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Abstract. Analogical proportions are statements of the form “a is to
b as c is to d”. For more than a decade now, their formalization and
use have raised the interest of a number of researchers. In this talk we
shall primarily focus on their modeling in logical settings, both in the
Boolean and in the multiple-valued cases. This logical view makes clear
that analogy is as much a matter of dissimilarity as a matter of similarity.
Moreover analogical proportions emerge as being especially remarkable
in the framework of logical proportions. The analogical proportion and
seven other code independent logical proportions can be shown as being
of particular interest. Besides, analogical proportions are at the basis of
an inference mechanism which enables us to complete or create a fourth
item from three other items. The relation with case-based reasoning and
case-based decision is emphasized. Potential applications and current
developments are also discussed.

1 Introduction

Analogical reasoning has been regarded for a long time as a fruitful, creative way 
of drawing conclusions, or of explaining states of fact, even if this form of reason-
ing does not present the guarantees of validity offered by deductive reasoning. 
As such, it has been extensively studied in particular by philosophers, psychol-
ogists and computer scientists. We can cite for instance [12,14,15,34] where the 
power of analogical reasoning is emphasized. See also [28] for a computationally 
oriented survey of current trends.

Roughly speaking, the idea of analogy is to establish a parallel between two 
situations [11,36] on the basis of which, one tentatively concludes that what is 
true in the first situation may also be true in the second one. When the two 
situations refer to apparently unrelated domains, the parallel may be especially 
rich. Just think of the well known example of the Bohr’s model of atom where 
electrons circle around the kernel, which is analogically linked to the model of 
planets running around the sun.

Closely related to analogical reasoning is the idea of analogical proportions, 
i.e., statements of the form “a is to b as c is to d”, which dates back to Aristotle (in 
Western world). This establishes a parallel, here between the pair (a, b) and the 
pair (c, d) [13]. Case-based reasoning seems also to obey a reasoning pattern of
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the same kind. Indeed it establishes a collection of parallels between known cases
referring to a pair (< problemi >, < solutioni >) and a new < problem0 >,
for which one may think of a < solution0 > that is all the more similar to
< solutioni > as < problem0 > is similar to < problemi >. This suggests that
case-based reasoning is a particular instance of analogical reasoning. Still we
shall see that analogical proportion-based inference significantly departs from
case-based reasoning.

This survey paper is structured as follows. First the notion of logical pro-
portion is recalled in Sect. 2 before focusing on analogical proportion in Sect. 3
and other homogeneous proportions in Sect. 4, in a Boolean setting. The exten-
sion of analogical proportions to multiple-valued settings is briefly presented in
Sect. 5. The analogical inference machinery is discussed in Sect. 6, applications
are reviewed in Sect. 7; relations and differences with case-based reasoning are
addressed in Sect. 8.

2 Boolean Logical Proportions

Proportions in mathematics state the identity of relations between two ordered
pairs of entities, say (a, b) and (c, d). Thus, the geometric proportion corresponds
to the equality of two ratios, i.e., a/b = c/d, while the arithmetic proportion
compares two pairs of numbers in terms of their differences, i.e., a − b = c − d.
In these equalities, which emphasize the symmetric role of the pairs (a, b) and
(c, d), geometric or arithmetic ratios have an implicit comparative flavor, and the
proportions express the invariance of the ratios. Note that by cross-product for
geometric proportion, or by addition for the arithmetic one, the two proportions
are respectively equivalent to ad = bc and to a+d = b+c, which makes clear that
b and c, or a and d, can be permuted without changing the validity of the pro-
portion. Moreover, mathematical proportions are at the basis of reasoning proce-
dures that enable us to “extrapolate” the fourth value knowing three of the four
quantities. Indeed, assuming that d is unknown, one can deduce d = c×b/a in the
first case, which corresponds to the well-known “rule of three”, or d = c+(b−a)
in the second case. Besides, continuous proportions where b = c are directly
related to the idea of averaging, since taking b = c as the unknown respectively
yields the geometric mean (ad)1/2 and the arithmetic mean (a + d)/2.

Generally speaking, the idea of proportion is a matter of comparison of com-
parisons, as suggested by the statement “a is to b as c is to d”. In the Boolean
setting there are four comparison indicators. On the one hand there are two sim-
ilarity indicators, namely a positive one a∧ b and a negative one ¬a∧¬b, and on
the other hand two dissimilarity indicators ¬a∧b and a∧¬b. Logical proportions
[27,29] connect four Boolean variables through a conjunction of two equivalences
between similarity or dissimilarity indicators pertaining respectively to two pairs
(a, b) and (c, d). More formally

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two equiv-

alences between indicators for (a, b) on one side and indicators for (c, d) on the

other side.



