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Abstract. Artificial intelligence (AI) traditionally deals with knowledge
rather than with data (with the noticeable exception of machine learning).
The term “knowledge” refers here to information with a generic flavor,
while “data” refers to information pertaining to (collections of) particular
cases. The formalization of reasoning patterns with data has been much
less studied until now than knowledge representation and its application
to knowledge-based systems and reasoning, possibly in presence of imper-
fect information. Data are positive in nature by manifesting the possibility
of what is observed or reported, and contrast with knowledge that delimit
the extent of what is potentially possible by specifying what is impossible.
Reasoning from knowledge and data goes much beyond the application of
knowledge to data as in expert systems. Besides, the idea of similarity nat-
urally applies to data and gives birth to specific forms of reasoning such
as case-based reasoning, case-based decision, or even case-based argumen-
tation, interpolation, extrapolation, and analogical reasoning. Moreover,
the analysis, the interpretation of data sets raise original reasoning prob-
lems for making sense of data. This article is a manifesto in favor of the
study of types of reasoning which have been somewhat neglected in AI,
by showing that AI should contribute to (knowledge) and data sciences,
not only in the machine learning and in the data mining areas.

Keywords: Knowledge · Data · Bipolarity · Similarity · Possibility
theory

1 Introduction

Historically, knowledge representation and reasoning have played a central role in 
artificial intelligence (AI). AI has been more a “knowledge science” than a “data 
science” until now. This does not mean that AI fully ignores data. Certainly 
not. Machine learning, which has recently become the most prominent part of 
AI, works with data, and is extensively used for inducing knowledge from data. 
Note that in this paper we use the term “knowledge” for referring to information 
having a generic flavor, while “data” pertains to collections of particular cases 
or instances.

Originally, knowledge was mainly supposed to be provided by experts. Expert 
systems, which were popular from the mid-seventies to the mid-nineties of the
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last century, are prototypical illustrations of this state of facts. However, the idea
of extracting knowledge from data has been there for a long time as well. This is
especially the case with numerical methods such as Bayesian nets, fuzzy rules-
based systems, or neural nets. Besides, data mining methods look for pieces of
knowledge of interest including association rules that may have not been thought
of before.

The aim of this paper is neither to survey methods that extract knowledge
from data, nor to discuss machine learning, but rather to provide a structured
overview of problems and approaches where data are directly involved in rea-
soning processes. Note that in this paper we use the phrase “reasoning with
data”, which may cover indifferently “reasoning about data”, or “reasoning from
data”. Obviously, expert systems by operating the separation of the knowledge
base from the factual part of the information pertaining to the case at end,
were dealing with data. But these data, called facts there, were used in isolation
and were specific of the case at hand to which the generic knowledge had to be
applied. The factual base was gathering only facts pertaining to a single case at
once, so it was not really a data base (which usually gathers data pertaining to
collections of different cases). This remark applies as well to abductive reasoning
in diagnosis, where symptoms are facts pertaining to a given situation.

As in knowledge-based systems, description logics also separate knowledge
(in a“TBox”) and data (in a “ABox”, which is not restricted to a single case) [2].
Then they confront knowledge and data, but do not reason from data alone. In
that respect, case-based reasoning by working from a repertory of cases, shows
that AI has considered the problem of reasoning from data (more precisely from
tuples of data, called cases) for a long time.

Interestingly enough, research on case-based reasoning has remained apart
from the main knowledge representation and reasoning trend, and has been much
less oriented towards formal theoretical studies. Indeed “reasoning with data”
could not benefit much of the tradition of mathematical reasoning and math-
ematical logic interested in the deduction of universal theorems, while applied
mathematics applies generic equations to (numerical) data, as it was the case
for knowledge-based systems (up to the problem of handling exceptions and
uncertainty, not much encountered in mathematics).

