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Abstract

In order to characterize the mechanical behavior of a reinforced concrete beam-column joint,
an experiment is designed whereby different histories of increasing cyclic loads are applied,
and the structure deformation (as well as the morphology of apparent surface cracks) are to
be studied using multi-view correlation. The complex 3D geometry and the slender nature of
the beam and column call for numerous digital cameras to be positioned around the specimen.
Assessing the feasibility of image acquisition and estimating a priori uncertainties on multi-
view correlation becomes a true challenge. It is shown that the recourse to photo-realistic
rendering softwares provides the needed tools to perform this experiment design optimization.

Keywords: computer vision, mechanical test, multi-view systems, realistic rendering, uncer-
tainty quantification, virtual pre-testing

1. Introduction

Scientific visualization is a key aspect in today’s science, especially due to the amount of data
to process (supplied by more and more powerful clusters of processing units) and the complexity of
the phenomena at stake, making it crucial to understand the physics of a simulation or an exper-
iment. Numerous tools are now available to slice, clip or extract subsets of data to provide quasi-
instantaneous renderings (e.g., ParaView®, Visit®, Tecplot” or any kind of custom-made VTK®,
ITK? or Python' codes). These visualization aspects, so important for post-processing purposes,
also appear to be of major interest for pre-processing the experiment, albeit this aspect is seldom
highlighted. Because the models to identify become more and more complex, the experimental setup
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becomes more and more diverse and sophisticated (from the geometry of the specimen to be tested [1]
to the instrumentation of the test [2]).

This observation applies to the study of reinforced concrete beams and frames, from experiments
to modeling, making the prediction of their behavior trustworthy, even for severely damaging con-
ditions. The strength of structures under cyclic or seismic loadings has been the subject of several
experimental investigations in recent years [3, 4, 5, 6, 7, 8]. The fair description of joint elements is
of major importance when dealing with the load bearing capacity of an entire structure [9]. They
are the regions most prone to damage due to the focusing of intense torques transmitted by the
connecting beams, and conversely, their softening will control their further degradation and finally
the ultimate load the entire assembly can withstand. However, the behavior of the joints between
beam and column, and their influence on the overall structure remains the less well-mastered element
due to the complexity of the assembly (steel reinforcement bars, anchorage and stirrups) and the
occurrence of several coupled physical phenomena (e.g., damage, crack initiation, growth and arrest,
debonding of concrete from steel reinforcement, friction, wear of crack surfaces, role of debris [10]).

The lack of exhaustive experimental data hinders rapid and trustworthy progress. One major
difficulty in performing experiments on such joints is the expected complexity of their behavior,
with localized damage in the form of cracks and their closure [11, 12]. Moreover, the joint is in-
trinsically a 3D structure that cannot be easily simplified using beam theory. Resorting to simpler
mechanical tests according to sub-structuring assumptions [13, 14, 15, 16] may be limited in terms
of representativity.

One way to circumvent those difficulties is to perform full-field measurements as they can provide
a complete picture of the joint and its connecting beams [17]. Yet, even if the geometry and loading
are designed to be planar, there is no chance that through the damaging process, this flatness is
preserved. It is very likely that symmetries will be broken and spurious flexural or torsional modes
may appear. Rather than disqualifying the experiment as soon as these features appear, it is more
attractive (although challenging) to deal with them adequately. Henceforth, the experiment calls for
multi-view systems to capture the 3D kinematics of the surface [18]. In addition, it is favorable to
observe the joint, the column and the beam over different faces, and also at different scales [19] to
capture both the detail of the joint degradation and also the large scale deformation of the beams in
order to characterize the loading conditions using beam theory [20]. Because these objects are slender
in general, a global view will not have the sufficient spatial resolution to capture minute details. These
different requirements and constraints lead to a highly sophisticated setup, as exemplified in Figure 1,
namely, a complex T-shaped specimen (1), attached to a machine having a complex geometry (e.g.,
hexapod' [21]) and many mobile parts (2), and monitored by several cameras (3).

https://en.wikipedia.org/wiki/Stewart_platform
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Figure 1: 3D rendering of a complex experimental setup. (1) Beam-column reinforced concrete assembly;
(2) Stewart platform (hexapod structure); (3) Acquisition setup (digital cameras, LED panels and supporting
system)

The conclusion is that ideally many cameras are to be used simultaneously (with a proper syn-
chronization) in order to fully characterize the kinematics of a joint loaded up to realistic levels
(e.g., representative of seismic tests). Consequently, a lot of freedom (as well as many constraints) is
involved in the global setup of such an experiment, including the structure design, the loading device
and the imaging cameras. Rather than resorting to a “trial and error” procedure to position the
cameras, the main objective of this paper is to show that this kind of experiment can be pre-designed
using powerful 3D-rendering softwares.

