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Abstract 

The combined LIBS and ICP HRMS analysis of 13 tea samples are studied in view of identification of 

tea geographical origin. The elemental signature provided by LIBS spectra is treated by principal 

component analysis followed by partial least square discriminant analysis and factorial discriminant 

analysis. Selected element lines are found efficient to discriminate most sample groups. Data analysis 

model is improved by variable selection and the isotopic ratio 11B/10B was employed to improve the 

prediction capacity of the model. The alkaline earth: Ba, Ca, Mg, Sr and alkaline Rb, Na are easily 

detected by the LIBS system and these elements are important to classify sample according to their 

geographical origin. Minor elements like P, S, Fe, B … also bring discriminant information.  A five 

clusters model gave best correct identification in a cross validation test (94.2%). This method also 

allowed to identify the origin of four unknown teas. In this study the use of FDA or PLS DA after the 

PCA examination of the LIBS/ICP MS data led to similar conclusions for fast classification of the tea 

samples and identification of the geographical origin of the four unknown teas. 
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1. Introduction 

Food analysis faces different challenges, one is related to toxic element determination to control 

human exposure and avoid intoxications. The occurrence of toxic elements may originate from their 

conditioning the growth procedure as well as from the raw product itself. The determination of toxic 

elements faces strict regulation and measurement of very low concentrations (below µg/kg) is often 

required [1]. 

The second challenge is a commercial one, for an increasing proportion of food products the 

traceability of food origin is a commercial issue of a great importance, it includes wine, tea, coffee 

meat, vegetable oils … [2-8] .The good reputation of a food product is sometime decreased by 

adulteration or fraud. To prevent the loss of confidence of consumers it is necessary to trace and be 

able to guarantee the origin of a product. For many products this certification of origin is difficult and 

requires several methods. The development of proper inspection or monitoring procedures for 

tracing various food and drink sources is necessary. Increasing interest is towards the use of metals 

composition and isotopic ratios as primary origin indicators, namely able to trace the direct 

relationship between soil of origin and food. Tea is one of the main beverages consumed in the 

world, prepared from water and tea leaves it contains many elements and molecules typically 

extracted by water from a plant. Element content should reflect the element content of the plant 

and therefore can be correlated to the local environment (i.e.: rock, soil composition, growing 

conditions, pollution, use of fertilizers …) of the plant. According to this process element fingerprint 

of the tea should also reflect these local conditions [7] and could trace its origin. These observations 



 

3 
 

have led to the need of developing methods that are simple, sensitive enough and reliable to 

perform such analyses with also the possibility to be employed online or more reasonably at line.  

Methods commonly employed for the investigation of elemental fingerprinting in food and 

beverages are based on atomic, nuclear and mass spectroscopy techniques, such as Atomic 

Absorption Spectroscopy (AAS), X-ray Fluorescence Spectrometry (XRF), Instrumental Neutron 

Activation Analysis (INAA) and Inductively Coupled Plasma Optical Emission Spectrometry/Mass 

Spectrometry (ICP-OES/MS) [9-12]. Although most of these techniques are very sensitive and 

accurate, they require sample dissolution and consequently time-consuming sample preparation 

using expensive and toxic reagents. 

In recent years, LIBS spectroscopy has become a tool adapted for many analysis currently performed 

by more classical atomic spectroscopic methods or even X-Ray Fluorescence Spectrometry. Many 

advantages of the LIBS spectroscopy are quite interesting for food analysis: i.e. it represent a micro 

destructive analysis, reduced sample preparation and fast analysis [11]. If qualitative analysis is strait 

forward, quantitative measurements with drastic levels of accuracy is still a challenge. As many 

analytical techniques dealing with solids, the sample homogeneity and calibration protocols are two 

main critical points. Selection of the calibration protocol and standards is essential. Matrix matching 

protocols are often selected [13-14]. But a small difference in the matrix composition may drive to 

drastic changes in the laser induced plasma properties. As an example, mixing one single reference 

material with a binder in different ratios produces different temperatures and electronic densities of 

