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Abstract: In a regression model, we write the Nadaraya-Watson estimator
of the regression function as the quotient of two kernel estimators, and
propose a bandwidth selection method for both the numerator and the
denominator. We prove risk bounds for both data driven estimators and
for the resulting ratio. The simulation study confirms that both estimators
have good performances, compared to the ones obtained by cross-validation
selection of the bandwidth. However, unexpectedly, the single-bandwidth
cross-validation estimator is found to be much better than the ratio of the
previous two good estimators, in the small noise context. However, the two
methods have similar performances in models with large noise.
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1. Introduction

Consider n ∈ N\{0} independent random variables X1, . . . , Xn having the same
probability density f with respect to Lebesgue’s measure. Consider also the
random variables Y1, . . . , Yn defined by

Yi = b(Xi) + εi ; i ∈ {1, . . . , n},

where b is a measurable function from R into itself and ε1, . . . , εn are n i.i.d.
centered random variables with variance σ2 > 0 and independent of X1, . . . , Xn.
Since Nadaraya [15] and Watson [20], a lot of consideration has been given to
the estimator of b defined by

b̂n,h(x) :=

∑n
i=1K

(
Xi−x
h

)
Yi∑n

i=1K
(
Xi−x
h

) ; x ∈ R,

where K : R → R is a kernel, and h > 0 is the bandwidth. This estimator has
been dealt with as a weighted estimator, for K > 0:

b̂n,h(x) =

n∑
i=1

w
(i)
n,h(x)Yi, w

(i)
n,h(x) =

K
(
Xi−x
h

)∑n
i=1K

(
Xk−x
h

) ,
and is often called ”local average regression”. It is studied e.g. in Jones and Wand
[11], Györfi et al. [8] or defined in Tsybakov [19]. Recent papers still propose
methods to improve the estimation, see Chang et al. [3]. Several strategies have
been proposed to select the bandwidth in a data driven way. Cross-validation
based on leave-one-out principle is one of the most standard methods to perform
this choice (see Györfi et al. [8]), even if a lot of refinements have been proposed.
Optimal rates depend on the regularity of the function b and have been first
established by Stone [18]: roughly speaking, they are of order O(n−p/(2p+1))
for b admitting p derivatives. From theoretical point of view, the rates of the
adaptive final estimator are not always given, nor proved.
In this paper, we re-write the Nadaraya-Watson as the quotient of two estima-
tors, an estimator of bf divided by an estimator of f :

b̂fn,h(x) :=
1

nh

n∑
i=1

K

(
Xi − x
h

)
Yi

and

f̂n,h′(x) :=
1

nh′

n∑
i=1

K

(
Xi − x
h′

)
.
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Clearly, f̂n,h′ is the Parzen-Rosenblatt estimator of f (see Rosenblatt [17] and
Parzen [16]). The question we are interested in is the following one: can we choose
separately the two bandwidths in an adaptive way and obtain good performance
for each, and then for the ratio? This is why we study the estimator

b̂n,h,h′(x) :=
b̂fn,h(x)

f̂n,h′(x)
; x ∈ R

as an estimator of the regression function b, where h, h′ > 0 and K : R→ R is a
(not necessarily nonnegative) kernel. Thus, b̂n,h,h = b̂n,h is the initial Nadaraya-
Watson estimator of b with single bandwidth h. For this reason, the estimator
studied in this paper is called the two bandwidths Nadaraya-Watson (2bNW)
estimator.
Adaptive estimation of the density has been widely studied recently. A band-
width selection method has been proposed by Goldenschluger and Lepski [7],
and proved to reach the adequate bias-variance compromise. Implementation of
this method revealed to be difficult due to the choice of two constants involved in
the procedure, the intuition of which is not obvious. This is why the question was
further investigated by Lacour et al. [13]: they improve and modify the strategy
by using specific theoretical tools for their proofs. Precisely, thanks to a devia-
tion inequality for U-statistics proved by Houdré and Reynaud-Bouret [10], they
bound the Mean Integrated Square Error of their final estimator, which they call
PCO (Penalised Comparison to Overfitting) estimator. Numerically, the good
performance of their proposal has been illustrated in a naive way and for high
order kernels in Comte and Marie [5], and through a systematic numerical study
in Lacour et al. [14], including the multivariate case. These two methods and

the associated results are dedicated to the selection of h′ for f̂n,h′(x), and we

can use them. Unfortunately, the theoretical results do not apply to b̂fn,h(x),
mainly because they hold under a boundedness assumption: in our context, this
would lead to assume that the Yi’s are bounded. We do not want to require such
an assumption as it would exclude the case of Gaussian errors εi, for instance.
Thus, we give moment assumptions under which the Goldenshluger and Lepski
method on the one hand (see Section 3) and the PCO estimator on the other
hand (see Section 4) can be applied to the estimation of bf . When gathering
the results for the numerator and the denominator, we can bound the risk of
the quotient estimator of b.
Concretely, we implement the PCO method for bf and compare it with a cross-
validation (CV) strategy: in our examples, PCO almost always performs slightly
better than CV. Therefore, the PCO adaptive estimation strategies for f and
for bf are clearly good. However, unexpectedly, for small noise (σ = 0.1), the
quotient fails systematically to beat the specific regression CV method. Even if
we compare the classical single-bandwidth CV regression estimator to the ra-
tio of the oracles estimators of the numerator and the denominator, the former
wins, and we obtain a quotient with two bandwidths which is in mean much
less good than the CV estimator with single bandwidth. In practice, the band-
width selected by the CV algorithm in that case is very small, and associated to
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quite bad estimators of the numerator and of the denominator. This remark is
of important interest for practitioners. In a second time, we increased the noise
(σ = 0.7), and finally obtained results indicating that the two methods can have
similar Mean Integrated Squared Errors (MISE) in this more difficult context.
This, together with the fact we establish a theoretical risk bound on the PCO
adaptive 2bNW estimator, imply that the PCO method, for both numerator and
denominator, remains an interesting bandwidth selection method. Moreover, we
believe that both positive but also negative results are of interest, and detailed
tables, explanations and discussion are given in Section 5.

Notations:

1. For every square integrable functions f, g : R→ R,

(f ∗ g)(x) :=

∫ ∞
−∞

f(x− y)g(y)dy ; x ∈ R.

2. Kε := 1/εK(·/ε) for every ε > 0.

2. Bound on the MISE of the 2bNW estimator

First, we state some simple risk bound results in the case of a fixed bandwidth.

Consider β > 0 and ` := bβc, where bβc denotes the largest integer smaller
than β. In the sequel, the kernel K and the density function f fulfill the follow-
ing assumption.

Assumption 2.1.

(i) The map K belongs to L2(R, dy), K is bounded and
∫
RK(y)dy = 1.

(ii) The density function f is bounded.

Under this assumption, a suitable control of the MISE of b̂fn,h has been estab-
lished in Comte [4], Proposition 4.2.1.

Proposition 2.2. Under Assumption 2.1,

E(‖b̂fn,h − bf‖22) 6 ‖bf − (bf)h‖22 +
cK,Y
nh

where (bf)h := Kh ∗ (bf) and cK,Y := ‖K‖22E(Y 2
1 ).

In order to provide a suitable control on the MISE of the 2bNW estimator, we
assume that b and f fulfill the following assumption.

Assumption 2.3. The function b2f is bounded by a constant cb,f > 0.

Note that this assumption does not require that b is bounded and is satisfied in
most classical examples.
Moreover, for any S ∈ B(R), consider the norm ‖.‖2,f,S on L2(S, f(x)dx) defined
by

‖ϕ‖2,f,S :=

(∫
S
ϕ(x)2f(x)dx

)1/2

; ∀ϕ ∈ L2(S, f(x)dx).
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Proposition 2.4. Let mn be a positive real number and consider

Sn := {x ∈ R : f(x) > mn}.

Under Assumptions 2.1 and 2.3,

E(‖b̂n,h,h′−b‖22,f,Sn) 6
8cf
m2
n

(
‖bf − (bf)h‖22 +

cK,Y
nh

+ 2cb,f

(
‖f − fh′‖22 +

cK
nh′

))
where (bf)h := Kh ∗ (bf), fh′ = Kh′ ∗ f , cf := ‖f‖2∞ ∨ 1 and cK :=

∫
RK(y)2dy.

The idea behind Proposition 2.4 is that we cannot pretend to accurately estimate
b on domains where few Xi’s are observed. Such domains correspond to small
level of the density. For small mn, the set Sn excludes these cases.
Proposition 2.4 gives a decomposition of the risk of the quotient estimator as the
sum of the risks of the estimators of the numerator bf and of the denominator
f , up to the multiplicative constant 8cf/m

2
n. Therefore, the rate of the quotient

estimator is, in the best case, the worst rate of the two estimators used to define
it (see also Remark 2.5 below). The factor 1/m2

n may imply a global loss with
respect to this rate. Clearly, the smaller is mn, the larger is the loss.
For instance, if f is lower bounded by a known constant f0 on a given compact
set A, then we can take Sn = A and mn = f0. In that case, no loss occurs. If f0

is unknown, we still can bound the risk with Sn = A and 1/m2
n = log(n) for n

large enough. A log-loss occurs then in the rate.

Remark 2.5. We consider, for β, L > 0, the Nikol’ski ball H(β, L), defined as
the set of ` = bβc times continuously derivable functions ϕ : R → R such that
ϕ(`) satisfies[∫ ∞

−∞
(ϕ(`)(x+ t)− ϕ(`)(x))2dx

]1/2

6 L|t|β−` ; ∀t ∈ R.

For instance, for p ∈ N, any function ϕ ∈ Cp+1(R) such that supp(ϕ(p)) = [0, 1]
and ‖ϕ(p+1)‖∞ 6 L belongs to H(p+ 1, L). Indeed, for every t ∈ R+,∫ ∞
−∞

(ϕ(p)(x+ t)− ϕ(p)(x))2dx 6 t

∫ 1

−t

∫ x+t

x

ϕ(p+1)(z)21[0,1](z)dzdx

6 L2t

∫ 1

−t
((x+ t) ∧ 1− x ∨ 0)dx

= L2t

(∫ 1+t

0

(x ∧ 1)dx−
∫ 1

0

xdx

)
= L2t2.

More subtly, ψ : x 7→ e−x1R+
(x) belongs to H(1/2, 1). Indeed, for every t ∈ R+,∫ ∞

−∞
(ψ(x+ t)− ψ(x))2dx =

∫ ∞
−t

e−2(x+t)dx− 2

∫ ∞
0

e−t−2xdx+

∫ ∞
0

e−2xdx

= lim
x→∞

−1

2
[e−2t(e−2x − e2t)− 2e−t(e−2x − 1)

+e−2x − 1] = 1− e−t 6 t.
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Now, assume that bf belongs to H(β1, L) and f to H(β2, L). We also assume
that the kernel K satisfies Assumption 2.1 and is of order ` = bmax(β1, β2)c,
that is∫ ∞

−∞
|ukK(u)|du <∞ and

∫ ∞
−∞

ukK(u)du = 0 ; ∀k ∈ {1, . . . , `}.

Then, it follows from Tsybakov [19], Chapter 1, that

‖bf − (bf)h‖22 6 C(β1, L)h2β1 and ‖f − fh′‖22 6 C ′(β2, L)(h′)2β2 .