The movie industry has been using such techniques for a long time. First used in theaters in
order to stage actors, this step was called “blocking” and performed using mock-ups with simple
geometries [22]. Prior to the nouvelle vague' and its dedicated light-weight cameras, the camera
location / motion was also a challenge in itself, so that blocking was used to anticipate potential
issues relative to the position and motion of both the cameras and actors, especially in the case of
crowded or cramped spaces. Last, the communication of visual aims to different people in a very
accurate manner is a complication that traditional storyboards could not completely handle®. Later
computers were used to perform off-stage blocking more accurately®. The blocking technique is now

! French new wave, refers to a group of film makers from the 1950s and the 1960s who were linked by
their self-conscious rejection of the traditional movie culture (industry organization, topics or techniques).
https://en.wikipedia.org/wiki/French_New_Wave.

2This is the reason why film directors want to see exactly “as” the camera, e.g., Stanley Kubrick adding a
video camera to the film camera in his 1975 movie Barry Lyndon[23].

3The first still wireframe computer-aided design (CAD) images started to be used in the late 1970s to
replace traditional blocking, and by the beginning of the 1990s moving wireframes appeared (as during the
title sequence of Tim Burton’s Batman returns). A decade later, softwares dedicated to this new step called
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widely used for 3D computer animation movies, for which key poses (also known as keyframes) are
created to establish the timing and placement of the characters, as well as to avoid non-realistic
motions.

The requirements of the (animation) movie industry are not those of experimental mechanics.
However, visualization softwares are naturally accurate in their geometrical rendering, and this prop-
erty can be extremely beneficial to the design of complex mechanical tests including the optimization
of camera positioning. In the following, a professional free and open-source 3D computer graphics
software, Blender[24], is used. Additionally, one looks for very realistic synthetic images of the sur-
face coverage, from which displacement measurements can be mimicked with a specific multi-view
correlation software. Blender includes actual surface patterning texture, lighting variations and even
representative noise. Therefore, the measurement uncertainties can be evaluated in gquantitative
terms, and accordingly employed in order to optimize the test. Using a real case study, where the
experiment has been performed after having been pre-designed, the focus of the paper is to highlight
new possibilities offered by quantitative 3D-rendering softwares, and the added value they can bring.

The experimental challenges exemplified in reinforced concrete structures are in fact representa-
tive of a much broader class of applications where industrial parts or even full structures, assemblies
of various components, with their real geometry and connections, are subjected to representative
(i.e., severe) accidental conditions and loadings. Doubtlessly, a quantitative pre-design of a full ex-
perimental setup, where 3D virtual rendering tools can be exploited for predicting realistic multi-view
correlation performances, will become an essential step in the future practice of complex experimen-
tal tests.

After presenting the considered experimental setup in Section 2, image acquisition is discussed
together with the modeling of the experimental geometry within Blender in Section 3. This software
produces synthetic images that can be processed in order to validate a priori the feasibility of the
experiment in terms of surface coverage or possible shadow obstructions. These features, which are
introduced in Section 4, lead to a validation of the experimental design and its optimization prior
to its construction. Sections 5 and 6 open the discussion more broadly to the pre-design of complex
mechanical tests as an emerging trend to be promoted through innovative tools. This evolution is
called for but generic processes for the optimization of such complicated multi-camera setups are to
be elaborated, and 3D virtual rendering softwares are very convenient for assessing quantitatively
the expected performance of the displacement measurement system, through the evaluation of (dis-
placement) uncertainties (Section 5), which opens a general discussion on the possible input/output
of Blender in experimental mechanics (Section 6).