the created plasma [13]. When quantitative analysis is concerned, this phenomenon has dramatic 

consequences, i.e. errors caused by the non-matrix match between standards and samples. On the 

contrary, when sample discrimination is expected differences in plasma formation and excitations 

processes are expected. One should nevertheless pay attention to differences caused by the sample 

and those arising from the LIBS instrumentation (i.e. focalization, laser stability …) [15-18]. In this 

view the use of dedicated normalization procedures and careful control of instrumentation can be 

helpful [19]. 
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Characterization of sample geographical origin using trace and major element analysis is also often 

performed or ICP-OES and ICP-MS and the further use of isotopic information obtained from IRMS or 

ICP MS  offers a complementary discriminant information [20-22]. Among the isotopic tracers boron 

is an interesting element, consisting of two stable isotopes (10B and 11B) with 19.9 % and 80.1% 

relative abundances, respectively. Boron is a naturally-occurring element in groundwater, provided 

by the weathering of rocks, seawater intrusion and precipitation. Its isotopic fractionation is caused 

by different phenomena evaporation and condensation, boron bio-uptake by plants and animals or 

sorption into mineral clays. Some anthropogenic sources have different boron concentration: 

ammonium rich fertilizers with a low B concentration, human wastewater and animal manure with 

high B concentrations [23].  

Most of the published data analysis applied to food analysis has merged data from analytical 

techniques that provide similar in-formation. In the present study, information from two 

complementary techniques producing distinct information was evaluated. Particularly, ICP-MS, 

providing isotopic information, complements the spectral contribution from LIBS. The aim of this 

work is to study the spectroscopic signatures likely to provide discriminant information in view of 

tracing the origin of a food product. Tea was selected as it is possible to obtain it from very distinct 

geographic regions of the world. Principal component analysis, Partial least square discriminant 

analysis and factorial discriminant analysis were selected to provide an overview of the data 

collected and evaluate the ability to determine successfully the origin of tea on a large scale.   

 

2. Material and Methods  

 

Tea samples were all commercial, either bought from China, Mongolia or in European supermarket 

depending on the origin (table 1). Samples were selected as these originates, and were labelled as 

originating from tea major producing areas. Samples were composed of dried leaves containing small 

pieces of fruit (lemon and red fruits) or flower (jasmin tea). The leaves were carefully separated from 
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other pieces before analysis. Samples were analyzed as five different replicates using five different 

pellets of grinded material in LIBS spectroscopy and five different sample digestion in ICP-HRMS. 

Teas were grinded (Retsch S1, Retsch, Germany) and pressed as 13 mm diameter pellets using a 

hydraulic press (Lightpath Optical, Great Britain): 10 tons applied during 2 minutes. Five different 

pellets were created for each sample. For the flavoured teas, only the leaves were collected to press 

the pellets.  

For δ11B determination, all tea samples were digested using HNO3 (Merk suprapur) and further 

diluted in 18 meghom ultra pure water (Elgastat UHQ II system, Elga, Buckinghamshire, Great 

Britain). The final boron concentration of the analysed sample were adjusted by dilution to 10 µg/L. 

The heating system is a laboratory made electric device allowing to heat samples in a closed quartz 

vessel to avoid any loss of water or volatile analyte. NIST 951a boron standard reference material 

(NIST standard purchased from Sigma-Aldrich, Saint Quentin Fallavier, France) was employed for 

standard bracketing method. It was dissolved in acidic (HNO3 2%) deionised water. The digestion 

protocol employed was successfully applied to the NIST 951a 10 µg/L solution with a 99.8% recovery 

with a 0.8% uncertainty (95% confidence interval, n=6). 