For instance, ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((a ∧ b) ≡ (c ∧ d)) is a logical proportion,
expressing that “a differs from b as c differs from d” and that “a is similar to b
as c is similar to d”. It has been established that there are 120 syntactically and
semantically distinct logical equivalences. All these proportions share a remark-
able property: they are true for exactly 6 patterns of values of abcd among 24

possible values. Thus, the above example is true for 0000, 1111, 1010, 0101, 0001,
and 0100. The interested reader is referred to [27,29] for thorough studies of the
different types of logical proportions. In the following, we only consider those sat-
isfying the code independent property. This property expresses that there should
be no distinction when encoding information positively or negatively. In other
words, encoding truth (resp. falsity) with 1 or with 0 (resp. with 0 and 1) is just
a matter of convention, and should not impact the final result. Thus we should
have the following entailment between the two logical expressions T (a, b, c, d)
and T (¬a,¬b,¬c,¬d), i.e., T (a, b, c, d) ⇒ T (¬a,¬b,¬c,¬d).

It has been established [27] that there only exist eight logical proportions
that satisfy the above property. Indeed from a structural viewpoint, note that
a proportion is built up with a pair of equivalences between indicators chosen
among 4 × 4 = 16 equivalences. So, to ensure code independency, the only way
to proceed is to first choose an equivalence then to pair it with its counterpart
where every literal is negated: for instance a ∧ b ≡ ¬c ∧ d should be paired with
¬a ∧ ¬b ≡ c ∧ ¬d in order to get a code independent proportion. This simple
reasoning shows that we have indeed 16/2 = 8 possibilities.

The 8 code independent proportions split into 4 homogeneous proportions
that are symmetrical (one can exchange (a, b) with (c, d)) and 4 heterogeneous

ones that are not symmetrical. Homogeneity here refers to the fact that in the
expression of the proportions, both equivalences link indicators of the same kind
(similarity or dissimilarity), while in the case of heterogeneous proportions they
link indicators of opposite kinds. This explains why there are four homogeneous

and four heterogeneous logical proportions. In the following section, we focus
our attention on one especially remarkable code independent logical proportion,
the analogical proportion, reviewing the 7 others in the next section. Note also
that the first example of logical proportion given above after Definition 1 is
symmetrical, but not code independent.

3 Boolean Analogical Proportion

The analogical proportion “a is to b as c is to d” more formally states that a
differs from b as c differs from d and b differs from a as d differs from c”. This is
logically expressed as [24] by the quaternary connective Ana:

Ana(a, b, c, d) � ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) (1)

Note that this logical expression of an analogical proportion only uses dissim-
ilarity indicators, and does not mix a dissimilarity indicator and a similarity
indicator as in the first example of logical expression we gave. In some sense



Table 1. Boolean patterns making Analogy true

a b c d

0 0 0 0

1 1 1 1

0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0

Analogy is first a matter of (controlled) dissimilarity. Table 1 exhibits the 6 pat-
terns for which Ana(a, b, c, d), also traditionally denoted a : b :: c : d, is true.
It can be easily checked on this table that the analogical proportion is indeed
independent with respect to the positive or negative encoding of properties.
Moreover, one can also see that the logical expression of a : b :: c : d satisfies
the key properties of an analogical proportion, namely

– reflexivity: a : b :: a : b
– symmetry: a : b :: c : d ⇒ c : d :: a : b
– central permutation: a : b :: c : d ⇒ a : c :: b : d

Consequently it also satisfies a : a :: b : b, and the external permutation a :
b :: c : d ⇒ d : b :: c : a. Note also that these properties clearly hold for
numerical proportions (a

b = a
b ; a

b = c
d ⇒ c

d = a
b , and a

b = c
d ⇒ a

c = b
d ). Table 1

is not the only Boolean model satisfying the three above postulates, but it is
the minimal one. See [32] for this result and also for the justification of the
6 patterns in Table 1 in terms of (minimal) Kolmogorov complexity. Moreover,
with this definition, the analogical proportion is transitive in the following sense:

(a : b :: c : d) ∧ (c : d :: e : f) ⇒ a : b :: e : f

Besides, note also that analogical proportion holds for the three following
generic patterns: s : s :: s : s, s : s :: t : t and s : t :: s : t where s and
t are distinct values, which is the basis for the extension of the definition of
the analogical proportion to nominal values. The above Boolean logic view of
analogical proportion agrees with other previous proposals aiming at formalizing
the idea of analogical proportion in various algebraic settings (including set-
theoretic definitions of analogical proportions) [19,22,35]; see [24,27] for details.
Moreover, it is also worth noticing that the constraint a − b = c − d defining
arithmetic proportions, when restricted to {0, 1}, validates the same 6 patterns
as in Table 1, although a−b ∈ {−1, 0, 1} in this case. This arithmetic proportion
view of analogical proportion is the one advocated by [33] between numerical
vectors representing words in high-dimensional spaces.