This implies that choosing hopt = c1n
1/(2β1+1) in Proposition 2.2 yields

E(‖b̂fn,hopt
− bf‖22) . n−2β1/(2β1+1),

which is a standard optimal rate of estimation on Nikol’ski balls. The same rate
holds for the estimation of f under our assumptions, with β1 replaced by β2,
and h′opt = c2n

1/(2β2+1). This implies that

‖bf − (bf)hopt
‖22 +

cK,Y
nhopt

+ 2cb,f

(
‖f − fh′

opt
‖22 +

cK
nh′opt

)
. max(n−2β1/(2β1+1), n−2β2/(2β2+1)).

So, the rate is optimal if β = min(β1, β2) is the regularity of b.
However, such bandwidth choices are not possible in practice, as they depend on
unknown regularity parameters. Data driven bandwidth selection methods are
settled to automatically reach a squared bias-variance compromise, inducing the
optimal rate if the function under estimation does belong to a regularity space.

3. A bandwidth selection procedure for the 2bNW estimator based
on the GL method

The bound on the MISE of b̂n,h,h′ obtained in Proposition 2.4 suggests to select
h and h′ separately, so that both bounds are minimal. The Goldenshluger-Lepski
method (see Goldenshluger and Lepski [7]) allows to do this for f̂n,h′ , but re-
quires to be extended to the estimator of bf . In particular, extensions of the
proof are required as we do not wish to assume that the Yi’s are bounded.

Consider the collection of bandwidths Hn := {h1, . . . , hN(n)} ⊂ [0, 1], where
N(n) ∈ {1, . . . , n} and

1

n
< h1 < · · · < hN(n).

Moreover, we will need the following conditions.

Assumption 3.1. There exists m > 0, not depending on n, such that

1

n

N(n)∑
i=1

1

hi
6 m,
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and for every c > 0, there exists m(c) > 0, not depending on n, such that

N(n)∑
i=1

1√
hi

exp

(
− c√

hi

)
6 m(c).

Example. Consider the dyadic bandwidths defined by

hi := 2−i ; ∀i = 0, 1, . . . ,

[
log(n)

log(2)

]
.

Then,

1

n

[log(n)/ log(2)]∑
i=1

2i 6
2n− 1

n
6 2

and
[log(n)/ log(2)]∑

i=1

2i/2 exp(−c2i/2) 6
n∑
i=1

√
i exp(−c

√
i) 6 m(c) <∞.

Thus, Assumption 3.1 is fulfilled.

Consider also

b̂fn,h,η(x) := (Kη ∗ b̂fn,h)(x)

=
1

n

n∑
i=1

Yi(Kη ∗Kh)(Xi − x).

We apply the Goldenshluger-Lepski bandwidth selection method to b̂fn,h by
solving the minimization problem

min
h∈Hn

{An(h) + Vn(h)} (1)

where

An(h) := sup
η∈Hn

(‖b̂fn,h,η − b̂fn,η‖22 − Vn(η))+ and Vn(h) := υ
cK,Y
nh
‖K‖21,

with υ > 0 not depending on n and h, and cK,Y = ‖K‖22E(Y 2
1 ). In the sequel,

the solution to the minimization Problem (1) is denoted by ĥn.
The idea behind the criterion is that An(h) is an estimate of the squared bias

term ‖(bf)h − bf‖22 and Vn(h) an estimate of the variance. So, ĥn makes the
compromise. See more details about the heuristics in Chagny [2], Section 4.4.

Theorem 3.2. Under Assumptions 2.1 and 3.1, if E(Y 6
1 ) <∞, then there exist

two deterministic constants c, c > 0, not depending on n, such that

E(‖b̂fn,ĥn
− bf‖22) 6 c · inf

h∈Hn

{‖(bf)h − bf‖22 + Vn(h)}+ c
log(n)2

n
.
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Theorem 3.2 states that b̂fn,ĥn
automatically leads to a compromise between the

squared bias (‖(bf)h−bf‖22) and the variance (Vn(h)) terms. The multiplicative
constant c, which is larger than one, is the price of the method but preserves
the rate. Lastly, the additive quantity c log(n)2/n is negligible with respect to
the possible rate of convergence (see Remark 2.5).
We recall now a version of the result proved by Goldenshluger and Lepski [7],
which is available for the estimator of f . See also a simplified proof in Comte
[4], Section 4.2. Let us consider

ĥ′n ∈ arg min
h′∈Hn

{A′n(h′) + V ′n(h′)},

where

A′n(h′) := sup
η∈Hn

(‖Kη ∗ f̂n,h′ − f̂n,η‖22 − V ′n(η))+ and V ′n(h′) := χ
‖K‖22‖K‖21

nh′

with χ > 0 not depending on n and h′. Under Assumptions 2.1 and 3.1, there
exist two deterministic constants c′, c′ > 0, not depending on n, such that

E(‖f̂n,ĥ′
n
− f‖22) 6 c′ · inf

h′∈Hn

{‖fh′ − f‖22 + V ′n(h′)}+
c′

n
(2)

Gathering (2) and Theorem 3.2 yields a Corollary similar to Proposition 2.4.

Corollary 3.3. Let mn be a positive real number and consider

Sn := {x ∈ R : f(x) > mn}.

Under Assumptions 2.1, 2.3 and 3.1, if E(Y 6
1 ) <∞, then

E(‖b̂n,ĥn,ĥ′
n
− b‖22,f,Sn) 6 Cn inf

(h,h′)∈H2
n

{‖(bf)h − bf‖22 + ‖fh′ − f‖22

+Vn(h) + V ′n(h′)}+ Cn
log(n)2

n
,

where

Cn :=
8cf
m2
n

(c ∨ (2cb,f c
′)) and Cn :=

8cf
m2
n

(c + 2cb,f c
′).

The comments following Proposition 2.4 and in Remark 2.5 apply here.

4. A bandwidths selection procedure for the 2bNW estimator based
on the PCO method

The Goldenshluger-Lepski method is mathematically very nice and provides a
rigorous risk bound for the adaptive estimator with random bandwidth. How-
ever, it has been acknowledged as being difficult to implement, due to the square
grid in h, η required to compute intermediate versions of the criterion and to
the lack of intuition to guide the choice of the constants υ and χ which should
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be calibrated from preliminary simulation experiments, see e.g. Comte and Re-
bafka [6]. This is the reason why Lacour et al. [13] investigated and proposed a
simplified criterion (PCO) relying on deviation inequalities for U -statistics due
to Houdré and Reynaud-Bouret [10]. This inequality applies in our more com-
plicated context and Lacour-Massart-Rivoirard’s result can be extended here as
follows.

Let us recall that Kh(·) = 1/hK(·/h) and

(bf)h = E(b̂fn,h) = Kh ∗ (bf)

(see Lemma 6.1). Let hmin be the smallest bandwidth value in Hn and consider

crit(h) := ‖b̂fn,h − b̂fn,hmin
‖22 + pen(h)

with

pen(h) :=
2〈Khmin ,Kh〉2

n2

n∑
i=1

Y 2
i .

Then, let us define
h̃n ∈ arg min

h∈Hn

crit(h).

The idea behind the proposal of Lacour et al. (2017) is that, instead of comparing

estimators b̂fn,h to a collection of estimators b̂fn,h,η for different bandwidths η,
it is sufficient to compare them to the same single estimator, corresponding to
the smallest bandwidth. See their Section 3.1 for more heuristic elements. This
implies a faster and more efficient numerical procedure.
In the sequel, in addition to Assumption 2.1, the kernel K, the functions b and
f , the distribution of Y1 and hmin fulfill the following assumption.

Assumption 4.1. The kernel K is symmetric and K(0) > 0,

1

nhmin
6 1,

bf is bounded, and there exists α > 0 such that E(exp(α|Y1|)) <∞.

As for Assumption 2.3, we can note that assuming bf bounded does not re-
quire b to be bounded, since most densities decrease fast at infinity. Moreover,
the moment condition here is E(exp(α|Y1|)) < ∞ and is stronger than for the
Goldenschluger and Lepski method (E(Y 6

1 ) <∞).

Theorem 4.2. Consider ϑ ∈ (0, 1). Under Assumptions 2.1 and 4.1, there exist
two deterministic constants a, b > 0, not depending on n, hmin and ϑ, such that

E(‖b̂fn,h̃n
−bf‖22) 6 (1+ϑ) inf

h∈Hn

E(‖b̂fn,h−bf‖22)+
a

ϑ
‖(bf)hmin

−bf‖22+
b

ϑ
· log(n)5

n
.
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Theorem 4.2 states that the estimator b̂fn,h̃n
has performance of order of the

best estimator of the collection infh∈Hn E(‖b̂fn,h− bf‖22) up to a factor (1 +ϑ).
Indeed, the two other terms can be considered as negligible. If bf is in the
Nikol’ski ball H(β1, L) as in Remark 2.5, then the first right-hand-side term is
of order n−2β1/(2β1+1). Since for hmin = 1/n, ‖(bf)hmin

− bf‖22 is of order n−2β1 ,
both this term and the last residual term log(n)5/n are negligible compared to
the first one.

Now, we state the result that can be deduced from Lacour et al. [13] for the
estimator of f . Let us consider

h̃′n ∈ arg min
h′∈Hn

crit′(h′),

where

crit′(h′) := ‖f̂n,h′ − f̂n,hmin
‖22 + pen′(h′) and pen′(h′) :=

2〈Khmin
,Kh〉2

n
.

By Lacour et al. [13], Theorem 2, there exists two deterministic constants a′, b′ >
0, not depending on n and hmin, such that for every ϑ ∈ (0, 1),

E(‖f̂n,h̃′
n
− f‖22) 6 (1 + ϑ) inf

h′∈Hn

E(‖f̂n,h′ − f‖22) +
a′

ϑ
‖fhmin − f‖22 +

b′

ϑn
.

Again, we can gather this last result and Theorem 4.2 to get the following
Corollary.

Corollary 4.3. Let mn be a positive real number and consider

Sn := {x ∈ R : f(x) > mn}.

Consider also ϑ ∈ (0, 1). Under Assumptions 2.1, 2.3 and 4.1,

E(‖b̂fn,h̃n,h̃′
n
− bf‖22,f,Sn) 6 (1 + ϑ)Cn(1, 1) inf

(h,h′)∈H2
n

{E(‖b̂fn,h − bf‖22)

+E(‖f̂n,h′ − f‖22)}

+
Cn(a, a′)

ϑ
(‖(bf)hmin

− bf‖22 + ‖fhmin
− f‖22)

+
Cn(b, b′)

ϑ
· log(n)5

n
,

where

Cn(u, v) :=
8cf
m2
n

(u ∨ (2cb,fv)) ; ∀u, v ∈ R.

The proof of Corollary 4.3 relies to the same arguments as the proof of Corollary
3.3 provided in Section 3.3, and is therefore omitted.
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5. Simulation study

For the noise, we consider ε ∼ σN (0, 1), with σ = 0.1 and σ = 0.7. For the
signal, we take either X ∼ N (0, 1) or X ∼ γ(3, 2)/5 (where the factor 5 is set
to keep the variance of X of order 1, as in the first case). For the function b, we
took functions with different features and regularities:

• b1(x) = exp(−x2/2),
• b2(x) = x2/4− 1,
• b3(x) = sin(πx),
• b4(x) = exp(−|x|).