BCR – 402 White clover standard reference material (standard purchased from Sigma-Aldrich, Saint 

Quentin Fallavier, France) was employed for LIBS sensitivity check. The clover powder was spiked 

using solutions containing Ca, B, Ba, Mg, Mn, Ni, Na, P, S, Sr, Rb, Zn (ICP standard solutions, Sigma-

Aldrich, Saint Quentin Fallavier, France), freeze-dried and then pelletized. The resulting pellet was 

employed daily to check LIBS sensitivity. The final concentration of the elements are 100 mg/kg for B, 

Ba, Mn, Ni, Rb, Sr, Zn and above 500 mg/kg for Al, Ca,  Mg, Na, P, S. Iron is already present in the 

clover powder at 244 mg/kg. This test sample allows verifying the signal measured in tea sample is 

detectable but does not allow an accurate quantification of element concentrations, which was not 

the aim of this work.  

LIBS 
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The LIBS system was made of a quantel (Brio, Quantel, France) Nd:YAG laser frequency doubled 

emitting at 532 nm, the pulse duration was 5ns, and the repetition rate 20 Hz. The laser beam was 

focalized using first a beam expander followed by mirrors and a focal lens with a 10 cm focal 

distance. Laser spot is 130 µm, the optimized energy for tea pellets analysis was 25 mJ. The emitted 

light was collimated to a bundle of fibers (Idil Optics, France) and analysed by 5 ocean optics 

spectrometer (HR2000+ and Maya from Ocean Optics, Great Britain). Spectra were collected after a 

1.5 µs delay and a 10 ms integration time.  

Spectra are averaged from 100 shots obtained from rastering the laser beam at the sample surface. 

The 100 rastered shots are analysed in five replicates using different pellets for each sample. Data 

analysis was performed using a laboratory made macro from excel. PCA and PLS are calculated from 

a commercial software (SIMCA Umetric, Sweden) and FDA from XLStat (Addinsoft). All the spectra 

and line intensity measurements are normalized to total spectrum intensity (measured by integrating 

the total response from the spectrometer channels [24]. The RSD reduction is significant and drops 

below 5% for most lines, even when the signal to background ratio was low i.e., close to 1. 

To avoid short-term variations all the measurement of the tea pellets were acquired within a few 

days. The sensitivity check made using the spiked reference material pellet allows comparison of 

spectra collected from different days. In case of a sensitivity difference the system is re-optimized to 

keep sensitivity variation acceptable (<5%). This procedure is mandatory to compensate for long time 

variation of the LIBS system. Even in this case all the samples were re-analysed in order to obtain 

rigorously comparable spectra. 

ICP-HRMS  

The boron measurements are performed using a single collector double focusing ICP-HRMS 

(ELEMENTXR, ThermoFisher, Germany). The optimization of the ICP-HRMS is done according to both 

the manufacturer instructions and using the procedure developed by Tirez et al. [25] on a similar 

instrument. The description below summarizes the important points of the procedure. 
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Samples are analyzed as five different solutions and by bracketing with the NIST SRM 951 standards 

[25-26]. The average 11B/10B ratio of NIST SRM 951 measured before and after each sample is used to 

calculate the delta 11B value of the bracketed sample, which is the recommended routine procedure 

for isotopic ratio measurement. All measurements are done using counting mode of the detector, 

and therefore sample containing high boron concentration were diluted. Blank measurements (2% 

HNO3 solution) allow verifying the boron level brought by the sample introduction system. 11B 

reading is kept lower than 8,000 cts. In our study the sample solutions measurements are kept 

significantly higher than the blank with a minimum ratio of 30, so that the blank was considered 

negligible.  

Boron isotopic ratio measurement may also suffer from mass discrimination due to the large 

percentage mass difference between 11B and 10B. Correction of this mass discrimination is performed 

by bracketing samples with SRM NIST 951 boron standard. Furthermore, a similar signal intensity for 

the SRM NIST 951 boron standard and tea diluted sample was employed. This procedure is 

commonly employed for δ11B calculation. Boron isotope ratios are also calculated from dead time 

corrected intensities. Due to the four folds difference in natural abundance of B isotopes, a dead 

time correction in counting mode is necessary to obtain concentration-independent and accurate 

values of δ11B. Boron isotopes are measured by an ion counting system requiring a finite time for 

pulse processing, during this so-called “dead time” the arrival of further ions cannot be registered.  

