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a b s t r a c t

Species Distribution Models (SDMs) are often used to predict the potential range of
invasive species. Unfortunately, most studies do not evaluate variables relevance before
selecting them to fit their models. Moreover, multiple variables such as climate and land
use may drive species distribution at different spatial scales but most studies either use a
single type of drivers, or combine multiple types without respecting their operating scale.
We propose a three steps framework to overcome this limitation. First, use SDMs to select
the most relevant climatic variables to predict a given species distribution, at continental
scale. Then, characterize the species-habitat relationships, at a local scale, to produce
species and area specific habitat filters. Finally, combine both information, each obtained at
a relevant scale, to refine climatic predictions according to habitat suitability. We illustrate
this framework with 14,794 Asian hornet (Vespa velutina nigrithorax) records. We show
that integrating multiple drivers, while still respecting their scale of effect, produced a
potential range 55.9% smaller than that predicted using the climatic model alone, sug-
gesting a systematic overestimation in many published predictions. This general frame-
work illustrated by a well-documented invasive species is applicable to other taxa and
scenarios of future climate and land-cover changes.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Species distribution models (SDMs) are regularly used to generate predictions of species presence; they rely on correla-
tions between environmental variables and geo-localized species records to understand the environmental variables that
drive species presences (Blach-Overgaard et al., 2010) and delineate potential species distributions (Araújo and Guisan, 2006;
Araújo and Peterson, 2012). An extensive number of environmental datasets are available nowadays for fitting SDMs; but only
a limited number of them should be included when running SDMs. Indeed, although increasing the number of predictors
increases the chance of having ecologically relevant ones, it also inflates the risk of overfitting the model (Merow et al., 2014)
and of collinearity issues between variables (Dormann et al., 2013a). Restricting the number of variables and choosing only
the most appropriate ones for a species is thus crucial to maximize the performance of SDMs and the accuracy of the pre-
dictions (Araújo and Guisan, 2006; Araújo and Peterson, 2012; Barbet-Massin and Jetz, 2014; Braunisch et al., 2013). Ideally,
this choice should rely on expert knowledge concerning the ecological requirements of the species, but such knowledge is
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hardly ever available. Predictor selection thus remains a key challenge when running SDMs (Araújo and Guisan, 2006), and
despite its proven and important effect on the predictions, has received too little attention (Austin and Van Niel, 2011;
Syphard and Franklin, 2009; Tulloch et al., 2016).

Another challenge of SDMs, linked to the selection of the most appropriate variables, is to combine multiple variables that
may drive species distribution at different spatial scales. Niche modelling has always lacked unifying theories andmethods to
bring together multi-scale drivers, which reduces their accuracy and their appropriateness for conservation planning.
Notably, studies integrating climatic and land use variables at different scales remain extremely rare, despite evidences of
their necessity (Sirami et al., 2016). Most biodiversity scenarios focus on climatic models and fail to integrate other envi-
ronmental filters, which also have significant impacts on species distributions (Sirami et al., 2016; Titeux et al., 2016), or mix
all predictors at the same resolution (Bucklin et al., 2014; Gallardo et al., 2015). These filters may be related to climate,
topography, primary production or land use (Milbau et al., 2009). Furthermore, many studies have now come to the agree-
ment that specieseenvironment relationships are strongly scale dependent; species presence results from an interplay be-
tween climate, which governs their distributions at continental scales (Blach-Overgaard et al., 2010), and for instance habitat,
which drives species' occupancy at finer spatial resolution (Luoto et al., 2007; Monceau and Thi�ery, 2017; Virkkala et al.,
2005). Each of these drivers, acting as a filter that shapes the species distribution as a special spatial scale, must thus be
identified and included in the model at the appropriate resolution (Cabra-Rivas et al., 2015; Luoto et al., 2007; Milbau et al.,
2009; Pearson et al., 2004, 2003). Very few studies have provided theoretical bases to bring together climate and habitats
predictors in a hierarchical manner (Kelly et al., 2014; Milbau et al., 2009; Pearson et al., 2003; Sirami et al., 2016). They
represent valuable theoretical starting points, but methods carefully selecting the regional habitat filters to be considered and
put this theory into practice are needed to improve the accuracy of climate-driven models (Thuiller et al., 2004; Zhu et al.,
2017). Therefore, a key challenge now is to develop a practical method to integrate multi-scale predictors and capture
more accurately their environmental niche (Virkkala et al., 2005).