We illustrate in Figures 1 and 2 the difference between a sample generated
with σ = 0.1 (small noise) and with σ = 0.7 (large noise), compared with the
functions to estimate. We can see that the first case is easy and that the second
one is very difficult. Notice that the vertical scales are different.
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Fig 1. Observations (Xi, Yi)16i6n for n = 1000 in the four cases of functions b1 to b4, with
small noise σ = 0.1, and true regression function in bold red.

5.1. Estimation of bf

The PCO method is implemented for f and bf with a kernel of order 7 (i.e.∫
xkK(x)dx = 0 for k = 1 to 7), defined by K(x) = 4n1(x)− 6n2(x) + 4n3(x)−

n4(x), where nj(.) is a Gaussian density with mean 0 and variance j. Note that,
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Fig 2. Observations (Xi, Yi)16i6n for n = 1000 in the four cases of functions b1 to b4, with
large noise σ = 0.7, and true regression function in bold red.

for nj,h(x) := 1/hnj(x/h), it holds that

〈ni,h1 , nj,h2〉2 =

∫ ∞
−∞

ni,h1(x)nj,h2(x)dx =
1√
2π
× 1√

ih2
1 + jh2

2

(3)

The bandwidth is selected among M = 75 equispaced values in between 0.01
and 1. All functions (true or estimated) are computed at 100 equispaced points
in the interquantile interval corresponding to the 2% and 98% quantiles of X.
The bandwidth is selected via the PCO criterion, where hmin = 0.01, and

crit(h) := ‖b̂fn,h−b̂fn,hmin
‖22+pen(h) with pen(h) :=

2〈Khmin
,Kh〉2

n2

n∑
i=1

Y 2
i .

Note that the bandwidth of the density estimator is selected as in Comte and
Marie [5], by minimizing

crit′(h) := ‖f̂n,h − f̂n,hmin
‖22 + 2pen′(h) with pen′(h) :=

2〈Khmin ,Kh〉2
n

.

The L2-norm is computed as a Riemann sum on the interquantile interval, while
the penalty is explicit and exact, thanks to Formula (3).

The cross-validation (CV) criterion for selecting the bandwidth of b̂fn,h is com-
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puted as follows:

CV (h) :=

∫
b̂fh(x)2dx− 2

n(n− 1)h

n∑
i=1

n∑
j=1,j 6=i

YiYjN

(
Xi −Xj

h

)
,

where N(.) is the Gaussian kernel, also used to compute the estimator b̂fn,h in

this case. It provides an estimation of ‖b̂fh‖22 − 2〈b̂fh, bf〉2 relying on the idea
that the empirical for 〈t, bf〉2 is 1/n

∑n
i=1 Yit(Xi). The chosen bandwidth is the

minimizer of CV (h) in the same collection as previously. Tables 1 and 2 give the

b1f b2f
n PCO CV Or PCO CV Or

250 0.33 0.37 0.16 0.32 0.38 0.15
(0.28) (0.82) (0.14) (0.28) (1.01) (0.14)

500 0.17 0.29 0.08 0.17 0.26 0.07
(0.13) (0.86) (0.07) (0.14) (1.10) (0.07)

1000 0.09 0.21 0.05 0.09 0.21 0.04
(0.07) (0.57) (0.04) (0.07) (0.60) (0.03)

b3f b4f
n PCO CV Or PCO CV Or

250 0.45 0.42 0.31 0.35 0.40 0.17
(0.25) (0.32) (0.17) (0.24) (0.81) (0.17)

500 0.23 0.35 0.15 0.20 0.39 0.11
(0.14) (0.88) (0.08) (0.13) (0.84) (0.06)

1000 0.12 0.24 0.09 0.11 0.19 0.07
(0.07) (0.55) (0.05) (0.07) (0.40) (0.04)

Table 1
100*MISE (with 100*std in parenthesis below) for the estimation of bf corresponding to the
four examples b1, . . . , b4, 200 repetitions, X ∼ N (0, 1) and σ = 0.1. Columns PCO and CV
correspond to the two competing methods. ”Or” is for ”oracle” and gives the average error

of the best possible estimator of the collection, computed for each sample.

MISE obtained for 200 repetitions and sample sizes 250, 500 and 1000, for the
estimation of bf with PCO and CV methods, for σ = 0.1 (Table 1) and σ = 0.7
(Table 2). The column ”Or” gives the mean of the minimal squared errors for
each sample, which requires to use the unknown true function and represents
what could be obtained at best (that is if the best possible bandwidth was
chosen for each sample). We postpone results with X ∼ γ(3, 2)/5 in Appendix
A since they are similar. We can see that the PCO method is globally better
than the CV, with no important difference, and the oracle shows that we are in
the right orders even if not at best.
Table 3 presents the mean of the selected bandwidths in each case PCO and
CV, and allows to compare it with the oracle bandwidth, for the same paths
and configurations as previously. The conclusion here is that, in mean, the PCO
method over-estimates the oracle bandwidth, while the CV method slightly
under-evaluates it. Clearly, the too-large choice gives better results.
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b1f b2f
n PCO CV Or PCO CV Or

250 0.56 0.70 0.30 0.51 0.92 0.28
(0.40) (1.44) (0.22) (0.33) (2.83) (0.22)

500 0.30 0.32 0.16 0.29 0.33 0.16
(0.23) (0.68) (0.13) (0.23) (0.60) (0.13)

1000 0.14 0.29 0.08 0.15 0.30 0.08
(0.10) (0.91) (0.06) (0.15) (1.14) (0.07)

b3f b4f
n PCO CV Or PCO CV Or

250 0.91 0.85 0.61 0.67 0.71 0.39
(0.60) (0.72) (0.37) (0.37) (1.09) (0.21)

500 0.45 0.47 0.32 0.38 0.33 0.22
(0.27) (0.77) (0.19) (0.21) (0.21) (0.13)

1000 0.21 0.30 0.16 0.21 0.27 0.12
(0.11) (0.63) (0.08) (0.12) (0.58) (0.06)

Table 2
100*MISE (with 100*std in parenthesis below) for the estimation of bf corresponding to the
four examples b1, . . . , b4, 200 repetitions, X ∼ N (0, 1) and σ = 0.7. Columns PCO and CV
correspond to the two competing methods. ”Or” is for ”oracle” and gives the average error

of the best possible estimator of the collection, computed for each sample.

5.2. Estimation of b

Now, we present the results for the estimation of the regression function b,
obtained either with a single-bandwidth estimator, or with the ratio of two
adaptive PCO estimators of bf and f .
The PCO estimators are the ones studied above, which proved to be good es-
timators (see also the study for the estimation of f in Comte and Marie [5]).
We simply take a point by point ratio of the two adaptive PCO estimators. The
oracle we refer to is computed with the estimator of b obtained as a quotient
of the two oracles of bf and f for each path. It is the best performance we can
expect with a PCO-ratio strategy.
For the one-bandwidth Nadaraya-Watson estimator b̂n,h, it is computed with
the Gaussian kernel N(.). The leave-one-out cross-validation criterion which is
minimized for the bandwidth selection is

CVNW(h) :=

n∑
i=1

(Yi − b(−i)n,h (Xi))
2

with

b
(−i)
n,h (x) :=

n∑
j=1,j 6=i

N((Xj − x)/h)∑n
k=1,k 6=iN((Xk − x)/h)

Yj .

5.2.1. Small noise case

We’ve started the study with σ = 0.1, which in our mind was an easy case
(see Figure 1). Table 4 presents the results for the estimation of b, either with
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b1f b2f
n PCO CV Or PCO CV Or

250 0.71 0.54 0.54 0.78 0.62 0.62
(0.14) (0.15) (0.08) (0.15) (0.17) (0.09)

500 0.62 0.47 0.51 0.70 0.54 0.28
(0.13) (0.14) (0.08) (0.15) (0.18) (0.08)

1000 0.55 0.41 0.47 0.63 0.50 0.54
(0.11) (0.14) (0.07) (0.12) (0.17) (0.07)

b3f b4f
n PCO CV Or PCO CV Or

250 0.35 0.28 0.31 0.57 0.39 0.37
(0.04) (0.05) (0.03) (0.17) (0.14) (0.07)

500 0.32 0.26 0.28 0.48 0.32 0.33
(0.04) (0.06) (0.03) (0.13) (0.14) (0.07)

1000 0.30 0.24 0.26 0.39 0.28 0.28
(0.03) (0.07) (0.03) (0.11) (0.11) (0.06)

Table 3
Means of selected bandwidths (with std in parenthesis below) for the estimation of bf , 200

repetitions, X ∼ N (0, 1), σ = 0.1.

b1 b2
n CV PCO Or CV PCO Or

250 0.34 2.80 1.15 0.43 3.41 1.37
(0.19) (2.80) (1.04) (0.24) (3.98) (2.77)

500 0.19 1.44 0.61 0.23 1.49 0.58
(0.08) (1.05) (0.53) (0.12) (1.83) (1.28)

1000 0.10 0.74 0.37 0.13 0.53 0.26
(0.05) (0.51) (0.31) (0.05) (0.58) (0.28)

b3 b4
n CV PCO Or CV PCO Or

250 1.34 7.93 6.30 0.39 2.87 1.22
(0.75) (5.09) (4.72) (0.18) (2.07) (0.69)

500 0.66 4.42 2.96 0.22 1.72 0.81
(0.31) (2.58) (2.09) (0.09) (0.94) (0.45)

1000 0.30 2.30 1.65 0.12 0.92 0.48
(0.08) (1.24) (1.01) (0.04) (0.55) (0.21)

Table 4
100*MISE (with 100*std in parenthesis below) for the estimation of bi, i = 1, . . . , 4, 200
repetitions, X ∼ N (0, 1), σ = 0.1. CV and PCO are the two competing methods. Column
”Or” gives the average of ISE for the ratio of the two best estimators of bf and f in the

collection.
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n b1 b2 b3 b4
250 0.13 0.13 0.06 0.10

(0.02) (0.03) (0.01) (0.02)
500 0.12 0.11 0.05 0.09

(0.02) (0.02) (0.01) (0.01)
1000 0.11 0.09 0.05 0.08

(0.01) (0.02) (0.01) (0.01)

Table 5
Mean of selected bandwidth (with std in parenthesis below) with the CV method for

NW-single bandwidth estimator of b, σ = 0.1.
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Fig 3. Small bandwidth effect, the ratio of two bad estimators is a good estimator. For band-
width h = 0.01 and n = 1000, true (bold) and estimated f (left), b1f (middle), and b1 (right).
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the CVNW criterion, with ratio of PCO of bf and f , or with the ratio of the
best estimators of bf and f in the collection. More precisely, the column ”Or”
gives here the MISE computed with the estimator of b obtained as a quotient
of the two oracles of bf and f in each example and for each sample path.
Clearly, the performance of the Nadaraya-Watson cross-validation criterion is
much better, within a multiplicative factor from 2 and up to 6. The variance of
the quotient estimators (oracle and PCO) are large, which shows that the mean
performance is probably deteriorated by a few very bad results. However, the
result is puzzling: even the ratio of the two best estimators of the numerator and
denominator does not reach the good performance of the single-bandwidth CV
method. Table 5 shows in addition that the selected bandwidths are in mean
very small. We can check that the ratio of this bad numerator divided by a bad
denominator fits well to the b quotient function: this is illustrated by Figure
3. It is likely that both imply a compensation resulting in a locally, and thus
also globally, better estimate. We can notice that the selected bandwidth also
decrease more slowly when n increases (see Table 5) than for the estimator of
bf (see Table 3). Our explanation (see the heuristic Remark 5.1 below) is that
the risk of the Nadaraya-Watson estimator behaves as C(h2α + σ2/(nh)), for
some α > 0 related to the regularity of b, like in the projection least-squares
method (see e.g. Baraud [1]). In the small noise case, σ2 makes the variance
term negligible, so that the bandwidth selection method aims at having small
bias term h2α. On the other hand, the risk decomposition of the estimator of
bf involves a variance term of order ‖K‖22E(Y 2

1 )/(nh), and in all our examples,
empirical evaluations of E(Y 2) is in the range [0.34, 0.70], making the ratio with
σ2 between 34 and 70. In other words, the variance term for this estimator is
34 to 70 times larger. This is why it is important to investigate large noise case
and a less favorable signal to noise ratio.