Reasoning with data, which certainly includes case-based reasoning, is how-
ever potentially much larger, as we are trying to suggest in this paper. Moreover,
reasoning with data and reasoning with knowledge are not necessarily topics that
should be considered separately. Indeed reasoning from both knowledge and data
may be worth doing. This is already the case in machine learning, where back-
ground knowledge, when available, is jointly used with data, or in case-based
reasoning where domain knowledge may be taken into account, but not so much
in deductive reasoning.

Knowledge and data are of different nature, and are not subject to have
exactly the same kinds of defects, even if knowledge may be incomplete or per-
vaded with uncertainty, and data may be missing or suspect. Indeed knowledge
may be inconsistent, or may be incoherent with respect to potential data, while



data can be accumulated without inconsistency, nor redundancy. Data cannot be
inconsistent by themselves, but only with respect to integrity constraints. Still
some discrepancy may exist between data, which is a matter of (dis)similarity,
and may then suggest outliers among data (if the reliability of the data is not
fully guaranteed). But this differs from logical inconsistency between pieces of
knowledge.

Moreover, as just mentioned, the notion of similarity makes sense for data,
and is often instrumental when reasoning with data, while knowledge is more
concerned with subsumption. Besides, it is worth mentioning that data, even if
there is a massive amount of them, may be scarce in some areas where we would
need to have more information.

In fact, data are a positive form of information, while knowledge has rather
a negative flavor. Indeed knowledge restricts possible worlds, and thus implicitly
states what worlds are impossible. The more knowledge you have, the greater
the restriction on the remaining possible worlds, and the closer the information
is to be complete about the world of interest, provided that the knowledge you
have remains consistent. This contrasts with data that by nature are diverse,
but should be regarded as positive information expressing that some worlds are
really possible, since they are observed, or reported (assuming that the sources
are reliable).

The paper is a kind of manifesto1 in favor of more unified thinking and
researches on the diverse forms of use of data in reasoning, possibly jointly with
knowledge. The rest of the paper is structured as follows. The next section recalls
how the idea of bipolarity, which distinguishes between positive and negative
information may provide a setting for reasoning with data, in a coherent man-
ner with respect to knowledge-based reasoning. Section 3 deals with similarity-
based reasoning, including case-based reasoning, case-based decision, analogical
reasoning, interpolation and extrapolation; it also points out the role of data in
argumentation. Section 4 surveys issues related to the need of making sense of
data, of reasoning about data, rather than reasoning from data, as in the two
previous sections.

2 Reasoning with Data vs. Reasoning with Knowledge:

A Bipolar Issue

Pieces of knowledge are generally understood as constraints2 on sets of possible
worlds. “Humans are mortal” means that it is impossible to find a human who
is not mortal. Thus generic information, generally referred to as knowledge, may
be viewed as negative, in the sense that what is really stated is an impossibility,
which by complementation defines a set of worlds that are not impossible, i.e.
that are potentially possible. Generic knowledge may have exceptions, and thus

1 A preliminary version of this paper exists in French [41].
2 Such a view is sometime termed as being “intensional”; see Pearl [38] who opposes

it, in the case of rules, to “extensional” approaches where a (decision) rule would
then express the license (rather than the obligation) to do something.



the information is pervaded with uncertainty. In such a case, the situation is
basically the same, but impossibility is no longer fully strong. “Generally birds
fly” is to be understood as it is rather impossible, but maybe not completely
impossible to find birds that cannot fly. The more knowledge we have, the more
restricted the remaining set of possible worlds, by effect of the conjunctive com-
bination of such restrictive pieces of information.

By contrast, if we consider the piece of data “Mary is 111 years old”, it is both
a fact about Mary, and the indication that it is possible for sure (guaranteed
possible) to live until 111 years, as long we regard the information as reliable.
This type of information, based on observed, or reported cases, is not of the same
nature as the claim that according to our understanding of our biological nature,
it would be impossible to live more than 150 years in any case, where here living
until 140 years remains just a potential possibility, as long as no case is reported.
Observed facts give birth to what may be termed positive information. Positive
information can be accumulated without any risk of inconsistency. For instance,
if you want to know the price for a house having some specificities to let at a
given time period, you may look to list of offers, select the ones that correspond
to what you are looking for, and from them gather a collection of prices that can
be regarded as possible for sure. But this does not mean that any other price
would be impossible.