The dead time is iteratively deduced from the measurement of the 235U/238U isotopic ratio in 0.4, 0.6, 

0.8 and 1 µg/L standard solutions according to the manufacturer instructions. The optimized dead 

time obtained was 10 ns. 

The acquisition parameters (table 2) were carefully optimized to obtain an accurate and stable 

isotopic ratio. Variations obtained between the different solutions prepared from the same tea were 

in the 0.2-0.5% range. The correction procedures employed allowed avoiding complex chemical 

separation of the digested tea to obtain accurate δ11B. 
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3. Results & discussion 

In order to extract the data likely to provide a typical geographical origin fingerprint, principal 

component analysis is employed for the multivariate statistical modeling of the input data. The 

search for natural grouping in of both the sample and the variables was one of the major aim of the 

study so, to allow a better identification of the discriminant information of the different tea samples 

a PCA was first built from the whole LIBS spectra. This procedure is commonly employed in LIBS or 

Raman, where the sample’s spectrum is not designed to provide elemental or molecular information 

but to provide a typical signature of the sample. The built PCA brought no sorting (fig.1) possibly due 

to the very similar spectra combined with variability within the spectra set of a same sample. To 

obtain 90% of the variance explained by the principal components, 8 components are needed.  

An other possibility is to extract the elemental information by selecting data from lines intensities. A 

second PCA was then built and to improve the capability of the model to classify the samples the 

molecular information obtained from the LIBS spectra (C2) was also added. This molecular 

information is one key advantage of LIBS against other classical elemental analysis techniques like, 

XRF,  ICP-OES or ICP-MS. Different lines (2 to 4 according to the occurrence of the lines) for each 

element were selected and a correlation study allowed to keep only non-interfered lines response 

for a single element. Figure 2 displays the 3D PCA score plot of the tea samples by using the different 

normalized line intensities. 

The colors have been arbitrarily applied to outline the apparent different clusters.  The tea from 

Mongolia “MON” is clearly distinguished. The green color is a cluster made from two teas from the 

Jiangsu and Anhui Chinese provinces and the dark green is another Chinese tea from the Hubei 

region. The light blue is a cluster made from two other Chinese teas from Zhejiang and Fujian 

provinces. The organically labelled tea (in red) is significantly distinguished from other samples. The 

grey color group exhibits the strong overlap between samples named: DAR, EARL, FRUIT, JAI and 

SHAN. These samples exhibits a strong variability within the group. The measurement and especially 

a lack of surface and depth homogeneity of the tea powder pellet can cause this type of variation; 
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the grain size may slightly differ from one sample to the other. It can also be related to the data 

introduced in the PCA model, as the group is made of teas produced in clearly distinct geographical 

regions: i.e. Sri Lanka, Darjiling province of India and Shandong province of China. In this case, the 

elemental signature is not discriminant enough.  

PCA reveals that 73% of the variance in the dataset can be represented in a 3D space. The cumulated 

Q2 value for the first three components is 52%. The loadings plot of the PC1, PC2 and PC3 is shown 

on figure 3. The PC1 includes mainly Al and the alkaline earth elements: Ca, Mg, Sr and Ba. 

Loadings of PC1 and 2 are plotted on figure 3, PC1 is represented by major element: Ca, Al, Ba, PC1 is 

negatively correlated to Rb signal. Alkaline earth (Ca, Sr, Ba ..) and alkaline (Rb, Na) are providing 

most significant loading values with opposite sign. Minor and trace elements are important in PC2 

(i.e. P, S, Mn, Ni) and to a lower extend PC2 is correlated to the C2 intensity. PC3 is negatively 

correlated to Sr and Mg intensities and positively to C2 and Mn intensity. Alkaline, alkaline-earth and 

metallic elements are bringing quite distinct information and a minimum of 3 components appears 

adequate to describe the 25 initial variables.  