5.2.2. Large noise case

When setting σ = 0.7, the empirical order of E(Y 2) for the four models is be-
tween 0.91 and 1.31, which divided by σ2 gives now a value between 1.85 and
2.67. This is much smaller than previously. This corresponds to a more difficult
estimation problem, as can be seen from Figure 2.
We now comment the results given in Table 6. The MISE are quite larger, but in
Figure 4, we show examples of estimated curves in this case, and the associated
orders of MISEs, computed for 25 repetitions; they are not as good as for small
noise, but still reasonable. The results in Table 6 show that the MISE have now
the same orders, and the oracles can be much better than the results of the
Nadarya-Watson estimator. The selected bandwidths are larger and decreasing
with n (see Table 7 in Appendix).

The conclusion of this study is that adaptive estimation of functions with kernel
estimators and bandwidth selection relying on the PCO method proposed by
Lacour et al. [13] gives very good results in theory and practice, not only for
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b1 b2
n CV PCO Or CV PCO Or

250 7.81 9.02 6.54 8.32 8.61 5.18
(5.32) (5.86) (5.13) (6.02) (6.67) (4.87)

500 4.33 4.34 3.25 4.57 4.83 3.02
(3.09) (2.71) (2.15) (2.86) (4.07) (2.58)

1000 2.26 2.19 1.72 2.38 2.13 1.40
(1.37) (1.30) (1.16) (1.39) (2.04) (1.15)

b3 b4
n CV PCO Or CV PCO Or

250 16.2 18.5 14.8 7.84 9.36 7.89
(8.47) (10.3) (9.06) (4.94) (4.62) (4.94)

500 8.54 9.28 7.58 4.41 5.01 4.23
(3.58) (5.26) (4.41) (2.83) (2.31) (2.27)

1000 4.54 4.62 3.87 2.40 2.85 2.35
(1.81) (2.35) (2.18) (1.28) (1.42) (1.20)

Table 6
100*MISE (with 100*std in parenthesis below) for the estimation of bi, i = 1, . . . , 4, 200
repetitions, X ∼ N (0, 1), σ = 0.7. CV and PCO are the two competing methods. Column
”Or” gives the average of ISE for the ratio of the two best estimators of bf and f in the

collection.

density estimation. However, for regression function estimation, one bandwidth
selected with a criterion directly suited to the regression function is safer than
the two different bandwidths selected when considering the Nadaraya-Watson
estimator as a quotient of two functions that may be estimated separately. The
results are not bad, but the strategy must be devoted to more complicated
contexts where direct estimators of b are not feasible.

Remark 5.1. Note that if h = h′, which means that b̂n,h,h′ is the usual Nadaraya-

Watson estimator b̂n,h,

b̂n,h(x) =

n∑
i=1

w
(i)
n,h(x)εi with w

(i)
n,h(x) :=

K((Xi − x)/h)∑n
j=1K((Xj − x)/h)

.

Then,

b̂n,h(x)− b(x) =

n∑
i=1

w
(i)
n,h(x)(b(Xi)− b(x)) +

n∑
i=1

w
(i)
n,h(x)εi,

and for a nonnegative kernel with compact support [−1, 1], if the regression func-
tion b is Lispchitz continuous, then

E[(̂bn,h(x)− b(x))2] 6 Ch2 + σ2E

(
n∑
i=1

w
(i)
n,h(x)2

)
.

Moreover,

E

(
n∑
i=1

w
(i)
n,h(x)2

)
=

1

nh
E
( 1

nh

∑n
i=1K((Xi − x)/h)2

[ 1
nh

∑n
i=1K((Xi − x)/h)]2

)
,
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and for a fixed h > 0, by the law of large numbers,

1

nh

n∑
i=1

K

(
Xi − x
h

)2
a.s.−−−−→
n→∞

1

h
E

[
K

(
X1 − x
h

)2
]

=

∫ ∞
−∞

K(u)2f(x+ uh)du

and[
1

nh

n∑
i=1

K

(
Xi − x
h

)]2

a.s.−−−−→
n→∞

E
[

1

h
K

(
X1 − x
h

)]2

=

[∫ ∞
−∞

K(u)f(x+ uh)du

]2

.

Then, for small h, the first limit has order ‖K‖22f(x) and the second one has

order f2(x). To sum up, the risk of b̂n,h(x) is heuristically of order Ch2 +
σ2‖K‖22f(x)/(nh). This explains why, for small σ2, the variance term gets small
and the estimator can choose small bandwidth to make the bias as small as
possible.
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Fig 4. Example of 25 estimated b with large noise σ = 0.7, n = 1000, true b in bold red,
estimated b with sign-bandwidth CV selection (dotted green, left) and with ratio of PCO
(dotted green, right) for functions 1 and 3. 100*MSE(100 std) are 2.62(1.64) and 2.87(2.41)
(top) ; 4.71(1.74) and 5.49(2.85).
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6. Proofs

6.1. Proof of Proposition 2.4

On the one hand, by Comte [4], Proposition 3.3.1,

E(‖f̂n,h′ − f‖22) 6 ‖f − fh′‖22 +
cK
nh′

(4)

and, by Proposition 2.2,

E(‖b̂fn,h − bf‖22) 6 ‖bf − (bf)h‖22 +
cK,Y
nh

(5)

For the proof of Inequality (4), the reader can also refer to Tsybakov [19]. On
the other hand,

b̂n,h,h′ − b =

(
b̂fn,h − bf
f̂n,h′

+ bf

(
1

f̂n,h′
− 1

f

))
1f̂n,h′ (.)>mn/2

− b1f̂n,h′ (.)6mn/2
.

Then,

‖b̂n,h,h′ − b‖22,f,Sn

6
8c1
m2
n

(
‖b̂fn,h − bf‖22 +

∫ ∞
−∞

b(x)2f(x)|f̂n,h′(x)− f(x)|2dx
)

+2

∫
Sn
b(x)2f(x)1|f̂n,h′ (x)−f(x)|>mn/2

dx

with c1 := ‖f‖∞ ∨ ‖f‖2∞.

By Markov’s inequality,

E(‖b̂n,h,h′ − b‖22,f,Sn) 6
8c1
m2
n

(E(‖b̂fn,h − bf‖22) + cb,fE(‖f̂n,h′ − f‖22))

+2cb,f

∫
Sn

P
(
|f̂n,h′(x)− f(x)| > mn

2

)
dx

6
8(c1 ∨ 1)

m2
n

(E(‖b̂fn,h − bf‖22) + 2cb,fE(‖f̂n,h′ − f‖22)).

Inequalities (4) and (5) allow to conclude.

6.2. Proof of Theorem 3.2

First, let us prove the following lemma.

Lemma 6.1. Consider

(bf)h := Kh ∗ (bf) and (bf)h,η := Kη ∗Kh ∗ (bf).

Then,

E(b̂fn,h(x)) = (bf)h(x) and E(b̂fn,h,η(x)) = (bf)h,η(x).
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Proof. Since E(εk) = 0 and Xk and εk are independent for every k ∈ {1, . . . , n},

E(b̂fn,h(x)) =
1

n

n∑
k=1

E(b(Xk)Kh(Xk − x)) +
1

n

n∑
k=1

E(εk)E(Kh(Xk − x))

=

∫ ∞
−∞

Kh(y − x)b(y)f(y)dy = (bf)h(x)

and

E(b̂fn,h,η(x)) =
1

n

n∑
k=1

E(b(Xk)(Kη ∗Kh)(Xk − x))

+
1

n

n∑
k=1

E(εk)E((Kη ∗Kh)(Xk − x))

=

∫ ∞
−∞

(Kη ∗Kh)(y − x)b(y)f(y)dy = (bf)h,η(x).

Since
ĥn ∈ arg min

h∈Hn

{An(h) + Vn(h)},

for every h ∈ Hn,

E(‖b̂fn,ĥn
− bf‖22) 6 3E(‖b̂fn,h − bf‖22) + 6Vn(h) + 6E(An(h)) (6)

Let us find a suitable control of E(An(h)). First of all, for any h, η ∈ Hn,

‖b̂fn,h,η − b̂fn,η‖22 6 3(‖b̂fn,h,η − (bf)h,η‖22
+‖b̂fn,η − (bf)η‖22 + ‖(bf)h,η − (bf)η‖22).

Then,

An(h) 6 3

[
sup
η∈Hn

(
‖b̂fn,h,η − (bf)h,η‖22 −

Vn(η)

6

)
+

(7)

+ sup
η∈Hn

(
‖b̂fn,η − (bf)η‖22 −

Vn(η)

6

)
+

+ ‖(bf)h,η − (bf)η‖22

]
.

On the one hand,

‖(bf)h,η − (bf)η‖2 = ‖Kη ∗ (Kh ∗ (bf)− bf)‖2 6 ‖K‖1‖bf − (bf)h‖2.

On the other hand, let C be a countable and dense subset of the unit sphere of
L2(R, dx) and consider m(n) > 0. Then, by Lemma 6.1,

E

[
sup
η∈Hn

(
‖b̂fn,η − (bf)η‖22 −

Vn(η)

6

)
+

]

6
∑
η∈Hn

E

((
sup
ψ∈C

2Vn,η(ψ)2 − Vn(η)

6

)
+

)
+ 2

∑
η∈Hn

E(Wn,η)
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where, for any ψ ∈ C,

Vn,η(ψ) :=
1

n

n∑
k=1

(vψ,n,η(Xk, Yk)− E(vψ,n,η(Xk, Yk)))

with

vψ,n,η(x, y) := y1|y|6m(n)

∫ ∞
−∞

ψ(u)Kη(x− u)du ; ∀(x, y) ∈ R2,

and

Wn,η :=
1

n

n∑
k=1

∫ ∞
−∞
|Yk1|Yk|>m(n)Kη(Xk−u)−E(Yk1|Yk|>m(n)Kη(Xk−u))|2du.

In order to apply Talagrand’s inequality (see Klein and Rio [12]), we compute
bounds.