Possibility theory [19] (but also evidence theory [23], particular modal logics
[15]) are suitable frameworks for representing both positive and negative infor-
mation. Indeed the representation capabilities of possibilistic logic that extends
classical logic by associating formulas with certainty levels, can be enlarged into
a bipolar possibilistic setting [4,15]. It allows the separate representation of both
negative and positive information taken in the following sense. Negative infor-
mation reflects what is not (fully) impossible and remains potentially possible.
It induces (prioritized) constraints on where the real world is (when expressing
knowledge), which can be encoded by necessity-based possibilistic logic formulas.
Positive information expressing what is actually possible, is encoded by another
type of formula based on a set function called guaranteed (or actual) possibility
measure (which is to be distinguished from “standard” possibility measures that
rather express potential possibility (as a matter of consistency with the avail-
able information). This bipolar setting is thus of interest for representing both
knowledge and reported data.

Positive information can be represented by formulas denoted [ϕ, d], which
expresses the constraint ∆(ϕ) ≥ d, where ∆ denotes a measure of strong (actual)
possibility [19] defined from a possibility distribution δ by ∆(ϕ) = minω|=ϕ δ(ω).
Thus, the piece of positive information [ϕ, d] expresses that any model of ϕ is at
least possible with degree d (d reflects the minimal confidence in the reported
observations gathered in the models of ϕ). More generally, let D = {[ϕj , dj ] | j =
1, · · ·, k} be a positive possibilistic logic base. Its semantics is given by the pos-
sibility distribution

δD(ω) = maxj=1,···,k δ[ϕj ,dj ](ω)



with δ[ϕj ,dj ](ω) = 0 if ω |= ¬ϕj , and δ[ϕj ,dj ](ω) = dj if ω |= ϕj . As can be seen,
δD is obtained as the max-based disjunctive combination of the representation
of each formula in D. This is in agreement with the idea that observations
accumulate and are never in conflict with each other.

This contrasts with a standard possibilistic logic base K = {(ψi, ci)}i=1,···,m,
which is associated with the possibility distribution πK representing the weighted
set of models of K:

πK(ω) = mini=1,···,m max(µ||ψi||(ω), 1 − ci)

where an interpretation ω is all the less possible as it falsifies a formula ψi

having a higher level of certainty ci (µ||ψi|| is the characteristic function of the
set of models of ψi). Each formula (ψi, ci) corresponds to the semantic constraint
N(ψi) ≥ ci, where N is a necessity measure, associated with a measure of (weak)
possibility Π. Namely, we have N(ψ) = 1 − Π(¬ψ). Thus, the formula (ψi, ci)
expressed that the interpretations outside ||ψi|| have a level of possibility upper
bounded by 1−ci, and are somewhat impossible (when ψi is fully certain, ci = 1,
and the possibility of any ω �∈ ||ψi|| is 0, which means full impossibility).

A positive possibilistic knowledge base D = {[ϕj , dj ]|j = 1, k} is inconsistent
with a negative possibilistic knowledge base K = {(ϕi, ai)|i = 1,m} as soon as
the following fuzzy set inclusion is violated:

∀ω, δD(ω) ≤ πK(ω).

This violation occurs when something is observed or reported, while one is
somewhat certain that the opposite should be true. Then a revision should take
place by either questioning the generic knowledge represented by K, or what is
reported, which is represented by D.