2. Experimental setup

2.1. General framework

Joint elements exhibit complex 3D behavior when subject to transverse loadings on the structure
(e.g., wind, earthquake [10]). In order to address the issue of thorough characterizations of their
response to severe loading intensity and representative mode-coupled loadings, with arbitrary history

“pre-visualization” (e.g., FrameForge 3D Studi04) enabled every of the previously listed points to be checked.
It is worth noting that these tools also allow one to make the link between, and merge with, live action and
computer-generated imagery (CGI) animation in very intricate manners (as for the long take scene of David
Fincher’s Panic Room). Numerical accuracy aside, merging CGI and live action can be somehow paralleled
with experimental / computation comparisons.
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of forces and torques transmitted by the connecting beams, the loading path prescribed to the
structure should be at the same time complex and precisely controlled.

In the field of earthquake engineering, the 3D behavior of structures are mainly investigated using
a reaction wall or a shaking table [25]. For reaction walls, the loadings are limited to one or two
directions according to the number of actuators used to reproduce the earthquake loadings [15, 16]
. For shaking tables, where loadings are inertia mediated, getting a full 3D control of the loading
applied to the structural element is challenging, as it naturally involves dynamic measurements at a
fast rate [8, 26].

To circumvent these issues, it is legitimate to consider quasi-static loading conditions so that
time per se does not play a significant role. This simplification bears no significant limitations to
the sought behavior (except for time-dependent mechanisms). In line with the previous comments,
it is important to be able to apply a complex combined loading involving several degrees of freedom.
The choice of using a hexapod machine (Figure 2) offering six degrees of freedom appears to be
particularly attractive [27, 28, 29, 30, 31, 32]. However, not all six degrees of freedom will be utilized
at first, as using only two of them with a non proportional loading history is already quite challenging.
Moreover, the same setup can be further extended to reach a higher complexity.

Figure 2: Hexapod testing machine. (1) Base, (2) actuators, (3) moving platform, (4) upper end-effector,
(5) area for specimen, (6) optical setup in close configuration with two cameras, (7) load cell with a hexapod
structure [21], which was not used in the present case.

The geometry of the chosen structure to be tested is the simplest joint element, namely, a beam-
column (i.e., T-shaped) structure (14 in Figure 3). Prescribing forces/displacements at the end of
the beam with the hexapod (11) while the two ends of the column are clamped (13) is a way to
generate a loading on the joint with reasonable balance between complexity and feasibility. The
specimen was designed to fit the hexapod capacity according to a numerical model and to exhibit
shear failure in the joint region before yielding of beam or column reinforcement bars (subassembly
without stirrups in the joint panel).

In terms of modeling, a classical way to take into account the nonlinear response of frame



structures and joints is to concentrate the nonlinearities at a point, in a so-called “macro-
element” [33, 34, 35] or in a 3D reduced area coupled with simple elements like beams [36]. Gener-
alized strains (i.e., elongations, curvatures and twist) are functionally related to generalized stress
(i.e., internal forces and moments) and their complete histories. The nonlinearities are concentrated
at the point or the reduced volume where the macro-element stands whereas the remainder of the
structural elements (i.e., beams, columns) behave linearly. This challenge is well-defined in the
framework of two-scale asymptotic expansions [36].

In order to identify the behavior of the equivalent macro-element, one should get access to the
generalized strains and stresses in the elastic portions to be able to extrapolate up to the boundaries
of the macro-element. As a consequence, specific strategies are to be developed in this work to
provide a measuring system based on elastic beam theory in order to measure the relevant kinematic
variables along beam elements, and to perform a trustworthy full 3D extrapolation consistent with
the theoretical asymptotic expansion procedure. Because the kinematics is 3D, it is necessary to
combine at least two different viewpoints to achieve a 3D (surface) measurement of the displacement
field [18]. However, this statement is to be repeated for all beam sections and columns connected
to the joint. Moreover, as damage may occur on the entire apparent free surface, it is necessary to
have multiple complementary views around the setup, and thus many cameras are to monitor the
experiment. The overall setup is technically complex (Figure 3).

support

Figure 3: View of the entire setup. (1-10) cameras, (11) hexapod device, (12) Newport bars for supporting the
cameras, (13) support of the specimen, (14) reinforced concrete specimen, (15) additional lighting sources.