Representing objects with a single Boolean value is not generally sufficient
and we have to consider situations where items are represented by vectors of



Table 2. Pairing pairs (a, b) and (c, d)

A1 ... Ai−1 Ai ... Aj−1 Aj ... Ak−1 Ak ... Ar−1 Ar ... As−1 As ... An

a 1 ... 1 0 ... 0 1 ... 1 0 ... 0 1 ... 1 0 ... 0

b 1 ... 1 0 ... 0 1 ... 1 0 ... 0 0 ... 0 1 ... 1

c 1 ... 1 0 ... 0 0 ... 0 1 ... 1 1 ... 1 0 ... 0

d 1 ... 1 0 ... 0 0 ... 0 1 ... 1 0 ... 0 1 ... 1

Boolean values, each component being the value of a binary attribute. A simple
extension of the previous definition to Boolean vectors in B

n of the form a =
(a1, ..., an) can be done as follows:

a : b :: c : d iff ∀i ∈ [1, n], ai : bi :: ci : di

Obviously, all the basic properties (symmetry, central permutation) still hold
for vectors. In that respect it is important to notice that the four vectors are of
the same nature, since they refer to the same set of features. Then symmetry
just means that comparing the results of the comparisons of the two vectors
inside each pair of vectors (a, b) and (c,d) does not depend on the ordering of
the two pairs. Thus the repeated applications of symmetry followed by central
permutation yield 8 equivalent forms of the analogical proportion: (a : b :: c :
d) = (c : d :: a : b) = (c : a :: d : b) = (d : b :: c : a) = (d : cvb : a) = (b :
a :: d : c) = (b : d :: a : c) = (a : c :: b : d). Table 2 pictures the situation,
where the components of the vectors have been suitably reordered in such a way
that the attributes for which one of the 6 patterns characterizing the analogical
proportion is observed, have been gathered, e.g., attributes A1 to Ai−1 exhibits
the pattern 1111. In the general case, some of the patterns may be absent.

This table shows that building the analogical proportion a : b :: c : d is a
matter of pairing the pair (a, b) with the pair (c,d). More precisely, on attributes
A1 to Aj−1, the four vectors are equal; on attributes Aj to Ar−1, a = b and
c = d, but (a, b) �= (c,d). In other words, on attributes A1 to Ar−1 a and b

agree and c and d agree as well. This contrasts with attributes Ar to An, for
which we can see that a differs from b as c differs from d (and vice-versa). We
recognize the meaning of the formal definition of the analogical proportion.

Table 3. Pairing (a, d) and (b, c)

A1 ... Ai−1 Ai ... Aj−1 Aj ... Ak−1 Ak ... Ar−1 Ar ... As−1 As ... An

a 1 ... 1 0 ... 0 1 ... 1 0 ... 0 1 ... 1 0 ... 0

d 1 ... 1 0 ... 0 0 ... 0 1 ... 1 0 ... 0 1 ... 1

b 1 ... 1 0 ... 0 1 ... 1 0 ... 0 0 ... 0 1 ... 1

c 1 ... 1 0 ... 0 0 ... 0 1 ... 1 1 ... 1 0 ... 0



Let us now pair the vectors differently, namely considering pair (a,d) and
pair (b, c), as in Table 3. First, we can see that a : d :: b : c does not hold

due to attributes As to An. Obviously, we continue to have a = b = c = d for
attributes A1 to Aj−1, while on the rest of the attributes the values inside each
pair differ (in four different ways). Then the following definition of the analogical
proportion [24], logically equivalent to Eq. 1, should not come as a surprise:

a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c)) (2)

or equivalently

a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)) (3)

Expression (3) can be viewed as the logical counterpart of a well-known property
of geometrical proportions: the product of the means is equal to the product of
the extremes. Interestingly enough, Piaget [25] pp. 35–37) named logical pro-

portion any logical expression between four propositional formulas a, b, c, d for
which (3) is true. Apparently, and strangely enough, Piaget never related this
expression to the idea of analogy.

4 Seven Other Remarkable Logical Proportions

As said in Sect. 2, there are 7 other code independent logical proportions. We
start with two of them that are closely related to analogical proportion, before
considering the last of the 4 homogeneous proportions, and finally the four het-
erogeneous proportions.

4.1 Two Proportions Associated with Analogy

2 other homogeneous logical proportions are closely related to analogical
proportion:

– reverse analogy : Rev(a, b, c, d) � ((¬a ∧ b) ≡ (c ∧ ¬d)) ∧ ((a ∧ ¬b) ≡ (¬c ∧ d))
It reverses analogy into “b is to a as c is to d”. In fact Rev(a, b, c, d) ⇔
Ana(b, a, c, d).

– paralogy : Par(a, b, c, d) � ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d))
It expresses that what a and b have in common (positively or negatively),
c and d have it also, and conversely. Up to a permutation, we recognize an
expression similar to the expression (2) of a : b :: c : d. It can be checked
that Par(a, b, c, d)) ⇔ Ana(c, b, a, d).

In columns 2 and 3 of Table 4, we give the 6 patterns that make true Rev
and Par, together with Ana in column 1.