We present here a framework to select the most relevant climatic variables, at a global scale, build species-specific habitat
suitability filters, at a local scale, and combine both information to produce refined suitability maps. We illustrate this
framework with the case of the invasive Asian hornet, Vespa velutina nigrithorax. The crucial step of variable selection has
never been addressed to predict this species potential range, and previous predictions have been obtained with climatic
variables only. The Asian hornet arrived accidentally in France from China in 2004 (Arca et al., 2015), and since then has
invaded almost thewhole of France and other European countries (Spain, Portugal, Italy, BelgiumGermany and UK). Due to its
predatory behavior on insects, and particularly honey bees (Monceau et al., 2014), there are great concerns about its potential
impacts on the native biodiversity (Choi et al., 2012), on the beekeeping industry and on pollination services overall (Monceau
et al., 2014). It is necessary to develop tools to better predict its future invasion range and help stop its spread and reduce its
impacts efficiently. The method is generalizable to any other taxa, and can be used to combine as many environmental layers
as needed, as it provides tools to deal with both continuous and categorical layers.

2. Materials & methods

2.1. Distributional data

We used the GPS records from the INPN biodiversity database (http://inpn.mnhn.fr), maintained by the French National
Natural History Museum, and based on a participative science program (http://frelonasiatique.mnhn.fr), as in Barbet-Massin
et al. (2013). The database totaled to 14,794 records of Asian hornet colonies, from the invaded range (France, Italy, Germany,
Spain & Portugal, Belgium), spanning from 2004 to 2016. We did not include presence data from the native range for two
reasons. Firstly, this invasion results from a single introduction event (Arca et al., 2015), of one female only, that gave rise to
the whole European population of Asian hornets. A single organism cannot encompass the whole population genetic and
phenotypic diversities. Furthermore, altered speciese climate relationships during invasion are recurrent for insects, due to
their ability to respond quickly to novel environments (Hill et al., 2017). The niche conservation assumption is highly unlikely
to be met and the niche overlap between native and invasive ranges expected to be poor (Early and Sax, 2014; Medley, 2010).
In this context, a conservative framework is favored, which consists in using only invasive occurrences to build the model. A
recent study on the Asian hornet showed that the predictive accuracy of the SDMwas significantly better when models were
calibratedwith invasive data only, excluding native data (Barbet-Massin et al., unpublished results). Secondly, therewere only
68 occurrences available from its native range, some of which of uncertain and unequal quality compared to the invasive
range data. For these reasons, we preferred to rely on invasion occurrences only.

2.2. Environmental data

We used a set of 19 climatic variables (averaged from 1950 to 2000) available from the worldclim database (http://www.
worldclim.org/) at 2.5 arc min (~4 km) resolution (Hijmans et al., 2005). These variables represent a combination of means,
extremes, variability and seasonality of temperature and precipitation data that are known to influence species distribution
(Root et al., 2003).

We used the CORINE (Coordination of Information on the Environment) Land Cover 2006 dataset to study the suitability of
each habitat for the hornet (The European Environment Agency (EEA), 2010). This dataset is characterized by its high-spatial
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(100 m resolution) and thematic resolution. It is composed of 44 different land cover classes (hereafter habitat), each
belonging to one of the four following broad categories: artificial surfaces (urban, roads, industrial units, etc.), agricultural
areas (non-irrigated arable land, pastures, fruit trees, etc.), natural areas (coniferous forest, bare rocks, etc.) and wetlands and
marine areas (estuaries, salines, etc.). We considered that both of these datasets (Worldclim between 1950 & 2000, and
CORINE 2006 dataset) are representative of current climatic and land use conditions.

