 
(Mothersill and Seymour 2009, 2014).

However, the emergence of new analytical technol­
ogies, characterized by their chemical selectivity, 
instrumental sensitivity, and the robustness of their 
analytical methods (the so-called ‘omics’ technologies), 
has improved our ability to analyze complex molecu- 
lar systems. For example, global untargeted

observations can be performed in a homeostatic bio- 
logical background (Morgan and Bair 2013). 
Moreover, these omic methods allow a multiscale sys­
tems biology approach, i.e. enable the study of 
dynamic gene expression by the joint analysis of 
mRNAs, miRNAs (micro-RNAs), and molecules at the 
top level of the system, such as metabolites (the global 
analysis of which is metabolomics) (Oliver et al. 
1998). These final products of gene expression are 
considered the last step leading to the individual’s 
phenotypic presentation, so that analysis of the metab- 
olome can be used to describe the homeostatic state 
of a living organism at a given time (Fiehn 2002). 
These methodological approaches, combined with 
statistical methods for processing data, may help to 
understand the underlying dynamic mechanisms of 
homeostatic regulation by explaining the molecular 
relations that allow the cell to survive in a stressful 
environment. In addition, comparison of different 
phenotypic traits makes it possible to identify poten- 
tial biomarkers for a given pathological state.

Our aim in this study was to analyze the in vivo 
effects of chronic low-dose uranium intake in rats by 
using multi-omics approaches including transcriptom- 
ics (mRNAs and miRNAs) and metabolomics to 
determine the specify cellular system dysregulated. 
Close attention was paid to the kidneys, which are 
known to be the toxicological target of uranium and 
to differ morphologically between male and female 
rats. This work could be useful for improving health 
policies, by identifying early prognostic markers for 
an elevated risk of delayed adverse effects in the dif­
ferent molecular profiles.

2. Material and methods 

2.7. Materials
Ultrapure water was produced from a Milli-Q® system 
(Merck Millipore, France). Natural uranium (NU, Mc 
Arthur) was obtained from CERCA (Pierrelatte, 
France). Uranyl nitrate hexahydrate 
(UO2(NO3)2,6H2O) was prepared to obtain a final 
uranium concentration (NU) of 40mgL-1 in drinking 
water obtained from Evian® (Evian-les-Bains, France) 
for a daily uranium intake dose of 1 mg per rat 
(1.8mgKg-1 on average) (Paquet et al. 2006; 
Dublineau et al. 2014). The amount of uranyl intes­
tinal absorption is estimated around 0.06% for rats. In 
our experimental model, the daily uranium dose 
transferred from intestine to the blood flow was esti- 
mated to 0.001 mgKg-1 d-1. The specific activity of 
the NU was 2.42 x 104Bqg-1, and its isotopic
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composition was 238U = 99.307%, 235U = 0.688%, and 
234U = 0.005%. Claritas PPT grade nitric acid, used for 
uranium assays, was produced by Horiba Scientific 
(Longjumeau, France). Isoflurane used for anesthesia 
was produced by Abbot France (Rungis, France).

2.2. Animal experiments

2.2.1. Animal treatment
Outbred Sprague-Dawley rats, 12weeks old and 
16days pregnant, were obtained from Charles River 
Laboratories (L’Arbresle, France). They were housed 
individually and maintained in a monitored environ­
ment (temperature 21 °C and 50% humidity) under a 
light-dark cycle (dark on from 8:00 pm to 8:00 am). A 
standard rodent pellet diet and water were available 
ad libitum.

From birth, both mothers and newborns of the 
treated group were exposed to NU through their 
drinking water. During the three weeks of weaning, 
offspring were mostly contaminated by the mother’s 
milk (human offspring receive ~5% of the mother’s 
daily uranium dose (Wappelhorst et al. 2002). After 
weaning, mothers were euthanized. Their offspring 
were housed, each paired with a rat from a different 
mother (assigned by randomization to form groups of 
20 animals per condition) to the age of 9 months; dur- 
ing this period they were contaminated by NU 
through their drinking water. Finally, the control 
group of rats received uncontaminated Evian® drink- 
ing water ad libitum. All animals were euthanized at 
9 months of age. The experimental procedures were 
approved by the Animal Care Committee of the 
Institute of Radioprotection and Nuclear Safety 
(IRSN) and complied with the French regulations for 
animal experimentation (Ministry of Agriculture Act 
No. 87-848, 19 October 1987, modified 20 May 2001).

2.2.2. Sample collection
Based on previous results (Grison et al. 2016), at the 
age of 6 months, the rats were placed in metabolic 
cages (in the morning, one per cage), with access to a 
rodent ground pellet diet and water (contaminated or 
not) ad libitum. Urine was collected twice a day for 
48 h, with sodium azide (0.01%) added to prevent bac- 
terial growth (Griffin et al. 2001) and stored at 4 °C. 
All urine samples for each rat were pooled, mixed, 
and frozen at —80 °C. At the age of 9 months, the rats 
were moved back to conventional cages (one per 
cage) with food and drink ad libitum until the even- 
ing to reduce stress. To control the diet cycle, food 
was removed in the evening until the next morning.

Five hours before euthanasia, around 12 g of standard 
rodent pellet food was added directly to each cage to 
normalize food intake for all rats. Four hours later, 
rats were anesthetized by inhalation of 5% isoflurane 
before an intracardiac puncture euthanized them and 
collected blood, in heparinized tubes. Whole blood 
was centrifuged (5000 rpm) and plasma supernatants 
were immediately frozen at —80 ° C. Kidneys were dis- 
sected on ice, weighed, deep-frozen in liquid nitrogen, 
and stored at —80 ° C until analysis and measurement 
of uranium concentration.

2.3. Clinical évaluation

2.3.1. Animal monitoring
Throughout this protocol of NU exposure, intake of 
food and water was weighed weekly and each 
rat monthly.