• For every ψ ∈ C, x ∈ R and y ∈ [−m(n),m(n)],

|vψ,n,η(x, y)| 6 |y|
∫ ∞
−∞
|ψ(u)| · |Kη(u− x)|du

6 |y| · ‖Kη(· − x)‖2 6
m(n)‖K‖2√

η
.

Then,

sup
ψ∈C
‖vψ,n,η‖∞ 6 m1(n, η) :=

m(n)‖K‖2√
η

.

• By Proposition 2.4 and Lemma 6.1,

E

(
sup
ψ∈C

Vn,η(ψ)2

)
6

∫ ∞
−∞

var(b̂fn,η(u))du

6 m2(n, η) :=
cK,Y
nη

.

• For any ψ ∈ C and k ∈ {1, . . . , n},

var(vψ,n,η(Xk, Yk))

6 E

(∣∣∣∣Yk ∫ ∞
−∞

ψ(u)Kη(Xk − u)du

∣∣∣∣2
)

6 E((Kη ∗ ψ)(X1)4)1/2E(Y 4
1 )1/2 6 ‖f‖1/2∞ ‖Kη ∗ ψ‖24E(Y 4

1 )1/2.

By Young’s inequality, ‖Kη ∗ ψ‖4 6 ‖ψ‖2‖Kη‖4/3. So,

var(vψ,n,η(Xk, Yk)) 6 m3 :=
mf,K√
η

with mf,K := ‖f‖1/2∞ ‖K‖24/3E(Y 4
1 )1/2.
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By applying Talagrand’s inequality to (vψ,n,η)ψ∈C and to the independent ran-
dom variables (X1, Y1), . . . , (Xn, Yn), there exist three constants c1, c2, c3 > 0,
not depending on n and η, such that

E
((

sup
ψ∈C

Vn,η(ψ)
2 − 4m2(n, η)

)
+

)

6 c1

(
m3

n
exp

(
−c2

nm2(n, η)

m3

)
+

m1(n, η)
2

n2
exp

(
−c3

nm2(n, η)
1/2

m1(n, η)

))
= c1

[
mf,K

n
√
η

exp

(
− c2cK,Y
mf,K

√
η

)
+

1

n2η
m(n)2‖K‖22 exp

(
−
√
n
c3E(Y 2

1 )
1/2

m(n)

)]
.

By taking m(n) := c3E(Y 2
1 )1/2n1/2/ log(n)1/2,

E

((
sup
ψ∈C

Vn,η(ψ)2 − 4m2(n, η)

)
+

)

6
c1
n

[
mf,K√
η

exp

(
− c2cK,Y
mf,K

√
η

)
+
c23E(Y 2

1 )‖K‖22
ηn log(n)

]
.

By the conditional Markov inequality,

E(Wn,η) 6
∫ ∞
−∞

E(Y 2
1 1|Y1|>m(n)Kη(X1 − z)2)dz

=
‖K‖22
η
· E(Y 2

1 E(1|Y1|>m(n)|Y1))

6
‖K‖22
ηm(n)4

E(Y 6
1 ) = c−4

3 E(Y 2
1 )−2E(Y 6

1 )‖K‖22
log(n)2

n2η
.

Finally, for υ > 48,
Vn(η)

12
> 4m2(n, η).

Then, since

1

n

∑
η∈Hn

1

η
6 m, and

∑
η∈Hn

1
√
η

exp

(
− c
√
η

)
6 m(c) ; ∀c > 0,

there exists a constant c4 > 0, not depending on n, such that

E

[
sup
η∈Hn

(
‖b̂fn,η − (bf)η‖22 −

Vn(η)

6

)
+

]

6 2
∑
η∈Hn

E

[(
sup
ψ∈C

Vn,η(ψ)2 − 4m2(n, η)

)
+

]
+ 2

∑
η∈Hn

E(Wn,η)

6 c4
log(n)2

n
(8)
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The same ideas give that there exists a constant c5 > 0, not depending on n
and h, such that

E

[
sup
η∈Hn

(
‖b̂fn,h,η − (bf)h,η‖22 −

Vn(η)

6

)
+

]
6 c5

log(n)2

n
(9)

Therefore, by Inequalities (6)–(9), there exist two deterministic constants c, c >
0, not depending on n, such that

E(‖b̂fn,ĥn
− bf‖22) 6 c · inf

h∈Hn

{‖(bf)h − bf‖22 + Vn(h)}+ c
log(n)2

n
.

6.3. Proof of Corollary 3.3

As established in the proof of Proposition 2.4,

‖b̂n,ĥn,ĥ′
n
− b‖22,f,Sn

6
8c1
m2
n

(
‖b̂fn,ĥn

− bf‖22 + cb,f

∫ ∞
−∞
|f̂n,ĥ′

n
(x)− f(x)|2dx

)
+2cb,f

∫
Sn

1|f̂
n,ĥ′

n
(x)−f(x)|>mn/2

dx

with c1 := ‖f‖∞ ∨ ‖f‖2∞. By Markov’s inequality,

E(‖b̂n,ĥn,ĥ′
n
− b‖22,f,Sn) 6

8c1
m2
n

(E(‖b̂fn,ĥn
− bf‖22) + cb,fE(‖f̂n,ĥ′

n
− f‖22))

+2cb,f

∫
Sn

P
(
|f̂n,ĥ′

n
(x)− f(x)| > mn

2

)
dx

6
8(c1 ∨ 1)

m2
n

(E(‖b̂fn,ĥn
− bf‖22)

+2cb,fE(‖f̂n,ĥ′
n
− f‖22)).

Theorem 3.2 and Inequality (2) allow to conclude.

6.4. Proof of Theorem 4.2

The proof relies on three lemmas, which are stated first.

Lemma 6.2. Consider the U -statistic

Un(h, hmin) :=
∑
k 6=l

〈YkKh(Xk − ·)− (bf)h, YlKhmin
(Xl − ·)− (bf)hmin

〉2.
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Under Assumption 2.1, if there exists α > 0 such that E(exp(α|Y1|)) <∞, then
there exists a deterministic constant cU > 0, not depending on n and hmin, such
that for every ϑ ∈ (0, 1),

E
(

sup
h∈Hn

{
|Un(h, hmin)|

n2
− ϑ‖K‖22

nh
E(Y 2

1 )

})
6 cU

log(n)5

ϑn
.

Lemma 6.3. For every η, η′ ∈ Hn, consider

Vn(η, η′) := 〈b̂fn,η − (bf)η′ , (bf)η′ − bf〉2.

Under Assumption 2.1, if there exists α > 0 such that E(exp(α|Y1|)) < ∞ and
bf is bounded, then there exists a deterministic constant cV > 0, not depending
on n and hmin, such that for every ϑ ∈ (0, 1),

E
(

sup
η,η′∈Hn

{|Vn(η, η′)| − ϑ‖(bf)η′ − bf‖22}
)

6 cV
log(n)3

ϑn
.

Lemma 6.4. Under Assumption 2.1, if bf is bounded and if there exists α > 0
such that E(exp(α|Y1|)) <∞, then there exists a deterministic constant cL > 0,
not depending on n and hmin, such that for every ϑ ∈ (0, 1),

E
(

sup
h∈Hn

{
‖(bf)h − bf‖22 +

cK,Y
nh
− 1

1− ϑ
‖b̂fn,h − bf‖22

})
6

cL
ϑ(1− ϑ)

· log(n)5

n
.

6.4.1. Steps of the proof.

The proof of Theorem 4.2 is dissected in three steps.

Step 1. In this step, a suitable decomposition of

‖b̂fn,h̃n
− bf‖22

is provided. On the one hand,

‖b̂fn,h̃n
− bf‖22 + pen(h̃n)

= ‖b̂fn,h̃n
− b̂fn,hmin

‖22 + pen(h̃n)

+‖b̂fn,hmin
− bf‖22 − 2〈b̂fn,hmin

− b̂fn,h̃n
, b̂fn,hmin

− bf〉2.

Since

h̃n ∈ arg min
h∈Hn

crit(h) with crit(h) = ‖b̂fn,h − b̂fn,hmin
‖22 + pen(h),

for any h ∈ Hn,

‖b̂fn,h̃n
− bf‖22 6 ‖b̂fn,h− bf‖22 + pen(h)− 2ψn(h)− (pen(h̃n)− 2ψn(h̃n)) (10)
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with
ψn(h) := 〈b̂fn,hmin

− bf, b̂fn,h − bf〉2.

On the other hand,

ψn(h) = ψ1,n(h) + ψ2,n(h) + ψ3,n(h)

where

ψ1,n(h) :=
〈Khmin ,Kh〉2

n2

n∑
k=1

Y 2
k +

Un(h, hmin)

n2
,

ψ2,n(h) := − 1

n2

(
n∑
k=1

Yk〈Khmin
(Xk − ·), (bf)h〉2

+

n∑
k=1

Yk〈Kh(Xk − ·), (bf)hmin
〉2

)
+

1

n
〈(bf)hmin

, (bf)h〉2 and

ψ3,n(h) := Vn(h, hmin) + Vn(hmin, h) + 〈(bf)h − bf, (bf)hmin
− bf〉2.

Step 2. In this step, let us provide some suitable controls of

E(ψi,n(h)) and E(ψi,n(h̃n)) ; i = 1, 2, 3.

1. Consider

ψ̃1,n(h) := ψ1,n(h)− 〈Khmin
,Kh〉2

n2

n∑
k=1

Y 2
k =

U(h, hmin)

n2
.

By Lemma 6.2,

E(|ψ̃1,n(h)|) 6 θ‖K‖22
nh

E(Y 2
1 ) +

2cU
θ
· log(n)5

n

and

E(|ψ̃1,n(h̃n)|) 6 E
(
θ‖K‖22
nh̃n

)
E(Y 2

1 ) +
2cU
θ
· log(n)5

n
.

2. On the one hand, for every η, η′ ∈ Hn, consider

Ψ2,n(η, η′) :=
1

n

n∑
k=1

Yk〈Kη(Xk − ·), (bf)η′〉2.

Then,

E
(

sup
η,η′∈Hn

|Ψ2,n(η, η′)|
)

6 E
(
|Y1| sup

η,η′∈Hn

∫ ∞
−∞
|Kη(X1 − u)(bf)η′(u)|du

)
6 E(Y 2

1 )1/2‖K‖21‖bf‖∞.
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On the other hand,

sup
η,η′∈Hn

|〈(bf)η, (bf)η′〉2| 6 sup
η,η′∈Hn

‖Kη ∗ (bf)‖2‖Kη′ ∗ (bf)‖2

6 ‖K‖21‖bf‖22 6 E(Y 2
1 )1/2‖K‖21‖bf‖∞.

Then,

E(|ψ2,n(h)|) 6 3

n
E(Y 2

1 )1/2‖K‖21‖bf‖∞

and

E(|ψ2,n(h̃n)|) 6 3

n
E(Y 2

1 )1/2‖K‖21‖bf‖∞.