2.2. T-shaped specimen

The length of each half column is equal to 1.14 m, and that of the beam 1 m, the cross section
of the column and beam being 120 x 120 mm?, the joint is a 120 x 120 x 120 mm? cube. It is made
of Portland cement with usual reinforcements and several high strength steel bars (anchored in the
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joint regions by 90°-hooks) for longitudinal reinforcements in the column and beam sections. For
more details the reader is referred to Ref. [2].

The surface pattern necessary for the digital image correlation (DIC) algorithms [18, 37], which
will be described in more details in Section 5, is obtained by first applying a paint coating, in order
to get a white background, then a combination of stencil technique leading to a pattern of 2 mm in
diameter black dots and finally black manual brush strokes in order to break the regularity of the
pattern (Figure 6(b)).

2.3. Loading setup € loading paths

The testing machine is a hexapod (Figure 2), i.e., a 6-axis parallel machine. Apart from very few
exceptions [27, 28, 29, 30, 31, 32], this type of machine is still rarely used for material or structural
testing, although it offers very versatile and complex loading capabilities. Using six electromechanical
actuators, it allows for an overall translation (resp. rotation) range about 250 mm (resp. £22°) in
every direction (the actual range of translation and rotation is complex because of the non-cartesian
parallel structure of the machine [38]).

The machine is equipped with a custom-made six-axis load cell that is fixed onto the mobile
platform. It is designed to satisfy the requirement of the intended experiment with a 27 kN (resp.
25 kN) capacity along the y and z directions, (resp. x). Similarly, torques can be measured up to
0.6 kN.m (resp. 11.3 kN.m) along y and z (resp. respectively z). As seen in Figure 3, the specimen
is supported in the horizontal position, with each end glued inside steel helmets that are attached to
two metal columns (13 in Figure 3) fastened to the steel slab. The last helmet is connected to the
load cell through a spherical joint with an initial zero clearance.

The specimen is loaded with a combination of horizontal (u,) and vertical (u,) translations at
the end of the beam using different loading histories (one example is shown in Figure 4). They aim to
investigate states that can be encountered by a reinforced concrete joint during earthquake loading
(here in quasi-static conditions), and in particular the coupling between different crack patterns
developed in different directions [39].
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Figure 4: Example of a complex multi-axial loading history applied to the end of the reinforced concrete
column. z is the direction of the column, meaning the displacement is prescribed on a plane normal to the
structure to trigger different bending modes at the beam-column joint.

3. Image acquisition and modeling

As explained in the previous sections, the loading setup itself is complex. Consequently, the
requirements of the kinematic measurement setup are as follows:

e because several cameras are to be used, they must be simultaneously triggered;



e the cameras must capture different faces of the specimen, namely, upper, lower, back and
internal ones;

e the camera position and orientation are set to perform multi-view correlation (i.e., at least
two cameras must capture the same region), but also with some special requirements such as
a minimum angle between the two optical axes;

e the different parts of the setup (including cameras and lighting) must not overshadow some
areas of the specimen from the cameras;

e the regions of the specimen monitored by the cameras must be uniformly illuminated.

To address the above specifications, it was decided to use several digital single lens reflex (DSLR)
cameras because of their small dimension and high definition. Several powerful light-emitting diode
(LED) panels were also available, which were chosen for their rather non-directional lighting prop-
erties. A frame made of Newport X95 rails (12 in Figure 3) was chosen for its high modularity
and stiffness, equipped with Manfrotto 3-way heads to precisely turn the cameras in the appropriate
direction. The main question to be answered is: how to choose and optimize the location, orientation
and lens of each camera?

The calibration of numerous cameras may be extremely time consuming and makes the testing
machine unavailable for quite a long time. To reduce this cost, a novel approach to design the
experiment is tested herein, which is based on the use of a 3D-modeling software. The testing
machine and the specimen (including its fixtures) can be described accurately from their CAD
descriptions, which are readily available. The environment of the experiment itself can be captured
from pictures. The addressed question is to set up virtually the experiment from the available data
and find “accurate” viewpoints for the cameras for correlation purposes.