Reasoning with both negative and positive information is clearly an issue
of interest, since one may have information of both type in the same time. For
instance consider, a second-hand car; there may exist some rules stating that
for a car of some trade mark having some mileage, the price should be in some
range, but one may also have examples of similar cars recently sold. See [15,51]
for general settings allowing us to reason with knowledge and data in the same
time. It is also worth mentioning that the setting of version space learning is
bipolar in nature, since counter-examples play the role of negative information
(counter-examples are by nature associated with the negation of generic rules),
and examples are positive information [45].

3 Similarity-Based Forms of Reasoning

Similarity plays an important role when dealing with data. Two obvious exam-
ples are clustering data in unsupervised learning, and k-nearest neighbors meth-
ods in classification. Another example is provided by fuzzy rules in rule-based
fuzzy controllers, where a rule is of the form “if the observed output x is in A,



the command y should be chosen in B”, and A and B are fuzzy sets [32]3. These
fuzzy sets, which have unimodal membership functions, may be understood as
expressing closeness to the mode of the membership function. If a (resp. b) is the
unique value having a membership grade to A (resp. B) equal to 1, then the rule
means “the closer x is to a, the closer y is to b”. This a gradual rule [6,18]. This
is the basis for an interpolation mechanism [39], as soon as we have a second
rule “the closer x is to a′, the closer y is to b′”, and an input x = a0, such that
a0 ∈ [a, a′]. This can be also related to the representation of co-variations [46].

3.1 Case-Based Reasoning

Case-based reasoning (CBR) is the main form of reasoning with data studied in
AI. An attempt at formalizing it has been proposed in the setting of fuzzy sets
and possibility theory [29]. Viewing a case as a pair (<situation>, <associated
result>), it relies on the modeling of a CBR principle that relates the similarity
of situations to the similarity of associated results. Let us state the idea more
formally. Let C be a repertory of n cases ci = (si, ri) with i = 1, ..., n, where
si ∈ S (resp. ri ∈ R) denotes a situation (resp. a result). Let S and R be two
graded similarity relations (assumed to be reflexive and symmetrical) defined on
S × S and R × R respectively, where S(s, s′) ∈ [0, 1] and R(r, r′) ∈ [0, 1]. Let
us assume that we use a CBR principle based on the gradual rule “the more
similar s0 to si, the more similar r0 to ri” [1], where s0 denotes the situation
under consideration, and r0 the unknown associated result. Then, it leads to the
following expression for the fuzzy set r̃0 of possible values for the unknown value
y of r0:

r̃0(y) = min
(sj ,rj)∈C

S(s0, sj) → R(y, rj) (1)

where → denotes Gödel implication a → b = 1 if a ≤ b and a → b = b if
a > b. It is worth noticing that the above expression underlies an interpolation

mechanism. For instance, if a second hand car s0 is identical to two other cars s

and s′, except that its mileage is between the ones of s and s′, then the estimated
price r0 will be between r and r′, and may be quite precise due to the min-based
combination in (1). Thus, the estimation of r0 is not just based on the closest
similar case, but takes advantage of the “position” of s0 among the si’s such as
(si, ri) ∈ C. In order to ensure the normalization of the fuzzy set r̃0 in (1), it is
necessary for the repertory of cases to be “consistent” with the CBR principle
used (see [13] for details), which means, informally speaking, that the cases in

the repertory should themselves obey the principle “the more similar two case
situations, the more similar the case results”. In particular, letting s0 = si, if we
want to ensure r̃i(ri) = 1 (i.e., one retrieves the case (si, ri) as a solution) for
any i, we should have ∀i ∀j S(si, sj) ≤ R(ri, rj).

3 Strictly speaking, such a rule was usually modeled as meaning “if x is in A, then y can

be chosen in B”, implicitly taking the view that it was reflecting commands already
observed as being successful, and thus echoing positive information, or “extensional”
rules [38]; see footnote 2.