2.3.2. Uranium level in kidney samples
To measure the NU burden in kidneys, samples were 
prepared by adding 8 mL of ultrapure nitric acid 
(69%) and 2mL of hydrogen peroxide (30%), and 
then mineralized in a 1000 W microwave (Ethos 
Touch, Milestone Microwave Laboratory Systems, 
(Sorisole, Italy) with an increasing rate of 9 degrees 
per minute until a temperature of 180 °C that was 
maintained for 10 min. Samples were analyzed by 
inductively coupled plasma-mass spectrometry (ICP- 
MS; XSERIES 2, ThermoElectron, France). 
Experimental conditions were optimized by using a 
multi-element standard solution (ThermoElectron, 
France), and bismuth 209 was added to all samples as 
an internal standard at 1 mgL—1. A calibration curve 
was calculated based on a standard solution at 
1000 mgL—1 in 2% nitric acid freshly diluted to obtain 
(0, 0.001, 0.005, 0.01, 0.1, 0.5, and 1 mg L—1) in 2% 
nitric acid. A linear relation-count number 
(‘U) = f([‘U]) was calculated for each isotope, 
i = [235;238] with ['U] equal to the isotope concentra­
tion in mgL—1. The ICP-MS limit of detection for 
uranium is 1 ng L—1.

2.3.3. Chemical assessment in plasma and 
urine samples
An automated spectrometric system (Konelab 20 from 
ThermoElectron Corporation, France) was used for 
biochemical measurements of thawed plasma and 
urine samples, with the manufacturer’s biological 
chemistry reagents and protocols. To obtain a global 
overview, some biochemical and clinical parameters 
were measured in plasma, including ALAT/GPT,
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ASAT/GOT, albumin, direct bilirubin, total bilirubin, 
calcium, cholestérol, CK-MB, creatinine, iron, glucose, 
HDL-cholesterol, chlorine, potassium, sodium, LDH, 
LDL-cholesterol, magnesium, alkaline phosphatase, 
phosphorus, total proteins, phospholipids B, transfer- 
rin, triglycerides, and urea. In addition, urinary vol­
ume/24 h, amylase, uric acid, creatinine, glucose, 
chlorine, potassium, sodium, phosphorus, calcium, 
total proteins, and urea were measured in urine. 
Values of the biochemical and clinical parameters are 
reported as means ± standard errors of the means 
(SEM). Statistical analysis was also performed with 
SigmaStat statistical software (SPSS, Paris, France) to 
calculate items such as Student’s t-test in normal pop­
ulations or the rank sum test in non-normal popula­
tions for comparison of the control and contaminated 
groups. Statistical significance was defined by a p 
value less than .05.

2.4. Omics approaches

2.4.1. Metabolomic analyses
2.4.1.1 Sample préparation procedures.
2.4.1.1.1. Kidney samples. Thawed kidney tissue sam- 
ples (10-20 mg) were added to cold methanol (40 pL 
per mg) and placed in a powerful grinding mixer mill 
system (MM400, Retsch Technology) with two metal- 
lic balls. Samples were homogenized for 2 min at 
25 Hz, incubated 30 min at 20 °C, and centrifuged for 
15 min at 11,000 rpm and 4 °C. From each sample, 
350 pL of supernatant was again centrifuged under the 
same conditions, and the upper phase dried in a new 
vial under nitrogen flow. Dried extracts were dissolved 
into 175 pL of water plus 0.1% formic acid. Samples 
were vortexed for 1 min and centrifuged as described 
above. Finally, the supernatant was transferred into 
HPLC vials and stored at —80 °C until analysis.

2.4.1.1.2. Plasma samples. For hydrophilic plasma 
metabolites, samples were diluted with two volumes of 
cold methanol (—20 °C) and slightly homogenized 
before incubation for 30 min at —20 °C to precipitate 
proteins and then centrifuged for 15 min at 
11,000 rpm and 4 °C. Plasma supernatant was col- 
lected and centrifuged a second time for 45 min under 
the same conditions. Supernatant was dried under 
nitrogen flow and stored at —80 °C until analysis. 
Dried plasma extracts were dissolved in 500 pL water 
plus 0.1% formic acid. Samples were vortexed for 
1min and centrifuged for 15 min at 11,000 rpm and 
4 °C. Supernatant was transferred into HPLC vials and 
stored at —80 °C before analysis (Pereira et al. 2010).

2.4.1.13. Urine samples. All urine samples were 
treated before mass spectrometry analysis. Each sam- 
ple was first centrifuged for 15 min at 11,000 rpm and
4 °C. Then, 100 pL of urine supernatant was diluted 
with 300 pL ultrapure water (1:4 v/v) and centrifuged 
again for 5 min at 3000 rpm and 4 °C. Supernatant 
was divided into 50 pL aliquots, each transferred into 
an HPLC vial and stored at —80 °C until analysis.

2.4.1.2. LC-MS analyses. Liquid chromatography-mass 
spectrometry (LC-MS) analyses were performed with 
electrospray ionization (ESI)-hybrid quadrupole-time 
of flight (micrOTOF) mass spectrometer (Bruker, 
Wissembourg, France) coupled to the Agilent 1200 
RRLC chromatographic system. Chromatographic sep- 
aration was performed as described previously (Grison 
et al. 2016).

Mass spectra were acquired in the m/z 50-1500 
range with a cycle time of 15 min per analysis. Internal 
mass calibration was performed by injecting sodium 
formate acetate solution at the beginning of every run. 
The conditions of instrumentation have previously 
been described (Grison et al. 2016). Tandem mass 
spectrometry (MS/MS) experiments were performed 
on the monoisotopic peaks of some metabolite species, 
with the following parameters: precursor ion isolation 
width 0.8 u, cell collision energy about 15-30 eV.

All group samples were randomized and analyzed 
in 5 analytical batches of 60 samples each, to minim- 
ize analytical variability (Dunn et al. 2011). In add­
ition, a quality control sample (QC) representing a 
pool of each matrix collected from every prepared 
sample was made-up to evaluate data quality. The QC 
sample was injected ten times at the beginning of 
each batch for column equilibration and then analyzed 
throughout the batch series after every set of
5 samples.