To improve the model, the boron isotopic ratio was measured. In this view sample were digested 

according to the procedure described in experimental part. The determination of 11B/10B was 

employed using optimized SF ICP MS parameters as reported by Tirez et al [25] on a similar 

instrument.  

Delta (δ11B 0/00) values are calculated according to the formula: 

� � = 1000 × �� 	/ 	���� ������
� 	/ 	���� ��� − 1���        eq 1 

The reference value is the isotopic ratio measured from NIST 951a reference material. The 

confidence intervals are calculated as +/-2σ. In the tea samples, the average δ11B values varied from 

-16 to + 15. The variation between two groups is significant (Fig. 4) due to the very low intra sample 

variability (0.2%) of the isotopic 11B/10B ratio. Negative deltas are group 1: MON, ZHE, SHAN, DAR and 

JAI. This includes samples grown in India, China, Sri Lanka and Mongolia. Group 2, with a positive 
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delta value, contains four Chinese teas POR, FUJ, HUB and BEIJ, and three other teas FRUI, VER, and 

BIO of unknown geographic origin. It is important to notice that performing multiple analysis of the 

same tea sample is necessary, a five replicate measurement for one solution is performed and five 

solutions are prepared independently, as a consequence, the average δ 11B of a tea sample is 

calculated from 25 isotopic ratio measurement. The variations in δ11B values among the different 

teas are likely due to different local growing conditions. Boron originates from the soil, the water 

supply and from an eventual addition of fertilizers. The soils and water supply are typical of a 

localization. The fertilizers may differ from one country to the other and it has different origins 

(mineral, organic) and may also not be commonly employed in all the tea growing regions. Distinct 

values of δ11B are reported for fertilizer according to their nature, this can be translated to the 

boron isotopic composition of the plant.  

A new PCA model is then built (Model 2) from the isotopic measurements and the LIBS results. The 

score scatter plot of the first three components is presented on figure 5. The total explained variance 

is 70 % using the new three components, with component 1 representing 35% and next PCs 21.5% 

and 13.5% respectively. As seen from figure 5 the PCA chemometric inspection exhibited 6 different 

groups according to a minimum of 3 components. The model including isotopic ratio data gave a 

0.903 value of R2 instead of 0.900 when not including δ11B for a total of 6 PC, it shows the two 

models fits well the provided data. The Q2 value increased with the addition of δ11B, rising from 0.47 

to 0.56, this means a better prediction capacity for the second model. The loadings plot shows the 

most important variables for sample characterization. According to this second model, the loadings 

plot was similar to the one obtained previously (Fig.3), the isotopic ratio appeared mainly in the PC2 

and PC3 component with a behavior similar to Rb lines. 

The PCA score plot (Fig. 5 a-b) exhibited also clusters similar to those proposed by model 1 (Fig. 2). 

Samples MON and VER were different from all other teas, the ZHE, FUJ, HUB and POR, BEIJ samples 

appeared as two distinct clusters while the other teas were not distinguished. The three unknown 

teas (BIO/JAI/FRUI) are clustering with the Darjiling, Ceylon Earl grey and Shandong teas. While 
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coming from three distinct geographical regions, these last three samples could not be distinguished 

neither using PC1/PC2 plot nor PC1/PC3 plot.  

To further establish the possible determination of geographic origin of the samples based on 

multispectral fingerprint, model 2 was further selected for PLS discriminant analysis. 

  

Partial Least Square Discriminant Analysis (PLS – DA) 

The aim of a supervised pattern recognition is to establish a classification model, a training set with 

known class memberships is used to create a classifying model. A prediction set, also with known 

class memberships, that is not employed in the training set is employed to evaluate the model 

performance. A classification clustering the 13 tea samples into four to seven groups was tested with 

PLS-DA. Models were built from 3 out of the 5 measurements from each sample as training set and 

the left 2 values were included in a prediction set. According to the clusters established by PCA N°2, 

classes were assigned to the tea samples. As seen from figure 5 at least seven groups could be 

identified.  