If, on the contrary, there exist i and j such that S(si, sj) > R(ri, rj), i.e., the
situations are more similar than the results, then another weaker CBR principle
should be used. Namely, the fuzzy CBR principle reads “the more similar s0 to
si, the more possible the similarity r0 and ri”, and then we obtain [16]

r̃0(y) = max
(sj ,rj)∈C

min(S(s0, sj), R(y, rj)) (2)

As can be seen, we now take the union (rather than the intersection) of the fuzzy
sets of values close to the ri’s weighted by the similarity of s0 with si, for all
(sj , rj) ∈ C. For instance, if a second hand car s0 is quite similar to two other cars
s and s′, thus themselves quite similar, but having quite different prices r and
r′, then the estimated price r0 will be the union of the fuzzy sets of values that
are close to r or close to r′ (the union may be replaced here by the convex hull,
for taking into account that here the price domain is a continuum). Generally
speaking, the result may be quite imprecise due to the max-based combination
in (2). Still, it is a weighted union of all the possibilities that are supported by
known cases. Note also that (2) is fully in the spirit of reasoning with data as
discussed in the previous section: each result of a reported case is all the more
guaranteed to be possible as the case is similar to the situation at hand, and all
these conclusions are combined disjunctively.

One might also think of using a fuzzy rule of the form “the more similar
s0 to si, the more certain the similarity r0 and ri”, leading to an expression
similar to (1) where Gödel implication is replaced by Dienes implication (i.e.,
a → b = max(1 − a, b)). However, such a rule would be less appropriate here,
even if it leaves room for exceptions, since we observe that r̃i(ri) = 1 holds for
any i, only if ∀i ∀j S(si, sj) > 0 ⇒ R(ri, rj) = 1, which is a condition stronger
than the one for (1) with Gödel implication.

A thorough study of the formalization of CBR principles linking the similarity
of solutions to the one of problems is presented in the research monograph [29].

3.2 Case-Based Decision

This approach can be readily extended to case-based decision, where we have
a repertory D of experienced decisions under the form of cases ci = (si, d, ri),
which means that decision d in situation si has led to result ri (it is assumed
that ri is uniquely determined by si and d). Classical expected utility is then

changed into U(d) =
Σ(si,d,ri)∈DS(s0,si)·u(ri)

Σ(si,d,ri)∈DS(s0,si)
, where u is a utility function, here

supposed to be valued in [0, 1] [28]. Besides, counterparts to (1) and (2) are

U∗(d) = min
(si,d,ri)∈D

S(s0, si) → u(ri)

and

U∗(d) = max
(si,d,ri)∈D

min(S(s0, si), u(ri)).



U∗(d) is a pessimistic qualitative utility that expresses that a decision d is all the
better as the fuzzy set of results associated with situations similar to s0 where
decision d was experienced is included in the fuzzy set of good results. When →
is Dienes implication, U∗(d) = 1 only if the result obtained with decision d in
any known situation somewhat similar to s0 was fully satisfactory. U∗(d) is an
optimistic qualitative utility since it expresses that a decision d is all the better
as it was already successfully experienced in a situation similar to s0. See [14]
for postulate-based justifications. Another idea would be to use the approach of
the previous subsection for estimating the more or less possible results of each
decision, and then to compute the possible values of the utility function for each
of them, which would then lead to compare fuzzy utilities.

A situation s is usually described by means of several features, i.e., s =
(s1, ..., sm). Then the evaluation of the similarity between two situations s and
s′ = (s′1, ..., s′m) amounts to estimating the similarity according to each feature
k according to a similarity relation Sk, and to combine these partial similarities
using some aggregation operator agg, namely S(s, s′) = aggk=1,...,mSk(sk, s′k).
A classical choice for agg is the conjunction operator min, which retains the
smallest similarity value as the global evaluation. But one may also think, for
instance, of using some weighted aggregation if all the features have not the same
importance. See [12] for a detailed example (with min).