2.4.1.3. Data analysis.
2.4.13.1. Data pre-processing and chemometric analy­
ses. LC-MS raw data were converted to netCDF file 
format with the manufacturer’s DataAnalysis software 
(Bruker, Wissembourg, France). The pre-processing 
workflow, based on XCMS software including the 
CAMERA script and all alignment and filtration 
steps, were as previously described (Grison et al. 
2016). SIMCA-P +12.0 software (Umetrics, Umeâ, 
Sweden) was used for multivariate statistical analyses. 
Partial least squares discriminant analysis (PLS-DA) 
models were validated by CV-ANOVA and permuta­
tion tests.
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2.4.1.3.2. Metabolite sélection and identification. The 
most discriminant variables were selected, according 
to their variable importance in projection (VIP) scores 
SIMCA algorithm; and normal probability plot (NNP) 
distribution were used to determine the appropriate 
threshold of significance. The robustness of these fea- 
tures for discriminating the control and NU groups 
was validated by testing the receiver operating charac- 
teristic (ROC) curve.

Putative metabolite annotation was performed by 
using the MZedDB database browser (Aberystwyth 
University, United Kingdom), freely available online 
(Draper et al. 2009), based on the chemical formulas 
generated from the accurately measured masses (error 
<10ppm) and isotopic patterns (calculated with 
Bruker DataAnalysis software). The putative annota­
tions enabled the purchase of authentic standard mol- 
ecules, and MS/MS experiments were performed when 
sufficient peak intensity was obtained for discriminant 
ions in the biological samples. Full MS and MS/MS 
spectra were compared between authentic standard 
molecules, biological samples, and spectral databases 
(mainly HMDB, Metlin, and MassBank) for metabol- 
ite identification. Finally, we used both the Cytoscape 
plug-in Metscape (Gao et al. 2010) to map the metab- 
olites into KEGG metabolic pathways and 
Metaboanalyst (Xia and Wishart 2016) to analyze the 
metabolomic data.

2.4.2. Transcriptomic analyses
2.4.2.1. Sample préparation procedures. Total RNA 
was isolated from 30 mg of frozen kidney sample with 
the mirVanaTMisolation kit (ThermoFisher Scientific, 
France), according to the manufacturer’s protocol.

2.4.2.2. RNA microarray analysis. Total RNA concen­
tration and purity were assessed by a NanoDrop ONE 
Spectrophotometer (ThermoFisher Scientific, France), 
and RNA integrity was evaluated with the RNA 6000 
Nano Chip Kit (Series II) and Agilent 2100 Bioanalyzer 
System (Agilent Technologies, Waldbronn, Germany 
and Palo Alto, CA). Quality of RNA was defined by a 
260/280 absorbance ratio >1.8; a 260/230 ratio >1.5 
and a RIN value >7.5 were desired.

Each experimental group (control and NU-conta- 
minated) was differentially labeled by Cyanine 3-CTP 
(Cy3) or Cyanine 5-CTP (Cy5). Labeled RNAs were 
hybridized on SurePrint G3 8 x 60 K microarrays 
(Agilent Technologies) at 65 °C for 17 h in an Agilent 
Microarray hybridization chamber rotating at 10 rpm, 
according to the manufacturer’s protocol for two-color 
microarray-based gene expression analysis, low input

quick amp labeling, version 6.9.1. Slices were scanned 
with the DNA Microarray Scanner SureScan (Agilent 
Technologies). Fluorescent signal intensities for each 
microarray spot were extracted and quantified by 
using Feature Extraction software V 10.7.3.1 (Agilent 
Technologies).

2.4.2.3. miRNA expression analysis. In accordance 
with the manufacturer’s protocol, Megaplex with 
Preamplification (Applied Biosystems, Foster City, 
CA) was used to analyze miRNA expression profiles 
from 3 pL containing 100 ng total RNAs previously 
extracted from kidney samples (n = 20). The qPCR 
was performed on a QuantStudio 12 K Flex system 
with 384 TLDA arrays (Applied Biosystems).

2.4.2.4. Data analysis. 2.4.2.4.I. Data pre-processing 
and statistical analysis. The raw data obtained from 
the DNA microarray (N = 10) were analyzed by R ver­
sion 3.3.2 with the R-package Limma, by following 
the instruction in the manual (Ritchie et al. 2015). 
Genes were considered differentially expressed (DE) 
when the adjusted p value was below .05.

For miRNA expression, comparative threshold (Ct) 
values were analyzed by QuantStudio 12 K Flex 
Software V1.2.2 and then by Expression Suite 
Software V1.0.4 (Applied Biosystem, ThermoFisher 
Scientific, Villebon sur Yvette, France) to obtain a 
clean data matrix. Cleaned data were exported to 
DataAssist v3.01 (Applied Biosystem, ThermoFisher 
Scientific, Villebon sur Yvette, France) to exclude out- 
lier samples and miRNAs. Given the difficulty of 
observing statistical differences for miRNAs known 
for their low level of fluctuation, especially in low- 
dose exposure contexts, we used an ‘elastic net’ linear 
regression model to search for miRNAs that contrib- 
uted to either the control or the uranium group. 
Elastic Net performs best when there are many more 
predictors (p) than observations (n). The data table 
obtained after miRNAomics contains values that are 
no longer available after quality control. We used the 
Bayesian PCA (principal component analysis) tool 
available in the R-PCA Methods Bioconductor pack­
age (Schmitt et al. 2015) to impute the missing values.

After data imputation, the Elastic Net method from 
the glmnet R-package was run (Friedman et al. 2010). 
The mixing parameter alpha for Elastic Net was tuned 
through a line search with a range between 0 (Ridge) 
and 1 (LASSO) with increasing steps of 0.01. The best 
values for alpha and for lambda were estimated 
through cross-validation to produces the lowest 
mean-cross-validated error with a fixed folded vector.
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Both values were then used to calculate the 
best predictors.

2.4.3. Multiscale Systems biology
The list of miRNAs obtained from Elastic Net was used 
to depict a multiscale network of the data from the 
miRNAomic, transcriptomic, and metabolomic analy­
ses. A database search was performed to find targets of 
the miRNA. The miRTarBase database (Hsu et al. 2011; 
Chou et al. 2018), which includes experimentally vali- 
dated miRNA-target interactions, was searched to find 
these targets. We defined a target of interest whether 
the gene is present in one of the following metabolic 
pathways identified by the metabolomic results (those 
to which the most discriminant metabolites identified 
belonged). In addition, other pathways in which as 
genes obtained from the transcriptomic results were 
also included. The interactions between miRNA and 
their targets, and interactions between genes and path- 
ways were visualized in a multiscale network with 
Cytoscape version 3.4.0 (Shannon et al. 2003).