2.3. Species distribution modelling

Ranking of climatic variable. The first step of our framework was to select the most relevant climatic variables to predict the
hornet's distribution (Fig. 1-A). To avoid running models using correlated variables, we separated the 19 variables into two
uncorrelated groups; the temperature variables group and the precipitation one. Any variable from one of them is uncor-
related to any variable from the other. We then run a series of models, testing all possible combinations of two variables, with
one variable from the temperature and the other from the precipitation group. This totaled to 88 possible combinations
(eleven temperature variables times eight precipitation variables). For each model, we used seven different SDM algorithms
within the ‘biomod2’ package (Thuiller et al., 2014), using the R platform (R Development Core Team, 2013): Generalized
Linear Model (GLM), Flexible Discriminant Analysis (FDA), Artificial Neural Network (ANN), Random Forest (RF), Generalized
Boosting Model (GBM), Classification tree analysis (CTA) and Multiple Adaptive Regression Splines (MARS) (Fig. S7 for the
models parameters and pseudo absences selection procedure). These seven algorithms were used to build an ensemble
model, to account for the variability between the seven SDMs and provide the central tendency (Araújo and New, 2007). The
ensemble model, or final consensus distribution, was the weighted mean, proportional to the accuracy evaluation, of the
seven modelling techniques.

Two metrics were used to evaluate the accuracy of each SDM; the True Skill Statistics (TSS) (Allouche et al., 2006) and the
Area Under the receiver operating characteristic Curve (AUC) (Fielding and Bell, 1997). AUC has been criticized (Lobo et al.,
2008) because of its dependence on the prevalence and the spatial extent, but it was used here to compare models with a
constant prevalence and geographical extent (only the sets of predictors varied). The TSS accounts for both sensitivity (i.e.,
correctly predicted presences/[correctly predicted presences þ predicted absences]) and specificity (i.e., correctly predicted
absences/[correctly predicted absences þ predicted presences]) of the model. To calculate TSS and AUC, we used a random
subset of 70% of the data to calibrate the model and the remaining 30% to evaluate it. We chose the threshold that maximizes
the TSS for its calculation. The data splitting approach was repeated five times. We ranked the climatic variables according to
the mean TSS and AUC measures of all ensemble models run with each variable.

2.4. Projection of potential climatically suitable range

The next step of the framework was to select, among the variables with better predictive accuracy, the ones that were not
correlated to avoid collinearity issues and overfitted models (Dormann et al., 2013b). We measured the correlation between
our 19 bioclim variables similarly to Bellard et al. (2016) method (S1, A). It is a hierarchical classification method based on a
distance metric (Pearson's correlation coefficient) at a threshold of 0.7. This resulted in nine “correlation groups” (S1); nine
was thus the maximum number of variables that could be chosen for the final climatic prediction. Based on our ranking of
climatic variables (section above), we identified the most relevant variables from each of the nine groups of correlated
variables. But because using a small number of variables in SDM reduces the risk of overfitting and collinearity issues, we
looked for a tradeoff between fewer variables and a highly accurate prediction. We compared the accuracy and the output of
the ensemble models run with either the best 9, 8, 7 or 6 variables (Fig. S3) to see how this modified the predictions. These
models were all as accurate (similar TSS and AUC values) and produced similar spatial projections (Pearson's correlation
between themaps comprised between 1 and 0.97, Figs. S3eC). There was, however, a slight drop in AUC and TSS when using 6
variables (Figs. S3eB). Therefore, for the final climatic suitability prediction we choose to use only the 7 most powerful and
uncorrelated variables (TSS > 0.8) (Fig. S1). This final subset of seven variables enabled us to produce a robust ensemble
forecast (TSS ¼ 0.907 and AUC ¼ 0.990), which gave us the climatic suitability for the hornet, in each 2.5 arc min grid cell,
under current conditions in Europe. It is noteworthy that the approach presented here is the most complete and robust for
variable selection. One could want a different time-quality tradeoff by selecting good variables but not necessarily the best
ones. This could be done simply by forming the correlation groups from the start, automatically taking the variables that are
not correlated with others, and thus reducing the number of variables combinations to test.