Besides, the approach can be extended to prediction about some imprecisely
or fuzzily specified cases (e.g., one has to estimate the price of a car with precisely
specified features except that the horse power is between 90 and 110). A fur-
ther generalization is necessary in order to accommodate incompletely specified
cases in the repertory. See [16] for these extensions in the case of possibility rules
(thus corresponding to (2)), and [31] for the discussion of several other general-
izations (including the discounting of untypical cases and the flexible handling
and adequate adaptation of different similarity relations, which provides a way
of incorporating domain-specific (expert) knowledge). A comparative discussion
with instance-based learning algorithms, a form of transduction, is in [30]. Appli-
cations to flexible querying [9], including examples (and counter-examples)-based
querying4, and to recommendation systems [17] have been also proposed.

Lastly, one may think of cases that provide an argumentative support in
favor of a claim as positive examples of it, or more strongly of cases used as a
counter-example to a rule used in an argument; see a brief outline of this idea
in [40], when discussing an argumentative view of case-based decision.

3.3 Analogical Reasoning

The notion of similarity is as essential to CBR as it is to the idea of analogy,
and in particular, to analogical proportions. The core idea underlying analogical
proportions comes from the numerical field where proportions express an equal-
ity of ratios, e.g. 1

2 = 5
10 , which could be read “1 is to 2 as 5 is to 10”. It is also

4 An item is all the more a solution as it resembles to some example(s) in all important
aspects, and is dissimilar from all counter-examples in some important aspect(s).



agreed that “read is to reader as lecture is to lecturer” is a natural language
analogical proportion, and the notation read : reader :: lecture : lecturer is
then preferred. More generally, an analogical proportion is an expression usu-
ally denoted a : b :: c : d involving 4 terms a, b, c, d, which reads “a is to
b as c is to d”. It clearly involves comparisons between the pairs (a, b) and
(c, d). Recent works have led to a logical formalization of analogical propor-
tions, where similarities/dissimilarities existing between a and b are equated to
similarities/dissimilarities existing between c and d.

Let us assume that the items a, b, c, d represent sets of binary features belong-
ing to an universe U (i.e. an item is then viewed as the set of binary features in
U that it satisfies). Then, the dissimilarity between a and b can be appreciated
in terms of a ∩ b and/or a ∩ b, where a denotes the complement of a in U , while
the similarity is estimated by means of a∩ b and/or of a∩ b. Then, an analogical
proportion between subsets is formally defined as [35]:

a ∩ b = c ∩ d and a ∩ b = c ∩ d

This expresses that “a differs from b as c differs from d” and that “b differs
from a as d differs from c”. It can be viewed as the expression of a co-variation.
It has an easy counterpart in Boolean logic, where a, b, c, d now denote simple
Boolean variables. In this logical setting, “are equated to” translates into “are
equivalent to” (≡), a is now the negation of a, and ∩ is changed into a conjunction
(∧), and we get the logical condition expressing that 4 Boolean variables make
an analogical proportion:

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

It is logically equivalent to the following condition that expresses that the
pairs made by the extremes and the means, namely (a, d) and (b, c), are (posi-
tively and negatively) similar [35]:

(a ∧ d ≡ b ∧ c) ∧ (a ∧ d ≡ b ∧ c).

An analogical proportion is then a Boolean formula. It takes the truth
value “1” only for any of the 6 following patterns for abcd: 1111, 0000, 1100,

0011, 1010, 0101. For the 10 other lines of its truth table, it is false (i.e., equal to
0). As expected, it satisfies the following remarkable properties:

a : b :: a : b (reflexivity),

(and thus a : a :: a : a (identity));

a : b :: c : d ⇒ c : d :: a : b (symmetry);

a : b :: c : d ⇒ a : c :: b : d (central permutation).

Another worth noticing property [42] is the fact that the analogical propor-
tion remains true for the negation of the Boolean variables. It expresses that the
result does not depend on a positive or a negative5 encoding of the features:

5 The use of these words here just refers to the application of a negation, and should
not be confused with their use in other parts of the paper.



a : b :: c : d ⇒ a : b :: c : d (code independency).