3. Results

3.1. Clinical monitoring

The clinical evaluation based on consumption of 
drinking water and of food and on body weight gain 
showed no significant statistical differences between 
controls and the contaminated group among either 
males or females.

Similarly, none of the clinical markers assessed in 
plasma and urine samples, including ions and kidney 
markers (data not shown), revealed any significant dif- 
ferences that might reflect either a significant meta- 
bolic disorder or an adverse health effect associated 
with these NU exposure conditions. A mean NU con­
centration in kidney tissue less than 500ng.g-1 (data 
not shown) confirmed its tubular accumulation in the 
chronically contaminated rats and, as previously 
reported, its non-nephrotoxic level, confirmed by 
histological observations (Leggett 1989; Dublineau 
et al. 2014; Poisson et al. 2014). Moreover, for 1.6 g of 
kidney mass, the absorbed dose rate in the kidneys of 
the contaminated rats, was estimated at 9months of 
age at 5.4 9 10-7 Gy d-1. Under the maximizing 
assumption of a constant dose rate over 9 months, the 
maximum dose absorbed by the kidneys at sacrifice 
should still be as low as 0.15 mGy and considered as a 
very low dose of radiological exposure as previously 
reported (Grison et al. 2013).

3.2. Metabolomic profiles

3.2.1. Discrimination of sex and NU contamination 
in kidney profiles
The LC-MS data for the supernatant extracted from 
the kidney tissue (624 variables) were run on different 
PLS-DA models. The first model was calculated on 
the matrix that included all samples - males, females, 
NU-exposed, and control - and taking into account 
the dummy matrix representing the sex effect. This 
PLS-DA model showed a very clear separation 
between males and females (CV-ANOVA = 2.5e-32, 
R2Y = 95.9%, Q2Y = 91.3%). That is, as expected, it 
revealed a highly discriminant molecular dimorphism 
associated with the sex of rats, which obscured the 
effect of the 9-month NU contamination. Therefore, a 
second PLS-DA model was calculated on the same 
matrix but treating the exposure effect as the dummy 
matrix. This model (CV-ANOVA = 1.2e-28, 
R2Y = 94.5%, Q2Y = 87.8%) successfully discriminated 
between the control and contaminated rats (male and 
female combined). In this model, however, the dis­
tinction between the male and female rats could not 
be observed directly.

Next, two validated and robust PLS-DA models 
were run separately for males and females to assess 
the sex differences associated with NU exposure (CV- 
ANOVA = 3.1e-16/2.0e-19, R2Y = 91.2/92.2%, Q2Y = 
89.5/90.2%). The untargeted metabolomic analysis 
clearly discriminated NU contamination in both the 
male and female rat groups and confirmed the high 
impact of NU on the kidney cell metabolism.

Based on their VIP (>2.24) and NPP threshold 
(p > 95%), LC-MS identified 31 features discriminat- 
ing NU from control rats among both males and 
females. Among the males in the NU group, 27 varia­
bles increased and 4 decreased, and among the 
females, 26 increased and 5 decreased. Of these dis­
criminant features, 23 were common to both sexes 
(74% similarity) and thus revealed the low sexual 
dimorphism relative to NU exposure (Table 1). Most 
of these 23 discriminant features increased (from +27 
to 192%). PLS-DA characteristics combined in a com­
posite score yielded an area under the curve (AUC) 
value equal to 1 when tested by the ROC curve) (fig­
ure not shown). This result validates the robustness of 
these features for discriminating between the control 
and NU groups.

3.2.2. Discrimination of sex and NU contamination 
in plasma profiles
As expected, the PLS-DA for plasma profiles, calculated 
with sex as the predictor variable Y (CV-ANOVA



INTERNATIONAL JOURNAL OF RADIATION BIOLOGY 7

Table 1. Main discriminant markers in the three biological matrices (plasma, urine and kidney) for both male (M) and Female (F). 
Rate differences between control and NU contaminated values are noted in percentage. (B) In plasma, 34 variables were discrim- 
inative for male (blue) and 34 for female (pink). 17 were common for both. In kidney, 31 variables were discriminative for male 
and 31 for female. 23 were common for both. In urine 226 variables were discriminative for male and 222 for female (17 were 
common for both).

Identities Increased/Decreased KEGG ID HMDB ID PubChem ID

(A)
Kidney Palmitic acid Increased : M + 75%, F + 74% C00249 HMDB00220 985

Pentanoic acid Increased : M + 23%, F + 27% C00803 HMDB00892 7991
Nicotinamide D-ribonucleotide Decreased : M - 73%, F - 71% C00455 HMDB00229 14180
Riboflavin-5-phosphate Decreased : M - 41%, F - 43% C00061 HMDB01520 643976
Phytosphingosine Increased : M + 89%, F + 117% C12144 HMDB04610 122121
Prostaglandin F1 alpha Increased : M + 88%, F + 87% C06475 HMDB02685 5280939
2-Lysolecithin Increased : M + 81%, F + 69% C04230 HMDB10386 11005824
Glycochenodeoxycholate 7-sulfate Increased : M + 192%, F + 131% C15559 HMDB02496 11954205
Linoleic acid Increased : M + 140%, F + 116% C01595 HMDB00673 5280450
Oleic acid Increased : M + 110%, F + 106% C00712 HMDB00207 445639
25-Hydroxyvitamin D3 Increased : M + 46%, F + 154% C01561 HMDB03550 5283731
Palmitoleoyl-ethanolamide Increased : M + 184%, F + 140% C16512 HMDB02100 9835868

Plasma Androstanediol Decreased C07632 HMDB00495 441301
7a-Hydroxyandrost-4-ene-3,17-dione Decreased C05296 HMDB06771 65542
Adrenoyl ethanolamide Decreased C13829 HMDB13626 5282273
Dihomo-gamma-Linolenoyl ethanolamide Decreased C13828 HMDB13625 5282272
Arachidonylethanolamide Decreased C11695 HMDB04080 5281969