The qualification of “accurate” involves a number of issues detailed below, including the adequacy
of surface coverage (on the parts where multi-view correlation is to be used, namely, at least two
cameras should monitor the various surfaces of interest), the absence of obstacles masking part of the
interesting field of view, the adequate definition of each camera (and hence the choice of lenses), the
possibility to position the cameras at the required locations, the lighting setup excluding unfavorable
shadows. An even more challenging target is to evaluate a priori the uncertainties expected from
multi-view registrations, and hence finally optimize the overall setup under the above mentioned
constraints. Because the considered strategy is solely based on modeling, the expression “virtual
design” is used.

Central to the approach is the recourse to an open-source 3D-modeling and rendering software
(Blender). Although its main field of application is animation movies or aesthetic 3D-renderings [24],
it has the capability of reproducing very accurately 3D scenes in a quantitative fashion (i.e., no
limiting geometric approximations are included). Hence the photo-realistic rendering is the main
motivation for using this software. Additionally, its versatility, its flexible interface, and its material
and texture modeling features are very convenient and powerful characteristics that are exploited
herein to generate virtual pictures from the test. One can control the texture and aspects of the
materials used, the intensity of lighting and the specifications of the cameras used for the rendering.

3.1. Rendering procedure

The visualization pipeline (Figure 5) is as follows. The testing machine is modeled and de-
composed into different subsets in a CAD software (in this case CATIA V5°) and each subset is

Shttps://www.3ds.com/fr/produits-et-services/catia/
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imported into Blender, using the .stl file format, widely used for rapid prototyping or 3D printing
as it describes efficiently the surface geometry of 3D objects (without any representation of color or
texture), thereby enabling different visual treatments for each of the subsets in Blender (in terms of
material or texture properties). Different lighting sources and cameras are added to the scene. It is
to be mentioned that those different steps can easily be scripted using Visual Basic (for CATIA V5)
and Python (within Blender).

CAD stlimport
treatment of the sub-assemblies:
2 - materials
CATIA - textures camera information:
- intrinsic matrices
pre-treatments : camera and light sources - position and angles
= segmentation parameterization
il rendered scene
M ParaView Dblender animations parameterization (png. avi, .)

Figure 5: Visualization pipeline. From the pre-processed CAD, the geometry is imported within Blender, the
virtual environment is set up, the animation is parameterized, and synthetic images are generated.

3.2. Parameterization of the cameras

As mentioned in the previous sections, one goal of this study is to define an adequate positioning
of the different cameras. In real setups, cameras can nearly freely (yet in a time consuming manner)
be moved along Newport bars surrounding the hexapod (Figure 3). Within Blender, cameras can be
assigned to non-uniform rational B-splines (NURBS [40]) paths, which is described by a set of control
points. The position of the cameras can be optimized along those trajectories under given constraints,
such as maintaining horizontality. This point is additionally described in a further section.

3.3. Surface patterning of beams

To improve the rendering of the specimen, a picture of the speckle pattern was taken on the
actual beam [2]. This is achieved by using the UV-mapping functionality of Blender, a technique
that enables this pattern to be mapped onto the virtual sample by projecting the 2D image of the
speckle onto 3D surfaces:

1. the speckle pattern (Figure 6(a)) is chosen or generated. This texture is treated with symme-
tries in order to have a smoother pattern by creating a seamless speckle;

2. the beam surface (Figure 6(b)) is “unfolded” to create a UV-map (Figure 6(c));
the picture of the speckle (Figure 6(b)) is overlaid over the 2D map (Figure 6(d));
4. the beam is finally “wrapped” back with the new texture (Figure 6(e)).
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Figure 6: Stages for beam patterning in Blender. A speckle pattern is chosen or generated (a), the 3D
structure (b) is unwrapped, creating a UV map (c) onto which the texture pattern (with symmetries to avoid
sharp boundaries) is applied (d). The unwrapped structure is then wrapped again (e).

It is to be mentioned that by adding z and y symmetries to the sample on the UV map, one can
create a seamless speckle, in order to avoid a large number of discontinuities on the texture when
wrapping back the object.