By changing the 3  samples  employed for model and the 2 used unknown the cross validation led to 

an average of 84.6 % of correct identification. As the overlap between classes is not negligible, 6, 5 

and 4 clusters were selected and identified as classes mentioned in table 3. The level of correct 

identification for the prediction set was improved using a five classes model were only the organic 

tea and the sample coming from Mongolia were isolated. In this case, a 94.2 % of correct assignment 

was obtained.  

Assuming the samples with unknown origins could originate from one of the identified groups, a 

similar procedure was applied with the 10 known origin samples, leading, as expected, to a 100 % 

correct identification (Mod 4b). The tea labelled bio was identified as class 3 (i.e; group including teas 

from the Anhui and Jiangsu regions of china) while the FRUI and VER samples could belong to group 4 

of the model. The group 4 includes teas from Ceylon, Darjiling and Shandong. These three regions are 
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located quite far one from the others, the classification based on the PCA components could not 

clearly distinguish these three samples as seen from figure 2 and 5.  

Factorial Discriminant Analysis 

The Factorial Discriminant Analysis (FDA) does so by maximizing the between-class scatter, while 

minimizing the within-class scatter at the same time. As the PLS DA procedure, this supervised 

procedure was applied to known geographical origin teas and the model was also employed to test 

the unknown samples. FDA plot using only samples with known origin is shown on figure 6 (a,b).  

As expected the discriminant analysis is efficient the samples appears as distinct clusters. Tea from 

Mongolia is well separated, FDA allows also to discriminate tea from the Anhui region (BEIJ). As seen 

from both fig 6a and 6b, the teas labelled Dar and Ear are still close using the F1 vs F2 and F1 vs F3 

projections. Nevertheless using the data provided by LIBS and δ11B are not discriminant enough in 

this case. Looking at the coefficients of the canonical discriminant functions, the signal of Ba, Mg, Rb, 

S, P and Na obtain highest absolute values in F1, while it is Al, Fe, Mg, Sr and Rb for F2 and Sr, Mn, S, 

P and Mg for F3. The calculated function based on combination of minor and major element. 

Using the previously FDA functions, identification of unknown teas gave good results, samples Jai and 

Frui were identified as similar to Ear, from Sri Lanka while Ver is identified as coming from the 

Darjiling region. The Bio tea could be from the Jiangsu Chinese region. These results are in agreement 

with the PLS DA study previously described, Model 3 (5 clusters) and 4. The FDA allowed a better 

discrimination between the teas, in this  teas from Sri-Lanka (Ear) from Darjeling (Dar). 

4. Conclusion 

The motivation behind this work was to establish the data necessary to obtain a valuable 

classification and then to be able to identify an unknown tea, the second motivation was to verify the 

ability to build classification models especially here, where both strong similarities and high 

variability within groups are observed. 
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This study of multispectral analysis combining information from LIBS and ICP HRMS coupled with 

data analysis by PCA, PLS DA and FDA led to a successful discrimination of the teas samples according 

to their geographical origin. 

The elemental information brought by LIBS brings the most important information together with the 

molecular C2 measurements. The addition of isotopic information reinforces the classification and 

the prediction capacity of the PCA model, but it is time consuming and more isotopic ratios could be 

added.  

The spectral LIBS data linked to most important elements provided more significant information than 

the whole spectra. Furthermore, the PCA analysis allowed to understand what elements were 

important to distinguish between geographical origins major alkaline earth and alkaline elements are 

essential for this.  

This method allowed identifying the origin of four unknown teas. In this study the use of FDA or PLS 

DA after the PCA examination of the LIBS/ICP MS data led to similar conclusions for fast classification 

of the tea samples. On a practical point of view by improving the data obtained by LIBS, improving 

sensitivity to detect more elements, a complete classification should be obtained using only one 

instrument. Even if the ICP HRMS is a reliable and accurate tool, it requires a digestion of the tea and 

further dilution to obtain accurate isotopic ratio, which is far more time consuming than LIBS 

measurements. 
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Table 1 

Description of tea samples with the label employed in text and their geographical origin.  