Urine N1-Methyl-2-pyridone-5-carboxamide Decreased: M - 10%, F - 10% C05842 HMDB04193 69698
4-Hydroxyphenylacetylglycine Increased: F + 24% C05596 HMDB00735 440732
N(1)-Methylnicotinamide Decreased: M - 44% C02918 HMDB00699 457
4-Pyridoxic acid Increased: F +16% C00847 HMDB00017 6723
Creatine Increased: M + 23%, F + 52% C00300 HMDB00064 586
5-Hydroxyindoleacetate Increased: M + 11%, F + 29% C05635 HMDB00763 1826
LysoPc 16:0 Increased: M + 17%, F + 163% C04230 HMDB10382 460602

(B)

8 23 8
(26%) (74%) (26%)

Kidney

p = 0, R2Y(cum) = 97.4%, Q2 (cum) = 95.4%) demon- 
strates a very clear separation between males 
and females after 9 months of contamination. 
Discrimination between the control and contaminated 
group was also good with the PLS-DA model using NU 
contamination as predictor variable Y (CV-ANOVA 
p = 9.4e-24, R2Y(cum) = 84.7%, Q2(cum) = 80.2%).

The PLS-DA model (CV-ANOVA p = 6.5e-15, 
R2Y(cum) = 93%, Q2(cum) = 86.8%) showed that the 
features in the male group very clearly discriminated 
the NU-contaminated from the control group. The 
model’s discrimination for female rats was also good, 
although not as good as for males (CV-ANOVA 
p = 4.0e-8, R2Y(cum) = 77.5%, Q2(cum) = 68.1%). For 
both male and female models, the NPP, based on the 
PLS-DA coefficients for each mode, again selected the 
same number of features for male and female rats (34 
each), and 17 features increased and 17 decreased for

both the male and female groups of contaminated rats 
(Table 1). The comparison of these discriminant fea­
tures in the plasma metabolome showed that 17 were 
shared by males and females: 4 decreased and 13 
increased among the contaminated rats. This result 
indicates low sexual dimorphism between males and 
females, with only 50% of shared features discriminat- 
ing NU exposure. The VIP score rate showed that 5 
of these 17 common features were among the most 
discriminative (Table 1).

3.2.3. Discrimination of sex and NU contamination 
in urine profiles
The PLS-DA discriminant analysis performed on all 
male and female samples (exposed and non-exposed) 
with sex as predictor variable Y confirmed a sex dif- 
ference observable in the metabolome (CV-ANOVA 
p = 0, R2Y(cum) = 99.3%, Q2(cum)=98.1%). Like
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those for the other biological matrices, this strong sex 
fingerprint (all observable by PCA analysis) prevented 
a direct distinction between contaminated and non- 
contaminated rats. The PLS-DA model calculated with 
NU contamination as the predictor variable Y initially 
did not discriminate NU contaminated rats (p = 1) in 
a mixed population of males and females; this situ­
ation changed when the most discriminant features 
were selected based on their VIP score in the PLS-DA 
model (CV-ANOVA p = 4.6e-10, R2Y(cum) =
79.0%, Q2(cum)=61.6%).

Discrimination between control and contaminated 
rats by the PLS-DA model of male rats only was good 
after variable selection (CV-ANOVA p = 1.0e-5, 
R2Y(cum) = 95.7%, Q2(cum) = 76.2%). Of the 226 
discriminant features selected for their high NPP 
threshold value, 115 decreased and 111 increased in 
the contaminated group. The PLS-DA was also able to 
discriminate between control and contaminated 
female rats after variable selection (CV-ANOVA 
p = 7.9e-11, R2Y(cum) = 98.4%, Q2(cum) = 89.4%). 
They had 222 discriminant features selected for their 
NPP values, based on the PLS-DA coefficients, 106 
decreased and 116 increased in the contaminated 
group. The males and females shared 34 discriminant 
features (15 decreased and 19 increased in the conta- 
minated group). These metabolomic analyses of the 
urine showed that the sexual difference is strong, with 
only 18% similarity between the male and female 
groups (Table 1).

3.2.4. Main marker identity
Putative annotation of the most discriminant features 
was performed with the freely accessible MZedDB 
database browser. The MS/MS spectra of some of 
these discriminative ions in biological samples were 
then compared with their authentic standard mole- 
cules to confirm the putative identification. Table 1 
presents a list of the main discriminative markers 
identified in each of the three biological matrices. 
Palmitic acid, pentanoic acid, nicotinamide D-ribonu- 
cleotide, riboflavin-5-phosphate, phytosphingosine, 
prostaglandin F1 alpha, 2-lysolecithin, glycocheno- 
deoxycholate 7-sulfate, linoleic acid, oleic acid, 25- 
Hydroxyvitamin D3, and palmitoleoyl-ethanolamide 
were identified in kidney tissue. Docosatetraenoyl 
ethanolamide, arachidonylethanolamide, dihomo- 
gamma-linolenoyl ethanolamide, androstanediol, and 
7a-hydroxyandrost-4-ene-3,17-dione were identified in 
plasma. Finally, N1-methyl-2-pyridone-5-carboxamide, 
4-hydroxyphenylacetylglycine, 4-pyridoxic acid,

lysophosphatidylcholine (LysoPc 16:0), creatine, and 
N1-methylnicotinamide were found in urine.

Their putative identifications show that these dis­
criminant metabolites represent essentially the metab- 
olisms for fatty acid, nicotinate-nicotinamide, steroids, 
vitamin B6, and tryptophan (Figure 1).

3.2.5. Interactions of metabolic pathways
To describe discriminative metabolite relations and to 
detect the metabolic pathways most strongly affected, 
metabolic networks of all annotated and identified 
discriminative metabolites were constructed with the 
Metscape plug-in for Cytoscape and MetaboAnalyst 
(http://metaboanalyst.ca). The Metscape analysis of 
the discriminant markers detected in all three matrices 
(shown in Table 1) revealed metabolic interactions 
with some metabolic pathways, including those for 
tryptophan, riboflavin, nicotinate-nicotinamide, pyri- 
doxine, glycerophospholipid, di-unsaturated fatty acid, 
linoleate, de novo fatty acid biosynthesis, glycine, ser­
ine, alanine, threonine, glycosphingolipid, and chole- 
calciferol. No plasma metabolites were mapped in 
these pathways (Figure 1). The MetaboAnalyst classifi­
cation tool then showed that nicotinate-nicotinamide 
(p = .002) and the biosynthesis of unsaturated fatty 
acid metabolisms (p = .01) were the two metabolic 
pathways most strongly affected.