3. By Lemma 6.3,

E(|ψn,3(h)|) 6
θ

2
(‖(bf)h − bf‖22 + ‖(bf)hmin

− bf‖22) + 4cV
log(n)3

θn

+

(
θ

2

)1/2

‖(bf)h − bf‖2 ×
(

2

θ

)1/2

‖(bf)hmin − bf‖2

6 θ‖(bf)h − bf‖22 +

(
θ

2
+

2

θ

)
‖(bf)hmin

− bf‖22

+4cV
log(n)3

θn

and

E(|ψn,3(h̃n)|) 6 θE(‖(bf)h̃n
− bf‖22)

+

(
θ

2
+

2

θ

)
‖(bf)hmin − bf‖22 + 4cV

log(n)3

θn
.

Step 3. Consider

ψ̃n(h) := ψn(h)− 〈Khmin
,Kh〉2

n2

n∑
k=1

Y 2
k .

By Step 2, there exists a deterministic constant cU,V > 0, not depending on n,
h and hmin, such that

E(|ψ̃n(h)|) 6 θ
(
‖(bf)h − bf‖22 +

cK,Y
nh

)
+
cU,V
θ
· log(n)5

n
+

(
θ

2
+

2

θ

)
‖(bf)hmin − bf‖22

and

E(|ψ̃n(h̃n)|) 6 θ

[
E(‖(bf)h̃n

− bf‖22) + E
(
cK,Y

nh̃n

)]
+
cU,V
θ
· log(n)5

n
+

(
θ

2
+

2

θ

)
‖(bf)hmin

− bf‖22.
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Then, by Lemma 6.4,

E(|ψ̃n(h)|) 6
θ

1− θ
E(‖b̂fn,h − bf‖22) +

(
θ

2
+

2

θ

)
‖(bf)hmin

− bf‖22

+

(
cU,V
θ

+
cL

1− θ

)
log(n)5

n

and

E(|ψ̃n(h̃n)|) 6
θ

1− θ
E(‖b̂fn,h̃n

− bf‖22) +

(
θ

2
+

2

θ

)
‖(bf)hmin

− bf‖22

+

(
cU,V
θ

+
cL

1− θ

)
log(n)5

n
.

By Inequality (10), there exist two deterministic constant c1, c2 > 0, not de-
pending on n, h and hmin, such that

E(‖b̂fn,h̃n
− bf‖22) 6 E(‖b̂fn,h − bf‖22) + 2(E(|ψ̃n(h)|) + E(|ψ̃n(h̃n)|))

6

(
1 +

2θ

1− θ

)
E(‖b̂fn,h − bf‖22)

+
2θ

1− θ
E(‖b̂fn,h̃n

− bf‖22)

+
c1
θ
‖(bf)hmin

− bf‖22 +
c2

θ(1− θ)
· log(n)5

n
.

This concludes the proof.

6.4.2. Proof of Lemma 6.2

Consider
∆n := {(k, l) ∈ {1, . . . , n} : 2 6 k and l < k}

and Zk := (Xk, Yk) for every k ∈ {1, . . . , n}.

On the one hand, consider n ∈ N such that m(n) := 4 log(n)/α > 1 and

U1,n(h, hmin) :=

n∑
k=2

∑
l<k

(Gn,h,hmin(Zk, Zl) +Gn,hmin,h(Zk, Zl))

where, for every η, η′ ∈ {h, hmin} and z, z′ ∈ R2,

Gn,η,η′(z, z
′) :=

〈z21|z2|6m(n)Kη(z1 − ·)− (bf)n,η, z
′
21|z′2|6m(n)Kη′(z

′
1 − ·)− (bf)n,η′〉2

and
(bf)n,η := E(Y11|Y1|6m(n)Kη(X1 − ·)).
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For every η, η′ ∈ {h, hmin} and (k, l) ∈ ∆n,

E(Gn,η,η′(Zk, Zl)|Zk) =

∫ ∞
−∞

(Yk1|Yk|6m(n)Kη(Xk − z)− (bf)n,η(z))

×E(Yl1|Yl|6m(n)Kη′(Xl − z)− (bf)n,η′(z))dz = 0.

So, by Houdré and Reynaud-Bouret [10], Theorem 3.4, there exists a universal
constant e > 0 such that

P(|U1,n(h, hmin)| > e(cnλ
1/2 + dnλ+ bnλ

3/2 + anλ
2)) 6 5.54e−λ (11)

where the constants an, bn, cn and dn will be defined and controlled in the
sequel.

• The constant an. Consider

an := sup
(z,z′)∈R2×R2

An(z, z′),

where

An(z, z′) := |Gn,h,hmin
(z, z′) +Gn,hmin,h(z, z′)| ; ∀z, z′ ∈ R2.

First, note that for every η ∈ Hn,

‖(bf)n,η‖1 6 E(|Y1|1|Y1|6m(n))‖K‖1 6 m(n)‖K‖1

and

‖(bf)n,η‖∞ 6
m(n)‖K‖∞

η
.

For any z, z′ ∈ R× [−m(n),m(n)],

An(z, z′) 6 〈z2Kh(z1 − ·)− (bf)n,h, z
′
2Khmin

(z′1 − ·)− (bf)n,hmin
〉2

+〈z2Khmin
(z1 − ·)− (bf)n,hmin

, z′2Kh(z′1 − ·)− (bf)n,h〉2
6 2(m(n)‖Khmin

‖∞ + ‖(bf)n,hmin
‖∞)

×(m(n)‖K‖1 + ‖(bf)n,h‖1)

6
8‖K‖1‖K‖∞

hmin
m(n)2.

Therefore,
anλ

2

n2
6

8‖K‖1‖K‖∞
n2hmin

m(n)2λ2.

• The constant bn. Consider

b2
n := nmax

{
sup
z∈R2

E(Gn,h,hmin(z, Z1)2) ; sup
z∈R2

E(Gn,hmin,h(z, Z1)2)

}
.

First, note that for every η ∈ Hn,

‖(bf)n,η‖22 6
m(n)2‖K‖22

η
.
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For any η, η′ ∈ {h, hmin} and z ∈ R× [−m(n),m(n)],

E(Gn,η,η′(z, Z1)2)

6 ‖z2Kη(z1 − ·)− (bf)n,η‖22

×
∫ ∞
−∞

E(|Y11|Y1|6m(n)Kη′(X1 − u)− (bf)n,η′(u)|2)du

6
2‖K‖22
η

m(n)2

∫ ∞
−∞

var(Y11|Y1|6m(n)Kη′(X1 − u))du

6
2‖K‖42
ηη′

E(Y 2
1 )m(n)2.

Therefore, for any θ ∈ (0, 1),

bnλ
3/2

n2
6
√

2 · ‖K‖22
n3/2(hhmin)1/2

E(Y 2
1 )1/2m(n)λ3/2

6 2

(
3e

θ

)1/2 ‖K‖2
nh

1/2
min

m(n)λ3/2 ×
(
θ

3e

)1/2 ‖K‖2
n1/2h1/2

E(Y 2
1 )1/2

6
3e‖K‖22
θn2hmin

m(n)2λ3 +
θ‖K‖22
3enh

E(Y 2
1 ).

• The constant cn. Consider

c2n :=
∑

(k,l)∈∆n

E(|Gn,h,hmin(Zk, Zl) +Gn,hmin,h(Zk, Zl)|2).

First, note that for every η ∈ Hn,

‖(bf)n,η‖∞ 6 m(n)‖f‖∞‖K‖1.

For any η, η′ ∈ {h, hmin} and (k, l) ∈ ∆n,

E(Gn,η,η′(Zk, Zl)
2) 6 4(m(n)2E(〈Kη(Xk − ·),Kη′(Xl − ·)〉22Y 2

l )

+‖(bf)n,η‖2∞E(Y 2
l ‖Kη′(Xl − ·)‖21)

+‖(bf)n,η′‖2∞E(Y 2
k ‖Kη(Xk − ·)‖21)

+‖(bf)n,η‖2∞‖(bf)n,η′‖21)

6 4m(n)2(E(〈Kη(Xk − ·),Kη′(Xl − ·)〉22Y 2
l )

+3‖f‖2∞‖K‖41E(Y 2
1 )).

Moreover,

E(〈Kη(Xk − ·),Kη′(Xl − ·)〉22Y 2
l ) = σ2E((Kη ∗Kη′)(Xk −Xl)

2)

+E((Kη ∗Kη′)(Xk −Xl)
2b(Xl)

2)

6 σ2‖f‖∞‖Kη ∗Kη′‖22
+‖f‖∞E(b(X1)2)‖Kη ∗Kη′‖22

6
‖f‖∞‖K‖21‖K‖22

η
E(Y 2

1 ).



F. Comte and N. Marie/On a Nadaraya-Watson Estimator with Two Bandwidths 31

Then, there exists a universal constant c1 > 0 such that

c2n 6 c1n
2‖f‖∞‖K‖21m(n)2E(Y 2

1 )

(
‖K‖22
h

+ 3‖f‖∞‖K‖21
)
.

Therefore, since m(n) is larger than 1, there exists a universal constant
c2 > 0 such that

cnλ
1/2

n2
6
θ‖K‖22
3enh

E(Y 2
1 ) +

c2
nθ
‖f‖∞‖K‖21m(n)2(λ1/2 + λ).

• The constant dn. Consider

dn := sup
(α,β)∈S

∑
(k,l)∈∆n

E((Gh,hmin
(Zk, Zl) +Ghmin,h(Zk, Zl))αk(Zk)βl(Zl)),

where

S :=

{
(α, β) :

n∑
k=2

E(αk(Zk)2) 6 1 and

n−1∑
l=1

E(βl(Zl)
2) 6 1

}
.

For any (α, β) ∈ S,∑
(k,l)∈∆n

E(Gh,hmin(Zk, Zl)αk(Zk)βl(Zl)) 6 D2(α, β) sup
u∈R

D1(α, β, u)

with, for every u ∈ R,

D1(α, β, u) :=

n∑
k=2

E(|αk(Zk)(Yk1|Yk|6m(n)Kh(Xk − u)− (bf)n,h(u))|)

6 E

( n∑
k=2

αk(Zk)2

)1/2

×

(
n∑
k=2

|Yk1|Yk|6m(n)Kh(Xk − u)− (bf)n,h(u)|2
)1/2


6

(
n∑
k=2

E(αk(Zk)2)

)1/2

×

(
n∑
k=2

E(Y 2
k 1|Yk|6m(n)Kh(Xk − u)2)

)1/2

6
‖f‖1/2∞ ‖K‖2

h1/2
n1/2m(n)
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and

D2(α, β)

:=

n−1∑
l=1

E
(
|βl(Zl)|

∫ ∞
−∞
|Yl1|Yl|6m(n)Khmin(Xl − u)− (bf)n,hmin(u)|du

)

6
√
2

(
n−1∑
l=1

E(βl(Zl)2)
)1/2

×

(
n−1∑
l=1

[E(Y 2
l ‖Khmin(Xl − ·)‖

2
1) + ‖(bf)n,hmin‖

2
1]

)1/2

6
√
2 · ‖K‖1E(Y 2

1 )
1/2n1/2.

Then,

dn 6 2n
‖K‖2‖K‖1‖f‖1/2∞

h1/2
E(Y 2

1 )1/2m(n).

Therefore,

dnλ

n2
6 2×

(
θ

3e

)1/2 ‖K‖2
(nh)1/2

E(Y 2
1 )1/2 ×

(
3e

θ

)1/2 ‖K‖1‖f‖1/2∞
n1/2

m(n)λ

6
θ‖K‖22
3enh

E(Y 2
1 ) +

3e‖K‖21‖f‖∞
θn

m(n)2λ2.