2.5. Identification of suitable habitat

Our next aimwas to combine the climatic suitability (obtained above) with the habitat related requirements of the species.
To measure the suitability of each of the 44 habitats for the hornet, we compared the observed number of V. v. nigrithorax
nests in a given habitat to the number expected by chance, if the nests were randomly distributed (Fig.1-B). We alsomeasured
the across-all-habitats suitability of each of the four groups of habitats (artificial surfaces, agricultural areas, forests & natural
areas and wetlands&water bodies) following the same method. To obtain the expected number of nests in any given habitat,
we did a bootstrap; i.e. repeated 10,000 random samplings of 14,794 points (the same number as hornet's presences) and
counted the number of random points sampled in each habitat (Fig. 1-B). Following this method, we built the density plots of



Fig. 1. Computational framework to refine species distribution predictions using multiscale filters. (A) Continuous variable selection. Any number of
groups of variables can be tested (here; two), where variables from one group are uncorrelated with those in the other groups. We propose to run a SDM with
every possible combination of two variables, evaluate the accuracy of the models (TSS), and use each variable TSS to rank them (Fig. S1). Only the best variable
from each correlation group is finally retained for the climatic suitability ensemble modelling. (B) Filter construction from categorical variables. A bootstrap
gives us the number of presences expected by chance in each category (Fig. 2 and Fig. S4), to which we compare the observed presences, to estimate each
category suitability for the species. We produce binary filters, at the resolution that is the most relevant for this variable, and then upscale them to match the
coarser climatic variables resolution. (C) Filters combination. As many filters can be multiplied, each of them representing independent probabilities, to refine
initial climatic predictions (Fig. 3).
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expected number of presence in each of the 44 habitats (Fig. 2 & Fig. S4). The habitat analysis concerned only the habitats
present in the climatically suitable part of Europe (climatic suitability> 0.5, i.e. area inwhich the probability to find a hornet is
greater than random). This geographical restriction relied on the assumption that climate and habitat drivers interact in a
hierarchical manner; climate drives the species presence at a broad scale, and then, within the climatically suitable area, the
habitat drives the species settlement locally (Milbau et al., 2009).



Fig. 2. Identification of habitat-type suitability for the hornet. Histograms showing, in each habitat-type, the number of nests expected if the hornet was
randomly distributed (blue bars) and the observed number of nests (red vertical line). Random samplings were repeated 10,000 times, with the same number as
hornet's nests (n ¼ 14,791) drawn each time. Similar figures depicting the density plots for each of the 44 habitat are available in Fig. S4. Habitat-types where the
hornet's number of nests is in the upper (resp. lower) 2,5% of the random distribution, are suitable (resp. unsuitable). Artificial surfaces are highly suitable for the
hornet and probably play a major role in shaping its distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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For each of these density plots, we analyzed in which quantile of the expected distribution the actual number of hornet
presences occurred. If the hornet's number of presences was in the upper (resp. lower) 2.5% of the distribution, we classified
this habitat as suitable (resp. unsuitable). When the observed number of nest was comprised between 2.5 and 95.5% of the
distribution, it was not significantly different from the random distribution, and thus qualified as neutral for the species. This
method is illustrated in Fig. 1-B.

Second, to control that our samplingwas not biased towards human-dense areas (where observationsmay bemore likely),
we performed the same analysis in an area where the hornet's nests were exhaustively searched for (i.e., where we had true
absences) (Fig. S5). This study area, in the North of Chiz�e, is a research facility managed by the CEBC research unit (Zone Atelier
Plaine et Val de S�evre, Centre d’�Etudes Biologiques de Chiz�e, 46�150N, 0�300W). This 45,000 ha, area gave us complementary
information on some of the land use typewhere hornets were present and absent. It enabled us to strengthen our conclusions
regarding habitats suitability and avoid a possible observer bias.