Finally, analogical proportions satisfy a unique solution property, which
means that, 3 Boolean values a, b, c being given, when we have to find a fourth
one x such that a : b :: c : x holds, we have either no solution (as in the cases
of 011x or 100x), or a unique one (as, e.g., in the case of 110x). More formally,
the analogical equation a : b :: c : x is solvable iff ((a ≡ b) ∨ (a ≡ c)) = 1. In
that case, the unique solution x is a ≡ (b ≡ c) [35]. This allows us to deal with
Boolean analogical proportions in a simple way.

The basic idea underlying the analogical proportion-based inference is as
follows: if there is a proportion that holds between the first p components of four

vectors, then this proportion should hold for the last remaining components as

well. This inference principle [50] can be formally stated as below:

∀i ∈ {1, ..., p}, ai : bi :: ci : di holds

∀j ∈ {p + 1, ..., n}, aj : bj :: cj : dj holds

This is a generalized form of analogical reasoning, where we transfer knowledge
from some components of our vectors to their remaining components.

It is worth pointing out that properties such as full identity or code inde-

pendency are especially relevant in that perspective. Indeed, it is expected
that in the case where d is such that it exists a case a in the repertory with
∀i ∈ {1, ..., p}, di = ai, then ai : ai :: ai : di holds. Thus, the approach includes
the extreme particular case where we have to classify (or to predict components
of) an item whose representation (in the input space) is completely similar to
the one of a completely known item. The code independency property, which
expresses independence with respect to the encoding, seems also very desirable
since it ensures that whatever the convention used for the positive or the nega-
tive encodings of the value of each feature and of the class, one shall obtain the
same result for features in {p + 1, ..., n}. Then analogical reasoning amounts to
finding completely informed triples suitable for inferring the missing value(s) of
an incompletely informed item as in the following example. In case of the exis-
tence of several possible triples leading to possibly distinct plausible conclusions,
a voting procedure may be used, as in case-based reasoning.

Let us consider for instance a database of homes to let, containing houses (1)
and flats (0), which are well equipped or not (1/0), which are cheap or expensive
(1/0), where you have to pay a tax or not (1/0). Then a house, well equipped,
expensive and taxable is represented by the vector a = (1, 1, 0, 1). Having 2
other cases b = (1, 0, 1, 1), c = (0, 1, 0, 1), we can predict the price and taxation
status of a new case d which is a flat not well equipped, i.e. d = (0, 0, x, y)
where 2 values are unknown. Applying the above approach, and noticing that
an analogical proportion a : b :: c : d holds for the 2 first components of each
vector, we “infer” that such a proportion should hold for the 2 last components
as well, yielding x = 1 and y = 1 (i.e. cheap and taxable).

This approach, using Boolean analogical proportions, has been extended to
numerical features using multiple-valued connectives [43]. It has been successfully
applied to classification problems [3,34,44], where the attribute to be predicted



is the class of the new item. Analogical proportions may be also applied to
interpolation and extrapolation reasoning between if-then rules [10,48,49], but
this is beyond their direct application to data.

4 Making Sense of Data

Making sense of data may cover a large range of situations where we reason about
data. By reasoning about data, we mean reasoning from a (possibly dynamic) set
of data, without the purpose of drawing a conclusion on a particular attribute in a
given situation, as in deductive, abductive, case-based, or analogical reasoning.
The issue is then to understand the whole set of data in a way or another.
Reasoning about data covers a variety of problems as briefly reviewed now.

A first class of problems is when receiving a flux of information to figure
out what is going on. We are close to the recognition of temporal scenarii [52].
We may need to identify what causes what (see, e.g., [7]). In such problems, we
have to check if data fits with knowledge describing an abnormal, or the normal
course of things.