So, there exist two universal constants c3, c4 > 0 such that, with probability
larger than 1− 5.54e−λ,

|U1,n(h, hmin)|
n2

6
θ‖K‖22
nh

E(Y 2
1 )

+c3

(
‖K‖1‖K‖∞
n2hmin

m(n)2

(
λ3

θ
+ λ2

)
+
‖f‖∞‖K‖21

nθ
m(n)2(λ2 + λ+ λ1/2)

)
6

θ‖K‖22
nh

E(Y 2
1 )

+
c4
θ

(
‖K‖1‖K‖∞
n2hmin

+
‖f‖∞‖K‖21

n

)
m(n)2(1 + λ)3.

Then, with probability larger than 1− 5.54|Hn|e−λ,

Sn(hmin) 6
c4
θ

(
‖K‖1‖K‖∞
n2hmin

+
‖f‖∞‖K‖21

n

)
m(n)2(1 + λ)3

where

Sn(hmin) := sup
h∈Hn

{
|U1,n(h, hmin)|

n2
− θ‖K‖22

nh
E(Y 2

1 )

}
.
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For every s ∈ R+, consider

λ(s) := −1 +

(
s

m(n, hmin, θ)

)1/3

,

where

m(n, hmin, θ) :=
c4
θ

(
‖K‖1‖K‖∞
n2hmin

+
‖f‖∞‖K‖21

n

)
m(n)2.

Then, for any A > 0,

E(Sn(hmin)) 6 A+

∫ ∞
A

P(Sn(hmin) > s)ds

6 A+ 5.54c5|Hn|m(n, hmin, θ) exp

(
− A1/3

2m(n, hmin, θ)1/3

)
where

c5 :=

∫ ∞
0

e1−s1/3/2ds.

Since there exists a deterministic constant c6 > 0, not depending on n and hmin

such that

m(n, hmin, θ) 6 c6
log(n)2

n
,

by taking A := 23c6 log(n)5/n,

E(Sn(hmin)) 6 23c6
log(n)5

n
+ 5.54c5m(n, hmin, θ)

|Hn|
n

.

Therefore, since |Hn| 6 n, there exists a deterministic constant c7 > 0, not
depending on n and hmin, such that

E
(

sup
h∈Hn

{
|U1,n(h, hmin)|

n2
− θ‖K‖22

nh
E(Y 2

1 )

})
6

c7
θ
· log(n)5

n
.

On the other hand,

Un(h, hmin) =

4∑
i=1

Ui,n(h, hmin)

where, for i = 2, 3, 4,

Ui,n(h, hmin) :=
∑
k 6=l

gin,h,hmin
(Zk, Zl)

with

g2
n,h,hmin

(z, z′) := 〈z21|z2|6m(n)Kh(z1 − ·), z′21|z′2|>m(n)Khmin
(z′1 − ·)〉2,

g3
n,h,hmin

(z, z′) := 〈z21|z2|>m(n)Kh(z1 − ·), z′21|z′2|6m(n)Khmin(z′1 − ·)〉2 and

g4
n,h,hmin

(z, z′) := 〈z21|z2|>m(n)Kh(z1 − ·), z′21|z′2|>m(n)Khmin(z′1 − ·)〉2
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for every z, z′ ∈ R2. Consider k, l ∈ {1, . . . , n} such that k 6= l. By Markov’s
inequality,

E
(

sup
h∈Hn

|g2
n,h,hmin

(Zk, Zl)|
)

6 m(n)
∑
h∈Hn

∫ ∞
−∞

E(|Kh(Xk − u)|)E(|Yl|1|Yl|>m(n)|Khmin
(Xl − u)|)du

6 m(n)|Hn| · ‖f‖∞‖K‖21E(Y 2
1 )1/2P(exp(α|Y1|) > n4)1/2

6 ‖f‖∞‖K‖21E(Y 2
1 )1/2E(exp(α|Y1|))1/2m(n)

n2
|Hn|.

Then, there exists a deterministic constant c8 > 0, not depending on n and
hmin, such that

E
(

sup
h∈Hn

|U2,n(h, hmin)|
n2

)
6 c8

log(n)

n
.

The same ideas give that there exists a deterministic constant c9 > 0, not
depending on n and hmin, such that

E
(

sup
h∈Hn

|U3,n(h, hmin)|
n2

)
6 c9

log(n)

n
.

For i = 4, by Markov’s inequality,

E
(

sup
h∈Hn

|g4
n,h,hmin

(Zk, Zl)|
)

6
∑
h∈Hn

∫ ∞
−∞

E(|Yk|1|Yk|>m(n)|Kh(Xk − u)|)

×E(|Yl|1|Yl|>m(n)|Khmin
(Xl − u)|)du

6
‖K‖∞
hmin

E(|Yl|1|Yl|>m(n))

×
∑
h∈Hn

∫ ∞
−∞

E(|Yk|1|Yk|>m(n)|Kh(Xk − u)|)du

6
‖K‖∞‖K‖1

hmin
|Hn| · E(Y 2

1 )P(|Y1| > m(n))

6 ‖K‖∞‖K‖1E(Y 2
1 )E(exp(α|Y1|))

1

n4hmin
|Hn|.

Then, there exists a deterministic constant c10 > 0, not depending on n and
hmin, such that

E
(

sup
h∈Hn

|U4,n(h, hmin)|
n2

)
6 c10

log(n)

n3hmin
.

Therefore,

E
(

sup
h∈Hn

{
|Un(h, hmin)|

n2
− θ‖K‖22

nh
E(Y 2

1 )

})
6

cU
θ
· log(n)5

n
.
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6.4.3. Proof of Lemma 6.3

Consider m(n) := 4 log(n)/α. For any η, η′ ∈ Hn,

Vn(η, η′) = V1,n(η, η′) + V2,n(η, η′)

where

Vi,n(η, η′) :=
1

n

n∑
k=1

(giη,η′(Xk, Yk)− E(giη,η′(Xk, Yk))) ; i = 1, 2

with, for every x, y ∈ R,

g1
η,η′(x, y) := 〈yKη(x− ·), (bf)η′ − bf〉21|y|6m(n)

and
g2
η,η′(x, y) := 〈yKη(x− ·), (bf)η′ − bf〉21|y|>m(n).

In order to apply Bernstein’s inequality to g1
η,η′(Xk, Yk), k = 1, . . . , n, let us

find suitable controls of

cη,η′ :=
‖g1
η,η′‖∞

3
and vη,η′ := E(g1

η,η′(X1, Y1)2).

On the one hand, since ‖K‖1 > 1 and bf is bounded,

cη,η′ =
1

3
sup
x,y∈R

|〈yKη(x− ·), (bf)η′ − bf〉21|y|6m(n)|

6
m(n)

3
‖(bf)η′ − bf‖∞ sup

x∈R
‖Kη(x− ·)‖1

6
m(n)

3
‖K‖1(‖K‖1 + 1)‖bf‖∞ 6

2

3
m(n)‖K‖21‖bf‖∞.

On the other hand,

vη,η′ = E(〈Y1Kη(X1 − ·), (bf)η′ − bf〉221|Y1|6m(n))

= E

(
Y 2

1 1|Y1|6m(n)

∣∣∣∣∫ ∞
−∞

Kη(X1 − u)((bf)η′(u)− (bf)(u))du

∣∣∣∣2
)

6 m(n)2‖f‖∞‖K‖21‖(bf)η′ − bf‖22.

So, by Bernstein’s inequality, there exists a universal constant c1 > 0 such that
with probability larger than 1− 2e−λ,

|V1,n(η, η′)| 6

√
2λ

n
vη,η′ +

λ

n
cη,η′

6 θ‖(bf)η′ − bf‖22 + c1
m(n)2

θn
‖K‖21(‖f‖∞ + ‖bf‖∞)λ.
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Then, with probability larger than 1− 2|Hn|2e−λ,

Sn 6 c1
m(n)2

θn
‖K‖21(‖f‖∞ + ‖bf‖∞)λ

where
Sn := sup

η,η′∈Hn

{|V1,n(η, η′)| − θ‖(bf)η′ − bf‖22}.

For every s ∈ R+, consider

λ(s) :=
s

m(n, θ)
with m(n, θ) := c1

m(n)2

θn
‖K‖21(‖f‖∞ + ‖bf‖∞).

Then, for any A > 0,

E(Sn) 6 A+

∫ ∞
A

P(Sn > s)ds

6 A+ 2c2|Hn|2m(n, θ) exp

(
− A

2m(n, θ)

)
where

∫∞
0
e−s/2ds = 2. Since there exists a deterministic constant c3 > 0, not

depending on n and hmin such that

m(n, θ) 6 c3
log(n)2

n
,

by taking A := 4c3 log(n)3/n,

E(Sn) 6 4c3
log(n)3

n
+ 2c2m(n, θ)

|Hn|
n2

.

Therefore, since |Hn| 6 n, there exists a deterministic constant c4 > 0, not
depending on n and hmin, such that

E
(

sup
η,η′∈Hn

{|V1,n(η, η′)| − θ‖(bf)η′ − bf‖22}
)

6
c4
θ
· log(n)3

n
.

Now, let us find a suitable control of

v2,n := E
(

sup
η,η′∈Hn

|V2,n(η, η′)|
)
.

By Markov’s inequality,

v2,n 6 2E
(

sup
η∈Hn

|Z2,1(η, η′)|
)

6 2E(Y 2
1 1|Y1|>m(n))

1/2

×E

(
sup

η,η′∈Hn

∣∣∣∣∫ ∞
−∞

Kη(X1 − u)((bf)η′(u)− (bf)(u))du

∣∣∣∣2
)1/2

6 2E(Y 4
1 )1/4P(exp(α|Y1|) > n4)1/4‖K‖1 sup

η′∈Hn

‖(bf)η′ − bf‖∞

6 2E(Y 4
1 )1/4E(exp(α|Y1|))1/4‖K‖21‖bf‖∞

1

n
.
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Therefore,

E
(

sup
η,η′∈Hn

{|Vn(η, η′)| − θ‖(bf)η′ − bf‖22}
)

6 cV
log(n)3

θn
.

6.4.4. Proof of Lemma 6.4

First of all,

‖(bf)h − bf‖22 = ‖b̂fn,h − bf‖22 − ‖b̂fn,h − (bf)h‖22 − 2Vn(h, h).

Then, for any θ ∈ (0, 1/2),

(1− 2θ)
(
‖(bf)h − bf‖22 +

cK,Y
nh

)
− ‖b̂fn,h − bf‖22

6 2(|Vn(h, h)| − θ‖(bf)h − bf‖22) + Λn(h)− 2θ
cK,Y
nh

(12)

where

Λn(h) :=
∣∣∣‖b̂fn,h − (bf)h‖22 −

cK,Y
nh

∣∣∣
=

∣∣∣∣Un(h, h)

n2
+
Wn(h)

n
− 1

n
‖(bf)h‖22

∣∣∣∣
with

Wn(h) :=
1

n

n∑
k=1

(Zk(h)− E(Zk(h)))

and
Zk(h) := ‖YkKh(Xk − ·)− (bf)h‖22 ; ∀k ∈ {1, . . . , n},

because

E(Z1(h)) = σ2

∫ ∞
−∞

E(Kh(X1 − u)2)du+

∫ ∞
−∞

E(b(X1)2Kh(X1 − u)2)du

−2

∫ ∞
−∞

E(b(X1)Kh(X1 − u))(bf)h(u)du+

∫ ∞
−∞

(bf)h(u)2du

=
‖K‖22
h

(σ2 + E(b(X1)2))− ‖(bf)h‖22 =
cK,Y
h
− ‖(bf)h‖22.