3.3. Transcriptomic profiles in male 
kidney samples

In view of the previous reports of metabolomic results 
in male rats only, this study also arbitrarily omitted 
genetic analysis of female rats.

3.3.1. mRNA array
Transcriptomic analysis showed 49 (putative) genes 
differentially expressed and belonging to a variety of 
different functional classes, including gene regulation 
mechanisms (24%), cell signaling (24%), cell structure 
(16%), developmental processes (8%), and cell prolif- 
eration (8%) (Figure 2(A)). Other genes e.g. NT5C2, 
SIRT6, NNT, Nmnat1, and ENPP3 might be function- 
ally linked to metabolites, through either a direct or 
indirect link, according to the Metscape plug-in run- 
ning the KEGG pathways database (Figure 2(B)).

3.3.2. miRNA analysis
The aim of Elastic Net was to obtain a list of variables 
that can be used as predictors for the phenotypes of 
interest. With lambda as 0.01336 and alpha 0.34, 
Elastic Net obtained a set of 70 miRNAs that can be

http://metaboanalyst.ca
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Figure 1. (A) Network of the most discriminant metabolites observed (Cytoscape, Metscape App). Other unreported metabolites 
are colored pink, biochemical reactions light brown, enzymes in green, and genes in purple. (B) The nicotinate-nicotinamide 
metabolism was ranked by MetaboAnalyst as the metabolism most strongly affected, with a total of 3/13 affected metabolites (2 
revealed in urine and 1 in kidney). Discriminative metabolites are highlighted in red.

used as predictors for affected metabolic pathways or cell 
biological processes (Table 2). The results showed an 
increase in expression (fold change >1) for 42 miRNAs 
(left-hand side of table) and a decrease (right-hand side 
of table) in expression (fold change <1) for 28.

3.4. Multiscale Systems biology
The construction of the network was based on links 
between the discriminative miRNA transcripts, differ- 
entially expressed (DE) genes, and metabolomic obser­
vations (Figure 3). miRNAs are linked to mRNAs, 
presented in deep blue if discriminative in this study 
(adjusted p value <.05) and in light blue for putative 
(unadjusted p value <.05) target mRNAs. Metabolic 
pathways or biological functions are represented in 
red and increase in size with the number of connect­
ing edges to their transcripts.

In this network, pathways associated with the 
metabolism of fatty acids, glycosphingolipids, and ara- 
chidonic acid were highly connected, compared with 
others, such as tryptophan and nicotinate-nicotinamide 
(Figure 3, in red). In addition, other pathways, includ- 
ing those for amino acid metabolisms, energy metabol- 
ism, and cellular processes, including cell cycle, 
transcription, apoptosis, and cancer development, as 
well as aspects of cell structure were connected to DE 
genes obtained from transcriptomic analyses.

4. Discussion
Organisms undergo stress during either acute or 
chronic low-dose environmental exposure, e.g. when 
living in a polluted area. Environmental exposures are 
suspected to induce delayed adverse effects that might 
cause increased susceptibility to some cancers and to
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Figure 2. (A) Genes differentially expressed in NU-contaminated kidneys. (B) Nicotinate-nicotinamide network (MetScape applica­
tion of Cytoscape). Discriminant genes (deep blue) and metabolites (dark red) are shown. The p value was not adjusted in order 
to reveal putative experimental multiscale links.

metabolic diseases through direct metabolic dysrégula­
tion or affecting gene transcription by epigenetic regu- 
lation processes that can even impact the offspring. 
However, low-dose exposure has a low-level impact, 
with measurable effects within or just above the range 
of homeostatic fluctuation. New analytical strategies 
must be developed that are able to describe these bio- 
logical effects that have amplitudes that are often too 
small to be easily distinguished from the biological 
background. For example, in our study, despite the 
retention of NU in the kidney, no clinical signs 
related to body weight, food/water consumption, or 
urine/plasma chemical parameters differentiated the 
contaminated groups of rats of both sexes from the 
uncontaminated groups. These observations are con­
sistent with previous studies (Grison et al. 2013;

Dublineau et al. 2014) and demonstrate that clinical 
parameters do not account for any biological effects at 
this low level of contamination (concentration in kid- 
ney less than 450 ngg-1 for a total radiological dose 
absorbed less than 0.15 mGy). An important point in 
health risk evaluation is the easily observed genetic 
differences between the sexes and between people of 
different ethnic origins; these must be taken into 
account when drawing conclusions. In addition, age, 
quality of life, living area, and psychosocial environ­
ment are other important parameters that may alter 
the biological response to various stress stimulants.

In our study, the rat model was contaminated from 
birth to mimic a real situation in which a growing 
organism (more sensitive than adults) is exposed to 
an uranium-polluted residential area to investigate the
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Table 2. Micro-RNAs differentially expressed in kid- 
neys of NU-contaminated rates. The left-hand side 
table shows increased expression of the fold- 
change (FC), the right-hand side shows a decrease 
in FC, respectively.

Micro-RNAs id. FC Micro-RNAs id. FC
mmu-miR-219 2.2833 hsa-miR-22# 0.9881
mmu-miR-696 2.2829 mmu-miR-199b 0.9653
mmu-miR-434-3p 2.2801 mmu-miR-335-5p 0.9579
mmu-miR-199a-5p 1.8691 mmu-miR-532-3p 0.9115
mmu-miR-363 1.6618 mmu-miR-324-3p 0.9102
mmu-miR-138 1.407 mmu-miR-351 0.8847
mmu-let-7g 1.3578 hsa-miR-196a 0.8606
mmu-miR-129-3p 1.3493 mmu-miR-2146 0.8364
mmu-miR-449a 1.3389 mmu-miR-467a 0.8264
mmu-miR-193b 1.3373 mmu-miR-2134 0.8196
mmu-miR-218 1.3228 mmu-miR-672 0.7911
mmu-let-7i 1.3128 mmu-miR-322 0.7571
mmu-miR-99a 1.3058 mmu-miR-877# 0.7551
mmu-miR-103 1.2973 mmu-miR-1961 0.7533
mmu-miR-324-5p 1.2951 mmu-miR-467b 0.7313
mmu-miR-29b 1.295 mmu-miR-20a 0.7268
mmu-miR-484 1.2889 mmu-miR-494 0.7176
mmu-miR-101a 1.2631 hsa-miR-10a# 0.6994
mmu-let-7e 1.25 mmu-miR-1951 0.6949
mmu-miR-151-3p 1.2537 mmu-miR-17# 0.6715
mmu-miR-100 1.2499 mmu-miR-2182 0.6611