Another important class of problems deals with the structuring of the data.
We may start from a table of data, as in formal concept analysis [25], where
a formal context R indicates what Boolean attribute(s) is/are true for a given
object. Then, a formal concept is a maximal pair (X, Y ), such as X × Y ⊆ R

where X is a set of objects and Y is a set of properties; each object in X has all
properties in Y , and each property in Y is possessed by all objects in X. A formal
context is associated with a lattice of formal concepts, from which association
rules can be extracted [24,36]. This is the theoretical basis for data mining.

Interestingly enough, the operator which is at the basis of the definition of
formal concepts is analogous to the guaranteed possibility measure mentioned in
Sect. 2; indeed, in a formal concept (X, Y ), the properties in Y are guaranteed for
any object in X. Note also that (x, y) ∈ R is understood here as a positive fact,
while (x′, y′) �∈ R is not viewed as a negative fact, it rather means that the piece
of information (x′, y′) ∈ R is not available (at least if there is no closed world
assumption underlying the formal context R). Moreover, other possibility theory
operators have been imported in formal concept analysis, and enables us to
consider other forms of reasoning, still to be investigated in detail, including case-
based reasoning, see [20]. Moreover, formal concept analysis can be related [21]
to other theoretical frameworks such as rough sets [37] or extensional fuzzy sets,
in the general setting of granular computing [53], where the idea of clustering is
implicitly at work. Closely related is the summarization of data which exploits
ideas of similarity and clustering (e.g., [5,27,33]).

Classification or estimation methods are usually black box devices. They may
be learnt from data. It is clearly of interest to lay bare the contents of these black
boxes in understandable terms. There have been a number of attempts in that
directions; let us mention a few examples like a non-monotonic inference view
[26] or a fuzzy rule-based interpretation [8] of neural nets, or more recently a
weighted logic view of Sugeno integrals [22] laying bare the rules underlying the
global estimation.



5 Concluding Remarks

Taking machine learning and data mining apart, reasoning with data has
remained confined in few specialized works (at least if we restrict ourselves to
formalized approaches), or in particular areas such as fuzzy logic, or rough sets
[37]. This overview has emphasized two important points: (i) data and knowledge
being of different nature, they should be handled differently, and handling both
knowledge and data requires a bipolar setting; (ii) similarity (and dissimilarity)
play an important role when reasoning with data.

It becomes timely to recognize reasoning with data as a general research
trend in AI, to identify all the facets and issues raised by the handling of data
in various forms of reasoning, and to develop a unified view of these problems.
It may also contribute to a better interfacing between reasoning and learning
research areas [11,33,47].
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1. Arrazola, I., Plainfossé, A., Prade, H., Testemale, C.: Extrapolation of fuzzy values
from incomplete data bases. Inf. Syst. 14(6), 487–492 (1989)

2. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F.,
Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, chapter 3,
pp. 135–180. Elsevier (2007)

3. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: a classification rule for
binary and nominal data. In: Proceedings of International Conference on Artificial
Intelligence (IJCAI 2007), pp. 678–683 (2007)

4. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Modeling positive and negative
information in possibility theory. Int. J. Intell. Syst. 23, 1094–1118 (2008)

5. Bosc, P., Dubois, D., Pivert, O., Prade, H., De Calmès, M.: Fuzzy summarization
of data using fuzzy cardinalities. In: Proceedings of 9th International Conference
Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems (IPMU 2002), Annecy, pp. 1553–1559, 1–5 July 2002

6. Bouchon-Meunier, B., Laurent, A., Lesot, M.-J., Rifqi, M.: Strengthening fuzzy
gradual rules through “all the more” clauses. In: Proceedings of IEEE International
Conference on Fuzzy Systems (Fuzz-IEEE 2010), Barcelona, July 2010

7. Chassy, P., de Calmès, M., Prade, H.: Making sense as a process emerging from
perception-memory interaction: a model. Int. J. Intell. Syst. 27, 757–775 (2012)
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