A geometric illustration of the three proportions Ana, Par, Rev can be given.
Indeed given 3 points a, b, c of the real plan R

2, one can always find a point d

such that abdc is a parallelogram (see Fig. 1). In fact, from 3 non aligned points,
one can build 3 distinct parallelograms. See Fig. 1 where the index of d refers to



Table 4. Boolean patterns making true Analogy, Reverse analogy, Paralogy, Inverse
paralogy

Ana Rev Par Inv

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0

0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1

1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Fig. 1. Three parallelograms

the proportion that generates it from (a, b, c). In Fig. 1, we have used different
types of lines (with different width, dotted or not, arrows or not) to try to help
visualizing the 3 parallelograms. Indeed if (a, b, c are respectively represented by
coordinates (0, 0), (0, 1), and (1, 0), dA is (1, 1) and (0, 0) : (0, 1) :: (1, 0) : (1, 1)
holds componentwise. It can be seen that geometrically, in R

2, this corresponds

to the equality of vectors
−→
ab and

−−→
cdA. Applying the permutations linking Ana,

Par, and Rev, we observe that
−→
ab =

−−→
dRc and

−−→
adP =

−→
cb as expected since

a : bvdR : c iff a, b, c,dR make a reverse analogy, while a : dP :: c : b iff
a, b, c,dP make a paralogy. Moreover, if we remember that a : b :: c : dA

holds if and only if a − b = c − dA componentwise, which is equivalent in R to
dA = −a + b + c, we can easily deduce using permutations that dR = a − b + c

and dP = a + b − c. It yields dR = (1,−1) and dP = (−1, 1), which indeed
corresponds to the coordinates of dR and dP in R

2.

4.2 Inverse Paralogy

By switching the positive and the negative similarity indicators pertaining to
the pair (c, d) in the definition of the paralogy, we obtain a new homogeneous
logical proportion called inverse paralogy. Namely its expression is given by

Inv(a, b, c, d) � ((a ∧ b) ≡ (¬c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (c ∧ d))



Inv(a, b, c, d) states that “what a and b have in common, c and d do not have
it and conversely”. This expresses a kind of “orthogonality” between the pairs
(a, b) and (c, d). Inv(a, b, c, d) is clearly symmetrical and code independent. It
can be shown [27] that Inv is the unique logical proportion (among the 120’s!)
which remains unchanged under any permutation of two terms among the four.
Namely Inv(a, b, c, d) ⇔ Inv(b, a, c, d) ⇔ Inv(a, c, b, d) ⇔ Inv(c, b, a, d) (the other
permutations of two terms are obtained by symmetry). The patterns that make
true Inv are given in the column 4 of Table 4. As can be seen, it is true for the
patterns encountered in the truth tables of Ana, Par, Rev, except 0000 and 1111.

Note also in Table 4 that the 6 patterns that make the four proportions true
belong to a set of 8 patterns. This set of 8 patterns is characterized by the
logical formula (a ≡ b) ≡ (c ≡ d), which corresponds to an analogical-like con-
nective proposed by Klein [17], in relation with anthropological materials. Table 5
exhibits the pair of patterns that each proportion misses among the 8 patterns.
It also shows what may be called the “characteristic” patterns of a proportion,
namely the ones making one of the two involved indicators true for (a, b) and one
true for (c, d). Those latter patterns correspond to the reading of the proportion.

Table 5. Analogy, Reverse analogy, Paralogy, Inverse paralogy: Characteristic/missing
patterns

Characteristic patterns Missing patterns

Ana 1010 and 0101 1001 and 0110

Rev 1001 and 0110 1010 and 0101

Par 1111 and 0000 1100 and 0011

Inv 1100 and 0011 1111 and 0000

An illustration of the use of the inverse paralogy is provided by Bongard
problems [3] that are visual puzzles where we have two sets A and B of rela-
tively simple pictures. All the pictures in set A have a common feature, which
is lacking in all the ones in set B. The problem is to find the common feature.
This corresponds to one of the characteristic patterns of Inv [30].

4.3 The 4 Heterogeneous Proportions

The 4 heterogeneous proportions are obtained by putting the ≡ connectives
between indicators of different kinds for (a, b) and for (c, d). Their logical expres-
sions are given below:

-H1(a, b, c, d) = (¬a ∧ b ≡ ¬c ∧ ¬d) ∧ (a ∧ ¬b ≡ c ∧ d)

-H2(a, b, c, d) = (¬a ∧ b ≡ c ∧ d) ∧ (a ∧ ¬b ≡ ¬c ∧ ¬d)

-H3(a, b, c, d) = (¬a ∧ ¬b ≡ ¬c ∧ d) ∧ (a ∧ b ≡ c ∧ ¬d)

-H4(a, b, c, d) = (¬a ∧ ¬b ≡ c ∧ ¬d) ∧ (a ∧ b ≡ ¬c ∧ d)



Table 6. H1, H2, H3, H4 Boolean truth tables

H1 H2 H3 H4

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0

1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1

0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0

1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

They are clearly code independent. The six patterns that make them true are
given in Table 6. The four heterogeneous logical proportions have a quite different
semantics from the ones of homogeneous proportions. They express that there
is an intruder among {a, b, c, d}, which is not a (H1), which is not b (H2), which
is not c (H3), and which is not d (H4) respectively. The reader is referred to [29]
for the study of the properties of heterogeneous logical proportions. They have
been shown to be appropriate for solving puzzles of the type “Finding the odd
one out” [29]. Moreover they are at the basis of an “oddness” measure, which has
been shown to be of interest in classification, following the straightforward idea
of classifying a new item in the class where it appears to the least at odds [6].