2.6. Combining climate and habitat

The final step of the framework was the combination of the climatic and habitat suitabilities into a unique and refined
prediction of environmental suitability (Fig. 1-C). We constructed a habitat filter, as the percentage of suitable and neutral
habitats per grid cell, at the same resolution as the climatic suitability map. This filter corresponds to the probability to find a
suitable habitat in each grid cell. We included the neutral habitats when building the filter, in order to make our prediction as
conservative as possible. The climatic suitability and the percentage of suitable habitats per grid cell are two independent
events, sowemultiplied these two probabilities, which gave us the environmental suitability, i.e. the probability of presenting
both a suitable climate and habitat. This multi-filter combination can be done with as many filters as required, according to
the species, to increase the accuracy of the prediction.

3. Results

3.1. Climatic variables selection

The TSS of all models were comprised between 0.735 and 0.859, and AUC between 0.932 and 0.978 (Fig. S2). The rankings
obtained either with the TSS and the AUC were similar (Figs. S2eA). Variables related to temperature or precipitation per-
formed similarly; the mean TSS of all temperature variables (0.805, ±0.029) and the mean TSS of all precipitation variables



Fig. 3. Two-filters approach applied to V. velutina to refine its environmental suitability prediction. (A) Predicted current climate suitability for V. velutina
in Western Europe (ensemble consensus across eight SDM algorithms), (B) climatic suitability zooms in, located in the middle and on the edge of the dis-
tribution, (C) corresponding habitat suitability (percentage of suitable habitat per grid cell). The multiplication P1 and P2 is the probability of both of them
occurring in each grid cell, called here environmental suitability (D). Black dots represent hornet nests.
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(0.803, ±0.030) were not significantly different (ANOVA; F1, 175 ¼ 0.067, P ¼ 0.796). Using temperature or precipitation var-
iables is equally relevant to predict the Asian hornet's distribution.

Variable performances among the precipitation group were not significantly different from one another (ANOVA; F7,
80 ¼ 0.793, P ¼ 0.595); all precipitation variables seemed to perform similarly in predicting the hornet's distribution. Pre-
cipitation variables formed three groups of correlation (Fig. S1). Choosing any three precipitation variables, one from each
correlation group, would provide similarly accurate hornet's distributions, while reducing collinearity problems.

On the contrary, variables performances among the temperature group were significantly different (ANOVA; F11, 77 ¼ 38.6,
P < 0.001); the choice of the temperature variable used in the model has an impact on the accuracy of the distribution. Bio1
(annual mean temperature) performed significantly better than all other predictors in the temperature group (post hoc Tukey
test, P < 0.005). Bio1 was highly correlated with bio 6, 9 and 11 (temperature maximum of warmest month, mean tem-
perature of driest quarter and mean temperature of coldest quarter); although these three other variables provided accurate
predictions, they could not be used jointly with bio1 in a SDM. So bio1 was retained as a relevant variable to predict the
hornet's distribution, and bio6, 9 and 11 were left out. The final set of relevant and uncorrelated variables retained was were
bio1,3,4,10,12,15 and 17 (Fig S1 and S2-B).

The most climatically suitable areas (suitability values > 0.7) were mainly located in France and in the western part of
Southern Europe: Spain, Italy and Portugal (Fig. 3-A). These climatically highly suitable areas represented 28.96% of France.
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3.2. Habitat suitability

Our analysis of the four habitat groups showed that the artificial surfaces (groupwith highest level of anthropization) were
significantly more attractive than the agricultural areas, forest and natural areas and wetlands, which did not, overall, enable
the settling and persistence of hornets' nests (Fig. 2).