mmu-miR-301a 1.2166 hsa-miR-27a# 0.6317
mmu-let-7d 1.2155 mmu-miR-290-3p 0.6235
mmu-miR-331-3p 1.1988 hsa-miR-206 0.6001
mmu-miR-140 1.1972 mmu-miR-2183 0.5526
mmu-miR-872 1.1869 mmu-miR-1960 0.4619
mmu-miR-23b 1.1777 hsa-miR-200a# 0.4284
mmu-miR-345-5p 1.1628 mmu-miR-804 0.066
mmu-miR-191 1.1584
mmu-miR-10b 1.146
hsa-miR-22 1.1427
mmu-let-7b 1.1411
mmu-miR-1954 1.134
mmu-miR-139-5p 1.1288
hsa-let-7e# 1.1082
mmu-miR-671-3p 1.108
mmu-miR-17 1.0921
mmu-miR-345 1.0774
mmu-miR-186 1.0569
hsa-let-7i# 1.0194
mmu-miR-1898 1.0131
mmu-miR-429 1.0034

effect of chronic uranium contamination during 
growth. As expected, the metabolomic analyses con- 
firmed that the differential effect of sex on uranium 
exposure was higher in urine and plasma than in kid- 
ney samples (respectively, 82%, 50%, and 26% of the 
metabolite features were sensitive to either gender). 
These sex-based genetic differences can imply impair- 
ment in functionality and cellular sensitivity due to 
modulation in xenobiotic biokinetics, which can result 
in higher doses of exposure. In terms of risk, this low 
metabolic dimorphism in the kidney does not rule out 
strong differential effects, which will depend on the

specific metabolic pathway. Although clinical diagnos­
tics showed no effects, metabolomic results did show 
a biological effect associated with the chronic low- 
dose uranium intake. In particular, the metabolisms of 
fatty acids, nicotinate-nicotinamide, steroids, vitamin 
B6, and tryptophan were affected by NU exposure. A 
classification test based on the number of discrimina- 
tive metabolites involved in each pathway shows that 
the highest score was for nicotinate-nicotinamide, 
with unsaturated fatty acids in second place. The nico- 
tinate-nicotinamide pathway has previously been 
reported to be involved in a uranium-related dose- 
response effect (Grison et al. 2016). Urine is com- 
posed of metabolic waste that reflects the maintenance 
of homeostasis. The final status of urine and its 
absence of subsequent metabolic regulation in urine 
certainly appear to reflect the functional state of 
organs and any renal metabolic or physiological dis- 
ruptions better than plasma does.

In urine, the N1-methyl nicotinamide (NMN) level 
decreased, consistent with our previous results for male 
rats only (Grison et al. 2013; Grison et al. 2016). In 
addition, an increased level of N1-methyl-2-pyridone- 
5-carboxamide was observed (putatively confirmed). 
This result was affected, however, by the sexual 
dimorphism that, albeit low, appears to affect the con- 
sequence of NU exposure on kidney physiology. These 
data confirm the need to consider sex dimorphism as 
well as other constitutive factors such as age, health 
status, and ethnic origin in human health risk assess- 
ment. Nevertheless, metabolomic analysis of urine 
samples can be a convenient and sensitive method for 
risk assessment and diagnostic purposes that can detect 
metabolic dysregulation of the kidneys due to acciden- 
tal low-dose uranium exposure.

Plasma is another relevant biological matrix due to 
its easy accessibility, and it can be used to discrimin- 
ate between contaminated male and female rats. The 
metabolites identified cannot be directly associated 
with the renal effects observed. Nevertheless, docosate- 
traenoyl, ethanolamide, arachidonylethanolamide, and 
dihomo-gamma-linolenoylethanolamide are endocan- 
nabinoid molecules associated with the cannabinergic 
neurotransmitters and can directly influence brain 
functions and behavior (Vlachou and Panagis 2014).

Among all the discriminative metabolites identified 
in the three biological compartments (Table 1), the 
nicotinate-nicotinamide and unsaturated fatty acid 
pathways were identified in more than one matrix; 
they were found after analyses of both kidneys and 
urine. Other dysregulated pathways include those for 
the metabolism of linoleic acid, vitamin B6, riboflavin,
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sphingolipids, glycerophospholipids, glycine, serine, 
threonine, other fatty acid metabolisms, tryptophan, 
arginine, and proline, for the biosynthesis of fatty 
acids and steroids and finally for the elongation of 
fatty acids in mitochondria. Among these pathways, 
several have already been described as biomarkers of 
oxidative stress after exposure to copper (Taylor et al. 
2009) and long-term exposure to heavy metals (Sarma 
et al. 2018). Moreover, fatty acids have been described 
as one of the most important biomarkers of chemical 
stressors such as heavy metals (Filimonova et al. 
2016); they are associated with oxidative stress 
(Reglero et al. 2009) and closely linked to the inflam- 
matory immune response (Cornet et al. 2018) 
(Figure 1).

These pathways indicate the broad effect of uran­
ium through inter-network relations between meta- 
bolic pathways and possible physiological 
consequences. Urine appears to be a more interesting

biofluid than plasma for studies of the effects of low- 
dose uranium exposures. Both urine and the kidneys 
share affected pathways, with still other pathways dif- 
ferentially affected depending on the individual’s sex. 
The involvement of different sex-dependent pathways 
might explain the differences in sensitivity in terms of 
health risk assessment.