5 Graded Analogical Proportion

Attributes or features are not necessarily Boolean, and graded extensions of
logical proportions are of interest. In the following we only focus on analogical
proportion. We assume that attributes are now valued in [0, 1] (possibly after
renormalization). There are potentially many ways of extending expressions such
as Eqs. (1) or (3). Still there are mainly two options that make sense [8].

The first one is obtained by replacing (i) the central ∧ in (1) by min, (ii)
the two ≡ symbols by min(s →�L t, t →�L s) = 1− | s − t |, where s →�L t =
min(1, 1− s+ t) is �Lukasiewicz implication, (iii) the four expressions of the form
s∧¬t by the bounded difference max(0, s−t) = 1−(s →�L t), which is associated
to �Lukasiewicz implication, using 1− (·) as negation. The resulting expression is
then

a : b ::�L c : d =



















1− | (a − b) − (c − d) |,

if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

1 − max(|a − b |,|c − d |),

if a ≤ b and c≥ d, or a ≥ b and c ≤ d

(4)

It coincides with a : b :: c : d on {0, 1}. As can be seen, this expression is
equal to 1 if and only if (a−b) = (c−d), while a : b ::�L c : d = 0 if and only if (i)



a−b = 1 and c ≤ d, or if (ii) b−a = 1 and d ≤ c, or if (iii) a ≤ b and c−d = 1, or if
iv) b ≤ a and d−c = 1. Thus, a : b ::�L c : d = 0 when the change inside one of the
pairs (a, b) or (c, d) is maximal, while the other pair shows either no change or a
change in the opposite direction. It can be also checked that code independency
continue to hold under the form a : b ::�L c : d = 1 − a : 1 − b ::�L 1 − c : 1 − d.

We have pointed out that the algebraic difference between a and b equated
with the difference between c and d, namely a − b = c − d, provides a constraint
that is satisfied by the 6 patterns making true the analogical proportion a : b ::
c : d in the Boolean case, and by none of the 10 others. However, a − b may
not belong to {0, 1} when a, b ∈ {0, 1}. When considering the graded case, the
situation remains the same: a−b is not close either in [0, 1], but a : b ::�L c : d = 1
if and only if a − b = c − d; moreover, the modeling of the analogical proportion
by the constraint a − b = c − d does not provide a graded evaluation of how far
we are from satisfying it, as it is the case with the above extension.

There is another meaningful graded extension of the analogical proportion,
which is directly obtained from Eq. (3) by also taking ‘min’ for the internal
conjunction and ‘max’ for the internal disjunction. It yields the so-called “con-
servative” extension [8]:

a : b ::C c : d = min(1 − |max(a, d) − max(b, c)|, 1 − |min(a, d) − min(b, c)|) (5)

Note that a : b ::C c : d = 1 ⇔ min(a, d) = min(b, c) and max(a, d) =
max(b, c). This means that the patterns (s, s, t, t), and (s, t, s, t) (and (s, s, s, s))
are then the unique way to have the analogical proportion fully true (equal to
1). It can be checked that a : b ::�L c : d = 1 ⇒ a : b ::C c : d = 1. For instance,
0 : 0.5 ::�L 0.5 : 1 = 1, while 0 : 0.5 ::C 0.5 : 1 = 0.5. Besides, a : b :: c : d = 0 if
and only if |min(a, d)−min(b, c)| = 1 or |max(a, d)−max(b, c)| = 1, i.e. the only
patterns fully falsifying the analogical proportion are of the form 1 : 0 :: x : 1
or 0 : 1 :: x : 0 (and the other patterns obtained from these two by symmetry
and central permutation).

6 Analogical Inference

The equation a : b :: c : x in B has not always a solution. Indeed neither
0 : 1 :: 1 : x nor 1 : 0 :: 0 : x have a solution (since 0111, 0110, 1000, 1001 are
not valid patterns for an analogical proportion). The solution exists if and only
if (a ≡ b) ∨ (a ≡ c) holds. When the solution exists, it is unique and given by
solution x = c ≡ (a ≡ b). This corresponds to the original view advocated by
Klein [17] who applied even to the cases 0 : 1 :: 1 : x and 1 : 0 :: 0 : x, where
it yields x = 0 and x = 1 respectively; as already said S. Klein was making no
differences between Ana, Par and Rev.

This equation solving mechanism directly applies to Boolean vectors in B
n,

i.e., looking for x = (x1, · · · , xn) such as a : b :: c : x holds, amounts to
solving the n equations ai : bi :: ci : xi. When the n equations are solvable,
we can observe that the analogical proportion solving process may be creative

(an informal quality usually associated with the idea of analogy) in the sense



Fig. 2. A simple analogical sequence of pictures

Fig. 3. A Boolean coding for Fig. 2

that it may be the case that x �= a, x �= b, and x �= c. For instance, we obtain
x = (x1, x2) = (0, 0), from a = (a1, a2) = (1, 1), b = (b1, b2) = (1, 0), and
c = (c1, c2) = (0, 1).