When looking at each habitat separately, we found that 22 (out of 44) habitats are suitable for the hornet, i.e. there are
significantlymore hornets within these habitats than if the nests were randomly distributed (Table 1, Table 2 and Fig. S3). 68%
of these suitable habitats belong to the most anthropized categories of habitats, according to CORINE classification (i.e.
artificial surfaces and agricultural areas). Only two habitats were neutral (mineral extraction sites and construction sites), that
is, the number of nest was not significantly different from the one expected by chance. Finally, 14 habitats appeared as un-
suitable by the hornet (Table 2), and only two of them were anthropized. There remained six extremely rare habitats (ex:
Coastal lagoons, burnt areas, glaciers…) for which we had no suitability information (no nest in them and none of the 10,000
bootstraps sampled points fell in them). Overall, the suitable habitats for the hornet represent 72.60% of Western Europe.

Not all habitats were present in the exhaustively studied zone of Chiz�e (Table S1). But those present enabled us to confirm
the result obtained Europewide (same habitats found as suitable or unsuitable), and also reject any observer structural bias in
favor of areas with dense human population (S5 and Table S1).

3.3. Combining climatic and habitat suitabilities

Areas with a high (>0.7) environmental suitability (combining climate and habitat) were located mainly in France (except
in the mountainous areas) and in the North of Italy, Spain and Portugal (Fig. S6). They represented 16.20% of the French
territory. Therefore, this refining led to a reduction of the predicted highly suitable area (>0.7) by 55.9%. The areas the most
concerned by this filtering were the pine forest in the south west of France and the Cantabria region of Spain.

4. Discussion

In this study, we suggest and illustrate a framework to select and combine continuous (e.g.: climatic) and categorical (e.g.:
habitat) variables, while respecting their scale of effect. This approach enabled us to select the seven most relevant climatic
variables to predict our species distribution, and identify 22 suitable habitats for this species. These habitats represent 72.6%
of Europe. We refined the climatic suitability map, using the habitat filter we constructed, which reduced the predicted
suitable area of the species by 55.9%.

4.1. Climatic drivers of the hornet

The choice of variables has an important impact on the predictions obtained when using SDM (Araújo and Peterson, 2012;
Austin and Van Niel, 2011; Braunisch et al., 2013). However, our study is the first to compare the accuracy of the predictions
obtained with different sets of climatic variables, while controlling for collinearity between them, to assess their relative
importance for the Asian hornet. Most studies simply rely on commonly used sets of variables in the literature, without
examination of their power in predicting their species distribution (Bessa et al., 2016; Medley, 2010; Villemant et al., 2011)
and therefore risk major overestimation of predictions. Our framework is thus highly valuable and applicable to any studies
relying on SDMs. The reliability of our ranking is further reinforced by the fact that it was similar for both accuracy measures
(TSS and AUC, Figs. S2eA) and across all modelling techniques used (Figs. S2eC). One must be careful when interpreting the
variables in terms of ecological meaning though; a powerful variable may be a proxy for another relevant variable, not
included in the model. Yet, this method enabled us to select the climatic predictors that produce the most accurate pre-
dictions, and which are likely to influence key phases of the life cycle of V. v. nigrithorax. Further tests could be done to assess
how well the climatic variables performances can be extrapolated spatially (in other continents) and temporally (in the
future).

It is noteworthy that this species being invasive, it may not be at equilibriumwith its environment, which may result in an
underestimated potential range (Gallien et al., 2012). Yet, it does not alter the climatic variables selection process. Our
method, that refines climatic prediction according to habitat suitability, is thus especially valuable in the context of biological
invasions. It enables the improvement of SDMs, which already provide conservative predictions of invasive species distri-
bution, and allows for more effectivemonitoring programs for these invasions. There are no such issues whenmodelling non-
invasive species distribution, which are considered at equilibrium with their environment, but our method remains none-
theless valuable to improve these predictions.