These discriminative metabolic fluctuations raise 
the question of upstream genetic regulation involved 
in the biological response to NU. Analyses of tran- 
script fluctuations (mRNAs and miRNAs) in kidney 
cells might provide information about the parent 
molecular events driving the metabolic outcomes. For 
contaminated kidneys of males, analysis of RNA 
expression identified a set of differentially expressed 
transcripts linked to cell signaling, cell structure, 
developmental processes, cell proliferation, transport, 
apoptosis, inflammation, and the metabolism of fatty 
acids, which NU can target, as previously observed in
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other studies of uranium as a cell stressor (Sano et al. 
2000; Dublineau et al. 2007; Webb-Robertson 
et al. 2011).

Nonetheless, except for the fatty acid metabolisms, 
our results do not show any direct correlations of the 
results from transcriptomic to metabolomic results, 
e.g. for the nicotinate-nicotinamide metabolism, which 
was the pathway most strongly dysregulated in the 
kidney metabolome. Moreover, N-methylnicotinamide 
has previously been reported to be dysregulated in 
cases of experimentally-induced renal failure by a 
nephrotoxic agent such as uranium (Hirsch 1972; 
Shim et al. 1984). It has even been suggested for use 
as an endogenous probe to evaluate drug-drug inter­
actions in the kidney (Ito et al. 2012). However, 
deeper research into the metabolic pathway for genes 
such as ALDH2 provided links to metabolic pathways 
such as those for glycerophospholipids, pyruvate, tyro­
sine, glycolysis, urea, histidine, leukotriene, and lysine. 
DGKQ is involved in glycerophospholipid metabolism, 
which our metabolomic analyses showed were 
affected. Atp6v1h is involved in purine metabolism, 
which is linked in turn to those of histidine and ribo- 
flavin (both detected in the metabolomic analysis).

The low range of transcript fluctuations measured 
after low-dose exposures is likely to explain the small 
number of discriminative transcripts, which in turn 
may explain the difficulty of establishing a direct cor- 
relation between gene expression and metabolite fluc­
tuations. It is noteworthy that the number of features 
differentially expressed between contaminated and 
control groups decreased substantially after we cor- 
rected p values by the Benjamini-Hochberg False 
Discovery Rate method for p value correction. It 
might be useful to consider alternative methods for 
handling multiple testing corrections in the context of 
specific effects of low-dose exposure from small bio- 
logical fluctuations, to be able to formulate new 
hypotheses about effects on downstream metabolites. 
Wang et al. (Wang et al. 2013) have described such a 
method. When we applied this method to our results, 
four genes involved in the nicotinate-nicotinamide 
pathway were found to be differentially expressed by 
the uranium exposure. This establishes a gene profile 
associated with uranium exposure in the kidneys and 
can be used to find new mechanistic pathways. 
Depending on the gene regulation process, mRNAs 
may be silenced by miRNAs through an epigenetic 
post-transcriptional mechanism (Filipowicz et al. 
2008); these miRNAs might be used as biomarkers of 
exposure and even of toxicant injuries (Kanki 
et al. 2014).

In our study, Elastic Net selected 70 miRNAs dif- 
ferentially expressed in contaminated kidneys after 
NU exposure (Figure 3). These miRNAs can be puta- 
tively linked to major metabolic pathways, including 
those for sphingolipids, nicotinate-nicotinamide, fatty 
acids biosynthesis, and cell processes, which were 
identified by our metabolomic and transcriptomic 
analyses. These multiscale results confirm the rele- 
vance of this method for understanding the biological 
response to low-dose uranium exposure and the dys- 
regulation that occurred at several scales. The diffi- 
culty in establishing links between fluctuations of 
miRNAs, mRNAs, and metabolites is not surprising in 
view of the time-lag between gene expression and the 
fluctuations it can cause in metabolite concentrations. 
This lag can range from minutes to days, so that sim- 
ultaneous measurements allow only partial observation 
of the cell molecular response at a given time 
(Takahashi et al. 2011). To improve the analysis, this 
approach needs to be completed by a time-related 
study. In addition, in this range of low-dose effects, 
non-pathological dysregulations are difficult to deter- 
mine as they fall within or just above the homeostatic 
background level. The dose-time/effect relations are 
known to be non-linear and consequently unpredict- 
able by extrapolation (Calabrese 2004; Tubiana et al. 
2009; Lagarde et al. 2015). Depending on the con- 
founding environmental factors, observable effects are 
often stochastic (Mothersill and Seymour 2009, 2014). 
Nonetheless, our results confirm a multiscale bio- 
logical effect by chronic low-dose uranium exposure 
at the epigenetic and genetic levels, as well as at the 
metabolomic level, which represents the final read-out 
of cellular regulation processes.

In conclusion, these new generations of large-scale 
and untargeted methodological approaches appear 
suited to use in the field of low-dose exposures, for 
the formulation of mechanistic hypotheses and the 
identification of biological targets of exposure to be 
used as a new generation of biological markers. In 
this study, although no specific adverse effects of 
uranium were observed at this level of dose exposure, 
the results confirm that nicotinate-nicotinamide and 
fatty acids are the principal metabolisms affected in 
the kidneys and urine after chronic low-dose uranium 
exposure. Other results revealed cellular processes 
through the activation of genes that can be associated 
with oxidative stress and inflammatory immune 
response as well as with uranium-contaminated kid- 
neys. Moreover, the multi-omics approach allowed us 
to observe sex differences in analytical profiles, which 
can be correlated with differences in biological
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sensitivity to uranium exposure. This parameter must 
be taken into account in risk assessments. Our results 
confirm that omic analysis is relevant for multiscale 
fingerprinting in the field of low-dose exposure, which 
can be used to assess the impact of the exposome. 
These analytical methods are an important asset for 
health monitoring policy for public health risk assess- 
ment. Finally, in the field of radiation protection, the 
complexity of assessing low-dose ionizing radiation 
exposures is a major issue that needs to be considered, 
in view of the need to consider time and dose, exter- 
nal versus internal exposure, acute versus chronic 
exposures, risk of delayed adverse effects, and even 
impact on future generations, sex, age, ethnic origin, 
and finally the synergic effects of combined radio- 
logical and chemical multiple exposures (Boobis et al. 
2011). Therefore, further studies should work at over- 
coming these scientific challenges to improve 
health policy.
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