This can be applied to completion tests such as the example of Fig. 2.
The problem may be encoded using the 5 Boolean predicates hasSquare(hS),
hasBlack Dot(hBD), hasTriangle(hT ), hasCircle(hC), hasEllipse(hE) in
that order.

This leads to the code of Fig. 3. Applying componentwise the solving process,
we get x = (0, 1, 1, 1, 0) which is the code of the expected solution. The approach
is constructive since the missing picture x is obtained by computation from
a, b, c. This contrasts with the classical approaches to this problem, pioneered
by Th. Evans [9] where d is to be chosen among a set of candidate pictures which
contains a picture considered as being the right answer, and where the change
between a and b is compared with the change between c and x for each x, leading
to choose x as the one maximizing the similarity between the changes. Clearly,
we may imagine some sequence of pictures a, b, c which cannot be completed
by a fourth picture x in the sense of analogical proportion since the equation
a : b :: c : x = 1 is not always solvable. When there is no analogical solution,
we may think of using another homogeneous logical proportions. It should be
also clear that the approach may not be suitable for solving quizzes obeying to a
functional pattern of the form a : f(a) :: b : f(b), when the features considered
for defining the vectors do not account for the modeling of f ; then the function
f has to be guessed on the basis of some simplicity principle [1].

The equation solving process may be also restricted to a subpart of x. This is
the basic inference pattern underlying the analogical proportion-based inference,
which can be described as follows: if an analogical proportion holds between p
components of four vectors, then this proportion may hold for the last remain-
ing components as well. This inference principle [35] can be formally stated as
follows:

∀i ∈ {1, ..., p}, ai : bi :: ci : di holds

∀j ∈ {p + 1, ..., n}, aj : bj :: cj : dj holds



This is a generalized form of analogical reasoning, where we transfer knowledge
from some components of our vectors to their remaining components, tacitly
assuming that the values of the p first components determine the values of the
others. Then analogical reasoning amounts to finding completely informed triples
(a, b, c) suitable for inferring the missing value(s) of an incompletely informed
item. In case of the existence of several possible triples leading to possibly distinct
plausible conclusions, a voting procedure may be used, as in case-based reasoning
where the inference is based on a collection of single cases (i.e., the nearest
neighbors) rather than on a collection of triples. This inference pattern can
be generalized when the p attributes include numerical ones, by computing an
average score of the qualities of the analogical proportions over the p components
(using one of the graded extensions of Sect. 5), and choosing the prediction such
that the sum of the average scores to which it is associated, is maximal.

7 Applications

We briefly survey some existing or potential applications of analogical
proportions.

Classification. Classification is an immediate application of the above inference
principle where one has to predict a class cl(x) (viewed as a nominal attribute)
for a new item x. Then one looks for triples (a, b, c) of items with a known class,
for which the class equation cl(a) : cl(b) :: cl(c) : cl(x) is solvable, and for which
analogical proportions hold with x on the attributes describing the items. It has
been first successively applied to Boolean attributes [4,21] and then extended
to nominal and to numerical ones [5]. Recent formal studies have shown that
analogical classifiers always give exact predictions in the special cases where the
classification process is governed by an affine Boolean function (which includes
x-or functions) and only in this case, which does not prevent to get good results
in other cases (as observed in practice), but which is still to be better understood
[7,16]. This suggests that analogical proportions enforces a form of linearity, just
as numerical proportions fit with linear interpolation.

Raven Tests. They are IQ tests, where one is faced with a 3 × 3 matrix with
8 cells containing pictures, where one has to guess what is the right contents of
the empty ninth cell, among 8 proposed solutions. An example1 is given with its
solution (a simple big square) in Fig. 4. The idea is to postulate that in a line
(and maybe in a column), the picture of the 3rd cell is to the pictures of the
first two pictures as the picture of the 3rd cell is to the pictures of the first two
pictures in the next line (or column). It amounts to dealing with proportions of
the form (cell1, cell2) : cell3 :: (cell′1, cell′2) : cell′3 (where the celli’s refer to

1 For copyright reasons and to protect the security of the test problems, the orig-
inal Raven test has been replaced by an isomorphic example (in terms of logical
encoding).



Fig. 4. Modified Raven test 12 and its solution

feature-based vectors describing the feature. Then the application of the analog-
ical inference amounts to copying patterns observed in other lines or columns,
feature by feature. Again the solution is built, and not chosen. See [1] for details
and discussions.

Analogy-Based Decision. Let us just outline the idea using generic scenarii;
see [2] for details. Suppose that a decision δ was experienced in two different
situations sit1 and sit2 in the presence or not of special circumstances, leading
to good or bad results respectively depending on the absence or on the presence
of these special circumstances. Suppose we have in our repository the first three
lines of the following table (cases a, b, c), while we wonder if we should consider
applying decision δ or not in sit2 when no special circumstances are present (case
d). The analogical inference leads here to the prediction that the result should
be good.

case situation special circumstances decision result

a sit1 yes δ bad

b sit1 no δ good

c sit2 yes δ bad

d sit2 no δ good

Note that if we apply a case-based decision view, case d might be found quite
similar to case c, since they are identical on all the features used for describing
situation sit2, and differs only on the maybe unique feature describing the so-
called “special circumstances”; this would lead to favor the idea that decision
δ in case d would also lead to a bad result as in case c. Still, a more careful
examination of cases a, b, c may lead to an opposite conclusion. Indeed it is nat-
ural to implicitly assume here that the possibly many features gathered here
under the labels “situation” and “special circumstances” are enough for describ-
ing the cases and for determining the quality of the result of decisions applied
to the cases. Thus, the fact that in sit1, the quality of the result of decision δ is
bad (resp. good) is explained by the presence (resp. absence) of “special circum-
stances”. Then the analogical inference enforces here that we should have the
same behavior in sit2.