4.2. Habitat drivers for the hornet

Our framework also includes a method to construct habitat suitability filters for the studies species. Applying this to the
Asian hornet, we demonstrated the high suitability of anthropized environments for this species. This result is in accordance
with previous works, showing a positive correlation between the degree of urbanization and the abundance of V. v. nigrithorax
(Choi et al., 2012). But previous studies either failed to study the hornet-habitat relationship at a local scale or did not consider



Table 1
Ranking of the 21 suitable habitats for Vespa velutina nigrithorax. The ranking is based on the ratio between the observed number of nests and the
number expected by chance (obtained by random sampling). The higher the ratio, the more suitable the habitat. The Level of anthropization corresponds to
first level of classification of the Corine Land Cover database categories. The higher the level, the most anthropized the habitat (and the darker the shade); (1)
Water bodies; (2) Forests and natural areas, (3) Agricultural areas and (4) Artificial surfaces. Most of the suitable habitats are from the categories 3 and 4;
human mediated habitats seem crucial to shape the distribution of the Asian hornet.

A. Fournier et al. / Global Ecology and Conservation 12 (2017) 215e226222
a sufficiently high thematic resolution to make it applicable for management planning, or did not have access to enough
occurrences to identify general hornets-habitat patterns (Bessa et al., 2016; Choi et al., 2012; Monceau and Thi�ery, 2017).

The suitability of urban areas can be explained by the fact that buildings provide shelter for primary nest establishment
(Franklin et al., 2017), and that the hornet is an opportunistic forager attracted by food scraps (bins, market places with
seafood …) available in urban areas (Monceau and Thi�ery, 2017). Previous studies pointed out to the fact that honeybees
represent at least a third of V. velutina diet (Monceau et al., 2014). One hypothesis could be that the recent phenomenon of
placing high densities of beehives in cities increases the suitability of this habitat for the hornet, by providing it with abundant



Table 2
Ranking of the 16 land cover types unsuitable by Vespa velutina nigrithorax. The ranking is based on the ratio between the observed number of nests and
the number expected by chance (obtained by random sampling). The higher the ratio, the more suitable the habitat. The Level of anthropization corresponds
to first level of classification of the Corine Land Cover database categories. The higher the level, the most anthropized the habitat (and the darker the shade);
(1) Water bodies; (2) Forests and natural areas, (3) Agricultural areas and (4) Artificial surfaces. Only two of the unsuitable habitats belong to the artificial
surfaces habitat groups; the others are either agricultural or natural habitats.
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food sources. Our result is in accordance with Cabra-Rivas et al. (2015) and Monceau and Thi�ery (2017) work, which highlight
the relevance of including human mediated disturbances when modelling invasive species distribution.

Agricultural areas were alsomostly suitable for V. v. nigrithorax: especially complex and heterogeneous cultivation patterns
and fruit crops. These types of agricultural areas are mainly composed of small-sized fields associated with agroforestry units
(suitable nesting support and wood fibers for nest construction), and the types of crops grown on them - vineyards, fruits and
berry plantations - represent valuable food sources for the colony. Indeed, sugar and nectar are essential carbohydrates
sources for the founder queens, the workers and the males (Richter, 2000). Furthermore, these habitats have been proven to
host the great diversity and abundance of wild pollinators (Deguines et al., 2012), which also represent significant food
sources for the larvae. This result goes along with Franklin et al. (2017) observation that >75% of primary nests are found on
man-made structures, and 73% of the secondary nests are located in trees.