Consider m(n) := 2 log(n)/α and note that Wn(h) = W1,n(h) +W2,n(h), where

Wi,n(h) :=
1

n

n∑
k=1

(gih(Xk, Yk)− E(gih(Xk, Yk))) ; i = 1, 2

with, for every x, y ∈ R,

g1
h(x, y) := ‖yKh(x− ·)− (bf)h‖221|y|6m(n)
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and
g2
h(x, y) := ‖yKh(x− ·)− (bf)h‖221|y|>m(n).

Note also that

‖(bf)h‖2 6 ‖Kh‖2
∫ ∞
−∞
|b(x)|f(x)dx 6

‖K‖2
h1/2

E(|b(X1)|) 6
( cK,Y

h

)1/2

and

‖(bf)h‖2 6 ‖Kh‖1
(∫ ∞
−∞

b(x)2f(x)2dx

)1/2

6 ‖K‖1‖f‖1/2∞ E(b(X1)2)1/2.

In order to apply Bernstein’s inequality to g1
h(Xk, Yk), k = 1, . . . , n, let us find

suitable controls of

ch :=
‖g1
h‖∞
3

and vh := E(g1
h(X1, Y1)2).

On the one hand,

ch =
1

3
sup
x,y∈R

‖yKh(x− ·)− (bf)h‖221|y|6m(n)

6
2

3

(
m(n)2 ‖K‖22

h
+

cK,Y
h

)
.

On the other hand,

vh 6 2E(Z1(h)(‖Y1Kh(X1 − ·)‖221|Y1|6m(n) + ‖(bf)h‖22))

6
2

h
E(Z1(h))(‖K‖22m(n)2 + cK,Y ) 6 2(‖K‖22 + cK,Y )

cK,Y
hhmin

m(n)2.

So, by Bernstein’s inequality, there exists a universal constant c1 > 0 such that
with probability larger than 1− 2e−λ,

|W1,n(h)| 6

√
2λ

n
vh +

λ

n
ch

6 θ
cK,Y
h

+ c1
m(n)2

θnhmin
(‖K‖22 + cK,Y )λ.

Then, with probability larger than 1− 2|Hn|e−λ,

Sn(hmin) 6 c1
m(n)2

θn2hmin
(‖K‖22 + cK,Y )λ

where

Sn(hmin) := sup
h∈Hn

{
|W1,n(h)|

n
− θ cK,Y

nh

}
.
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For every s ∈ R+, consider

λ(s) :=
s

m(n, hmin, θ)
with m(n, hmin, θ) := c1

m(n)2

θn2hmin
(‖K‖22 + cK,Y ).

Then, for any A > 0,

E(Sn(hmin)) 6 A+

∫ ∞
A

P(Sn(hmin) > s)ds

6 A+ 2c2|Hn|m(n, hmin, θ) exp

(
− A

2m(n, hmin, θ)

)
where c2 :=

∫∞
0
e−s/2ds = 2. Since there exists a deterministic constant c3 > 0,

not depending on n and hmin, such that

m(n, θ) 6 c3
log(n)2

n
,

by taking A := 2c3 log(n)3/n,

E(Sn(hmin)) 6 2c3
log(n)3

n
+ 2c2m(n, hmin, θ)

|Hn|
n

.

Therefore, since |Hn| 6 n, there exists a deterministic constant c4 > 0, not
depending on n and hmin, such that

E
(

sup
h∈Hn

{
|W1,n(h)|

n
− θ cK,Y

nh

})
6

c4
θ
· log(n)3

n
.

Now, by Markov’s inequality,

E
(

sup
h∈Hn

|W2,n(h)|
n

)
6

2

n
E
(

sup
h∈Hn

|Z1(h)|1|Y1|>m(n)

)
6

4

n
E
(

sup
h∈Hn

(‖Y1Kh(X1 − ·)‖22 + ‖(bf)h‖22)1|Y1|>m(n)

)
6

4

nhmin
(‖K‖22E(Y 4

1 )1/2 + cK,Y )P(|Y1| > m(n))1/2

6 4(‖K‖22E(Y 4
1 )1/2 + cK,Y )E(exp(α|Y1|))1/2 1

θn2hmin
.

Then, there exists a deterministic constant c5 > 0, not depending on n and
hmin, such that

E
(

sup
h∈Hn

{
|Wn(h)|

n
− θ cK,Y

nh

})
6

c5
θ
· log(n)3

n
.
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Therefore, by Lemma 6.2, there exists a deterministic constant c6 > 0, not
depending on n and hmin, such that

E
(

sup
h∈Hn

{
Λn(h)− 2θ

cK,Y
nh

})
6

cU
θ
· log(n)5

n
+

c5
θ
· log(n)3

n

+
1

n
‖K‖21‖f‖∞E(b(X1)2)

6
c6
θ
· log(n)5

n
.

Moreover, by Lemma 6.3,

E
(

sup
h∈Hn

{|Vn(h, h)| − θ‖(bf)h − bf‖22}
)

6
cV
θ
· log(n)3

n
.

In conclusion, by Inequality (12),

E
(

sup
h∈Hn

{
‖(bf)h − bf‖22 +

cK,Y
nh
− 1

1− 2θ
‖b̂fn,h − bf‖22

})
6

cL
θ(1− 2θ)

· log(n)5

n
.
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Appendix A: Additional simulation results

n b1 b2 b3 b4
250 0.32 0.29 0.14 0.32

(0.09) (0.08) (0.03) (0.10)
500 0.29 0.25 0.12 0.27

(0.07) (0.06) (0.02) (0.08)
1000 0.25 0.22 0.10 0.22

(0.05) (0.04) (0.01) (0.05)
Table 7

Mean of selected bandwidth (with std in parenthesis below) with the CV method for
NW-single bandwidth estimator of b, σ = 0.7, X ∼ N (0, 1), 200 repetitions.
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b1f b2f
n PCO CV Or PCO CV Or

250 0.39 0.46 0.20 0.51 0.57 0.25
(0.35) (0.56) (0.19) (0.44) (0.81) (0.23)

500 0.19 0.27 0.10 0.27 0.32 0.13
(0.16) (0.37) (0.09) (0.21) (0.38) (0.13)

1000 0.11 0.18 0.06 0.15 0.23 0.07
(0.09) (0.30) (0.05) (0.12) (0.44) (0.06)

b3f b4f
n PCO CV Or PCO CV Or

250 0.61 0.71 0.42 0.20 0.22 0.10
(0.37) (0.70) (0.27) (0.16) (0.26) (0.09)

500 0.31 0.34 0.22 0.10 0.13 0.05
(0.18) (0.30) (0.14) (0.08) (0.17) (0.04)

1000 0.16 0.24 0.11 0.05 0.08 0.03
(0.11) (0.41) (0.07) (0.04) (0.10) (0.02)

Table 8
100*MISE (with 100*std in parenthesis below) for the estimation of bf , 200 repetitions,

X ∼ γ(3, 2)/5 and σ = 0.1. Same columns as in Table 1.

b1f b2f
n PCO CV Or PCO CV Or

250 0.91 0.85 0.49 0.83 0.93 0.47
(0.84) (0.74) (0.40) (0.74) (1.24) (0.36)

500 0.43 0.44 0.23 0.47 0.48 0.25
(0.30) (0.39) (0.17) (0.32) (0.53) (0.19)

1000 0.22 0.23 0.13 0.24 0.24 0.13
(0.14) (0.23) (0.07) (0.16) (0.22) (0.09)

b3f b4f
n PCO CV Or PCO CV Or

250 1.21 1.18 0.80 0.66 0.60 0.37
(0.87) (0.86) (0.54) (0.55) (0.49) (0.29)

500 0.56 0.55 0.39 0.34 0.32 0.18
(0.30) (0.42) (0.22) (0.25) (0.29) (0.14)

1000 0.28 0.29 0.20 0.17 0.17 0.07
(0.16) (0.26) (0.12) (0.11) (0.17) (0.07)

Table 9
100*MISE (with 100*std in parenthesis below) for the estimation of bf , 200 repetitions,

X ∼ γ(3, 2)/5 and σ = 0.7. Same columns as in Table 1.
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b1 b2
n CV PCO Or CV PCO Or

250 0.22 0.66 0.39 0.56 8.75 1.74
(0.15) (0.42) (0.34) (0.78) (39.2) (2.50)

500 0.11 0.30 0.17 0.43 1.35 0.67
(0.06) (0.23) (0.14) (0.16) (2.29) (0.91)

1000 0.07 0.15 0.09 0.12 0.38 0.28
(0.05) (0.09) (0.09) (0.08) (0.41) (0.30)

b3 b4
n CV PCO Or CV PCO Or

250 1.07 7.50 3.80 0.24 0.59 0.38
(1.42) (20.6) (4.17) (0.16) (0.28) (0.28)

500 0.42 2.38 1.72 0.13 0.33 0.19
(0.26) (1.67) (1.50) (0.07) (0.15) (0.13)

1000 0.21 1.05 0.74 0.08 0.19 0.11
(0.11) (0.67) (0.56) (0.05) (0.08) (0.08)

Table 10
100*MISE (with 100*std in parenthesis below) for the estimation of bi, i = 1, . . . , 4, 200

repetitions, X ∼ γ(3, 2)/5, σ = 0.1. CV and PCO are the two competing methods. Column
”Or” gives the average of ISE for the ratio of the two best estimators of bf and f in the

collection.

b1 b2
n CV PCO Or CV PCO Or

250 4.86 7.99 6.42 6.77 16.0 7.08
(4.72) (9.41) (7.65) (6.04) (43.7) (8.63)

500 2.58 2.87 3.12 3.74 3.85 3.37
(2.18) (2.19) (2.95) (4.06) (4.06) (2.88)

1000 1.51 1.35 1.47 1.94 1.62 1.67
(1.42) (1.16) (1.19) (1.69) (1.68) (1.53)

b3 b4
n CV PCO Or CV PCO Or

250 10.6 19.4 11.1 4.54 7.15 6.29
(10.6) (19.4) (11.1) (4.37) (7.95) (9.28)

500 5.71 5.84 5.51 2.52 2.84 2.97
(3.45) (5.26) (7.10) (2.16) (2.07) (2.89)

1000 3.17 2.70 2.47 1.50 1.38 1.41
(2.02) (1.69) (1.61) (1.44) (1.14) (1.17)

Table 11
100*MISE (with 100*std in parenthesis below) for the estimation of bi, i = 1, . . . , 4, 200

repetitions, X ∼ γ(3, 2)/5, σ = 0.7. CV and PCO are the two competing methods. Column
”Or” gives the average of ISE for the ratio of the two best estimators of bf and f in the

collection.
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