Rather than analogically predicting the evaluation of the output of a potential
decision in a new situation, one may suppose that we start with a repertory of
recommended actions in a variety of circumstances, and then one may also think



of trying to take advantage of the creative capabilities of analogy for adapting
a decision to the new situation. This may be useful when the final decision has
diverse options. Such as Serve a tea with or without sugar, with or without
milk. Let us consider this example to illustrate the idea. As stored in the table
below, in situation sit1 with contraindication (c i), it is recommended to serve
tea only, in situation sit1 with no c i, tea with sugar, while in situation sit2
with c i one serves tea with milk. What to do in situation sit2 with no c i ?
Common sense suggests tea with sugar and milk, maybe. It is what analogical
proportion equations says: indeed δ : δ :: δ : x, 0 : 1 :: 0 : y and 0 : 0 :: 1 : z
yield xyz = δ11 as in the table below.

case situation contraindication decision option1 option2

a sit1 yes δ 0 0

b sit1 no δ 1 0

c sit2 yes δ 0 1

d sit2 no δ 1 1

Analogical Inequalities. An analogical proportion states that the results of
the comparisons of a and b on the one hand, and of c and d on the other hand,
in terms of dissimilarity indicators, are the same. Analogical inequalities [31]
weaken such statements of identity into statements of the form “a is to b at least
as much as c is to d”. Starting from the Boolean expression (1) of the analogical
proportion, we replace the two symbols ≡ expressing sameness by two → for
modeling the fact that the result of the comparison of c and d is larger or equal
to the result of the comparison of a and b. Namely, we obtain

a : b << c : d = ((a ∧ ¬b) → (c ∧ ¬d)) ∧ ((¬a ∧ b) → (¬c ∧ d)) (6)

It can be checked from the definition that the following expected properties hold:

– a : b << a : b
– a : b :: c : d ⇒ a : b << c : d
– a : b :: c : d ⇔ ((a : b << c : d) ∧ (c : d << a : b))
– (a : b << c : d) ⇔ (¬a : ¬b << ¬c : ¬d)

Indeed, a : b << c : d is weaker than a : b :: c : d. More precisely a : b << c : d
holds true for the 6 patterns that makes analogical proportion true, plus the
4 patterns 0001, 0010, 1110, 1101. These latter patterns correspond to the 4
situations where a ≡ b and c �≡ d. In these 4 situations a and b are indeed
strictly closer than c and d, and these are the only cases in {0, 1}. It can be
checked that a : b << c : d is true if and only if (a : b :: c : d) ∨ (a ≡ b) is true.

When extended to the multiple-valued case [31], we obtain graded analogical
inequalities that might be of interest in visual multiple-class categorization tasks
for the handling of pieces of knowledge about semantic relationships between
classes of the form “a is to b at least as much as c is to d” where a, b, c, d refer
to the value of a feature of interest in 4 different images [18].



8 Conclusion: Link and Differences with Case-Based

Reasoning

As suggested in this overview, and already emphasized in [26], analogical
proportion-based inference departs from case-based reasoning since the former
takes advantage of triples for extrapolating plausible conclusions, while the lat-
ter exploits the similarity of the new case with a collection of stored cases
considered one by one. Indeed, although “< solution1 > is to < problem1 >
as < solution2 > is to < problem2 >” may be regarded as an analogi-
cal proportion, the view presented here assumes that the vectors represent-
ing the four items in the analogical proportion “a is to b as c is to d”
are all defined on the same set of features. As suggested when discussing
analogy-based decision, we would rather suggest to exploit analogical pro-
portions of the form (< problem1 >,< solution1 >) : (< problem2 >,
< solution2 >) :: (< problem3 >,< solution3 >) : (< problem0 >,
< solution0 >) for extrapolating < solution0 > from 3 known cases ({(<
problemi >,< solutioni >) | i = 1, 3}) by solving equation < solution1 >:<
solution2 > ::< solution3 >:< solution0 > (where < solution0 > is unknown),
provided that < problem1 >:< problem2 > :: < problem3 >:< problem0 >
holds.

The view advocated here is also in line with the use of the creative power
of analogical reasoning for, e.g., creating a new recipe from known ones, as
suggested by the following example where one knows about lemon pie (a), lemon
cream (b), and apple pie (c) (roughly described by obvious features here), leading
to the creation of the apple cream, in a spirit not so far of adaption methods in
case-based reasoning [10].

pastry cream lemon apple dessert fruit juice

lemon pie 1 0 1 0 1 1 1

lemon cream 0 1 1 0 1 1 1

apple pie. 1 0 0 1 1 1 1

apple cream 0 1 0 1 1 1 1

Moreover, the computation of the result of the inference may give birth to some
explanation: pies and creams are two desserts, both lemon and apple are juicy
fruits, lemon pie and lemon cream exist, apple pie exists, why not trying apple
cream ?