A strength of our result is that it is unlikely to be affected by observation biases. Indeed, we used data from two com-
plementary sampling protocols: a large-scale, citizen-based database and a local exhaustive search for nests in Chiz�e. Data
analyses from both samplingmethodswere concordant and showed the same habitats as suitable for the hornet. This enabled
us to conclude that the suitability of anthropized habitats, identified Europe wide, was unlikely due to a greater detection
probability in those areas. Yet, this analysis would benefit from complementary nest search to re-evaluate some habitats
suitabilities for the hornet. Altogether, there results provide a valuable management tool; knowing the suitability of each
habitat for the Asian hornet will help to efficiently detect nests, at a very local scale, and take action to mitigate this invasion.
4.3. Relevance of the multi-scale framework

Our method enabled us to filter the climatic prediction according to the suitability and availability of habitats present
locally; both drivers are complementary and combining these information is crucial to identify areas where special attention
is needed. SDMs that do not consider speciesehabitat relationships may produce unrealistic and overestimated predictions
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(Hattab et al., 2014). None of the previous studies on V. velutina distribution considered the species-habitat relationships,
which is particularly important at the scale at which the species can be monitored; the local scale (Barbet-Massin et al., 2013;
Hattab et al., 2014; Villemant et al., 2011). One hypothesis is that its dispersion results from a trade-off between the climate,
which operates at continental scale, and the habitat, which operates at local scale by regulating the availability of nesting and
foraging resources (Bucklin et al., 2014; Luoto et al., 2007; Sohl, 2014). From this perspective, it is critical to identify each
driver at the scale at which it significantly influences the distribution of the species; several kilometers for climate and around
a hundred meters for nesting and foraging resources (Milbau et al., 2009; Pearson et al., 2003).

Our framework considerably improves the accuracy of the prediction, which is highly valuable for invasive species
management planning, in order to efficiently measure local vulnerabilities, prioritize areas for early detection and control,
and limit their impact. The framework we propose here to integrate multi-scales filters goes beyond the simple description of
each driver's importance (Roura-Pascual et al., 2011), as it uses and combines them to refine the species distribution pre-
diction. It has a broad range of possible applications; it can be applied anywhere else, under current and future conditions, for
other species (invasive or not), to generate accuratemaps of potential establishment. It can be usedwith asmany predictors as
wanted, continuous or categorical, each relevant at a different resolution, to better suit the focal species. In this paper, we
illustrate the framework by upscaling the habitat filter to match the resolution of the climatic prediction (Fig. 1-B). According
to the management strategy, one could also do the opposite, and downscale the climatic suitability map, to match that of the
habitat filter. All filters, as long as they are built using information at the most relevant scale for the species distribution, can
be up- or down-scaled to be combined. For instance, instead of the percentage of favorable habitats per grid cells, one could
use other landscapemetrics if these are more relevant regarding the biology of the suited species (connectivity of the patches,
Shannon's Diversity Index, heterogeneity of the landscape …). Another application of our method could be to include biotic
interactions to refine the predictions; additional filters representing hosts, preys or predators could easily be combined to the
existing framework, or Bayesian networks could be coupled to SDMs (Staniczenko et al., 2017). Further analyses could also
consider species dispersal and demographic parameters (Keeling et al., 2017; Robinet et al., 2016) to refine the predictions.
Finally, combining future climate and land use changes (Rounsevell et al., 2006) datasets would be interesting, in order to
evaluate how the interplay between the two drivers will impact the focal species.
5. Conclusion

Following the recommendation of Milbau et al. (2009) to study invasibility at different scales, we propose a framework to
identify various drivers, respecting the scale at which they operate, and combine them to produce environmental suitability
maps. We used this framework to identify, for the first time, the most relevant climatic variables and the most suitable
habitats for the Asian hornet. This gave us a more comprehensive picture of the species environmental requirements in its
invasion range, and led to a refining of the predicted highly suitable areas by ~56%. Our method is generalizable to any taxa,
any scenarios of global change, and can be used to combine as many environmental layers as needed, by providing tools to
deal with both continuous and categorical layers. It takes us a step closer to capturing species full ecological niche, and
produce significantly more accurate distribution maps.
Data accessibility
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contacteznous?lg¼en and aggregated data (number of nests by 10 � 10 km grid cells) are freely available.
The output of our model, i.e. the environmental suitability in each grid cell in Europe. It is available at: http://max2.ese.u-

psud.fr/epc/conservation/pages/Franck/docs/env_suitability.csv.
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