Tea Provenance 

MON Black tea Mongolia 

ZHE Green tea Zhejian/China 

POR Jasmin flavored green tea Jiangsu/China 

SHAN Black tea Shandong/China 

HUB Green tea Hubei/China 

FUJ Green tea Fujian/China 

BEIJ Green Jasmin flavored tea Anhui/China 

EARL Earl Grey Black tea Ceylon/Sri Lanka 

DAR Black tea Darjiling/India 

VER Lemon flavored green tea unknown origin 

JAI Black tea unknown origin 

BIO Green tea unknown origin 

FRUI  Berries flavored black tea unknown origin 

 

  



 

19 
 

Table 2 

Plasma and analyzer settings optimized for ICP HRMS measurements. 

Plasma Parameters 

Power (W) 1200 

Nebulizer gas flow rate (L/min) 1.2 

Solution flow rate (µL/min) 200 

Nebulizer/ spray chamber Micromist/helix twinabar 

Oxide level % UO/U 6 

Analyzer settings 

Resolving power (R=m/∆m) 300 

Acquisition mode E-scan 

Number of passes 500 

Number of runs 5 

Sample time (s)  20 ms for 10B and 11B 
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Table 3 

Elements and wavelengths employed for LIBS spectra analysis. 

Element/Molecular band Selected wavelength 

Al 
Ca 
B 
Ba 
C2 
Fe 
Mg 
Mn 
Ni 
Na 
P 
S 
Sr 
Rb 
Zn 

I 308.215 nm ; I 309.271 nm 
I 422.673 nm; II 315.887 nm; II 317.933 
I 208,957 nm; I 249.700 nm 
II 455.403; II 493.408 
molecular 516.672 nm 
I 259.900 nm 
I 518.360 nm; II 279.553 nm 
I 403.075 nm; I 257.611 nm 
I 231.500 nm 
I 588.995 nm 
I 253.561; I 255.326 
I 921.286 nm 
I 407.672 nm; I 421.552 nm 
I 607.075; I 780.026 nm 
I 334.502 nm; I 481.053 nm 
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Table 4 

PLS DA correct class prediction using 4 to 7 cluster models. 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Correct Class 

prediction (%) 

Model 1:  

7 clusters 

Mon Ver Hub Bio Fuj, Zhe Por, Beij Dar, Ear, 

Frui, 

Shan, Jai 

84.6 

Model 2:  

6 clusters 

Mon Hub Bio Fuj, Zhe Por, Beij Dar, Ear, 

Frui, Ver, 

Shan, Jai 

 92.3 

Model 3a: 

5 clusters 

Mon Hub Fuj, Zhe Bio, Por, 

Beij 

Dar, Ear, 

Frui, Ver, 

Shan, Jai 

  86.5 

Model 3b: 

5 clusters 

Mon Bio Fuj, 

Zhe, 

Hub 

Por, Beij Dar, Ear, 

Frui, Ver, 

Shan, Jai 

  94.2 

Model 4a: 

4 clusters 

Mon Fuj, 

Zhe, 

Hub 

Bio, 

Por, 

Beij 

Dar, Ear, 

Frui, Ver, 

Shan, Jai 

   90.5 

Model 4b: 

4 clusters 

Mon Fuj, 

Zhe, 

Hub 

Por, 

Beij 

Dar, Ear, 

Shan, Jai 

   100 % 
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Caption of figures 

 

Figure 1. 3D PCA score scatter plot of the 13 tea samples using whole spectra. 

Figure 2. 3D PCA score scatter plot of the 13 tea samples using selected lines intensities (table 3). 

Colors are selected according to apparent clusters.  

Figure 3. PCA Loading plot for component PC1 and PC2. 

Figure 4. Delta 11B values measured for the 13 sample. Each point represents the average of  five 

measurements. 

Figure 5. 2D Score scatter plots of the PCA combining Delta 11B and LIBS line intensity 

measurements. (a) PC1 and PC2. (b) PC1 and PC3. 

Figure 6. Factorial discriminant analysis of the 10 tea samples with known geographical origin. 






