The handling of analogical proportions “a is to b as c is to d” where a and c do
no belong to the same conceptual universe as b and d, as in the sentence “Oslo is
to Norway as Paris is to France” is more tricky [20,23] and still under study.
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Dignum, F., van Harmelen, F. (eds.) Proceedings of the 22nd European Conference
on Artificial Intelligence (ECAI 2016), The Hague, 29 August–2 September, pp.
689–697. IOS Press (2016)

17. Klein, S.: Analogy and mysticism and the structure of culture (and Comments &
Reply). Curr. Anthropol. 24(2), 151–180 (1983)

18. Law, M.T., Thome, N., Cord, M.: Quadruplet-wise image similarity learning. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(2013)

19. Lepage, Y.: Analogy and formal languages. Electr. Not. Theor. Comp. Sci. 53,
180–191 (2002). Proc. joint meeting of the 6th Conf. on Formal Grammar and the
7th Conf. on Mathematics of Language, (L. S. Moss, R. T. Oehrle, eds.)



20. Miclet, L., Barbot, N., Prade, H.: From analogical proportions in lattices to pro-
portional analogies in formal concepts. In: Schaub, T., Friedrich, G., O’Sullivan,
B. (eds.) Proceedings of the 21st European Conference on Artificial Intelligence
(ECAI 2014), Prague, August 18–22, vol. 263, Frontiers in Artificial Intelligence
and Applications, pp. 627–632. IOS Press (2014)

21. Miclet, L., Bayoudh, S., Delhay, A.: Analogical dissimilarity: definition, algorithms
and two experiments in machine learning. J. Artif. Intell. Res. (JAIR) 32, 793–824
(2008)

22. Miclet, L., Delhay, A.: Relation d’analogie et distance SUR un alphabet défini par
des traits. Technical Report 1632, IRISA, July 2004

23. Miclet, L., Nicolas, J.: From formal concepts to analogical complexes. In: Pro-
ceedings of the 12th International Joint Conference on Concept Lattices and their
Applications (CLA 2015), Clermont-Ferrand (2015)

24. Miclet, L., Prade, H.: Handling analogical proportions in classical logic and fuzzy
logics settings. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol.
5590, pp. 638–650. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02906-6 55

25. Piaget, J.: Logic and Psychology. Manchester University Press, New York (1953)
26. Prade, H., Richard, G.: Analogy-making for solving IQ Tests: a logical view.

In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 241–257.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23291-6 19

27. Prade, H., Richard, G.: From analogical proportion to logical proportions. Log.
Univers. 7(4), 441–505 (2013)

28. Prade, H., Richard, G. (eds.): Computational Approaches to Analogical Reason-
ing: Current Trends. Studies in Computational Intelligence, vol. 548. Springer,
Heidelberg (2014)

29. Prade, H., Richard, G.: Homogenous and heterogeneous logical proportions.
IfCoLog J. Logics Appl. 1(1), 1–51 (2014)

30. Prade, H., Richard, G.: On different ways to be (dis)similar to elements in a set.
Boolean analysis and graded extension. In: Carvalho, J.P., Lesot, M.-J., Kaymak,
U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol.
611, pp. 605–618. Springer, Cham (2016). doi:10.1007/978-3-319-40581-0 49

31. Prade, H., Richard, G.: Analogical inequalities. In: Papini, O., Antonucci, A.,
Cholvy, L. (eds.) Proceedings of the 14th European Conference on Symbolic and
Quantitative Approach to Reasoning with Uncertainty (ECSQARU 2017), Lugano,
July 10–14, LNAI. Springer (2017, to appear)

32. Prade, H., Richard, G.: Boolean analogical proportions - Axiomatics and algorith-
mic complexity issues. In: Papini, O., Antonucci, A., Cholvy, L. (eds.) Proceedings
of the 14th European Conference on Symbolic and Quantitative Approach to Rea-
soning with Uncertainty (ECSQARU 2017), Lugano, July 10–14, LNAI. Springer
(2017, to appear)

33. Rumelhart, D.E., Abrahamson, A.A.: A model for analogical reasoning. Cognitive
Psychol. 5, 1–28 (2005)

34. Sowa, J.F., Majumdar, A.K.: Analogical reasoning. In: Ganter, B., Moor, A., Lex,
W. (eds.) ICCS-ConceptStruct 2003. LNCS, vol. 2746, pp. 16–36. Springer, Hei-
delberg (2003). doi:10.1007/978-3-540-45091-7 2

35. Stroppa, N., Yvon, F.: Analogical learning and formal proportions: definitions and
methodological issues. Technical Report D004, ENST-Paris (2005)

36. Winston, P.H.: Learning and reasoning by analogy. Commun. ACM 23(12), 689–
703 (1980)