3.4. Surface coverage and obscuration

This section details essential aspects of the modeling of the experiment, during which the covered
subjects include the choice of the camera, its positioning in the 3D space in order to avoid possible
obstructions of objects (e.g., Newport bars, lighting heads), the surface coverage of the targeted
zones, the influence of lighting and the occurrence of shadows due to possible obscuration that may
degrade the correlation results. In order to deal with those elements, it is assumed that the positions
of the experimental device and the sample are known and that those of the cameras have to be
defined along specific directions.
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Numerous parameters of the cameras can be specified in Blender such as the size of the sensor,
the depth of field or the focal length of the lens. These parameters allow the surface coverage
to be determined for different configurations of {camera+lens} sets. Once the initial scene is set
up, it is easier for the user to make an optimal {camera+lens} choice and position in order to avoid
obstructions from objects of the scene or hint at determining a priori the best configuration for multi-
view systems. Once the obstructions are avoided, one must ensure that no shadow may degrade the
test.

Lighting is also an essential feature when performing digital image correlation analyses [18].
Finely modeling LED panels and setting up their position is a very important step to improve the
quality of test. In the same way the cameras are positioned, light sources can be added to the
virtual scene and improve the design of the experiment, keeping in mind that one must ensure that
no element (light source, camera, Newport bar or even cable) will generate shadows on the areas of
interest. An example (see Section 5.2.1) is shown in Figure 7, for which a Newport bar created a
shadow on the area of interest (left image). A LED panel was added targeting the latter region and
one can barely notice the shadow on the right image.

Figure 7: Shadows due to the use of Newport bars to support the cameras appear on the rendered image from
camera 1 (see example Section 5.2.1) of the node area (left). The use of an additional light source (LED panel)
reduces its effect (right).

Blender contains many useful features that allow light sources to be accurately described and
the projected shading of the objects on the scene to be represented. For example, both direct and
indirect light emissions can be taken into account, which are essential for multi-camera systems with
multi-light sources and numerous possible obstructive objects. Different light sources are used, with
isotropic or specific emission directions (cone, square or rectangle, very useful for modeling LED
panels), or taking into account (or not) the distance falloff’. (An)isotropic shading effects can also
be described with a particular emphasis being put on the interpolation between lit and shadowed
areas that may induce higher uncertainties in correlation analyses.

All these features provide an accurate 3D representation of the experiment to be performed,
in addition with an estimate of the level of uncertainty depending on the goal, namely, the static
positioning of the cameras and light sources, the influence of the volume of given elements, the
resulting obstructions and shadows, or photo-realistic rendering for goal-oriented optimization (see
Section 5). Figure 8 shows the full setup of the experiment and Tables 1 and 2 give the camera
specifications and the corresponding synthetic images generated with Blender following the procedure
described in Figure 5.

Shttps://en.wikibooks.org/wiki/Blender_3D: Noob_to_Pro
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Figure 8: View of the different elements composing the rendered scene. Testing machine (top left), specimen
(top right), acquisition devices and additional light sources (bottom left), and additional equipments (bottom

right)

Table 1: Description of the acquisition devices.

considered to be very large, the shutter speed not being an issue herein.

Cam. # Model

Sensor model / size (mm?)

The aperture has the same value for all the cameras and is

Lens (mm)

(1,2) | Canon 45D

CMOS 22.2 x 14.80

100

(3,4) | Canon 45D

CMOS 22.2 x 14.80

50

(5,6,7) | Canon 60D

CMOS 22.3 x 14.90

35

(8) Canon 60D

CMOS 22.3 x 14.90

24

(9,10) | Canon 45D

CMOS 22.2 x 14.80

12

24



Table 2: Synthetic pictures generated within Blender for the 10 cameras used in the experiment

camera 1 camera 2
camera 3 camera 4
camera 6
camera 7 camera 8
camera 9 camera 10

4. Global multi-view and multi-surface correlation

4.1. Introduction to multi-view correlation

Before addressing the question of the merit of “virtual design,” it is necessary to recall some
features of multi-view correlation, and particularly its global version used to analyze the experiment.
Multi-view refers to the analysis of two or more images of the same object from different points of
view in order to measure its 3D surface shape [41]. It generally relies on a first calibration step where
the geometry of the acquisition system is determined (position and orientation of each camera in the
3D real world, parameters that are already known in the 3D virtual one), and a second step during
which the shape of the specimen is analyzed. Multi-view correlation is a similar technique designed
to measure the overall kinematics of the specimen [18, 41].

Global multi-view correlation (with a multi-camera acquisition setup) chooses as the reference
a virtual 3D object with its own frame [41]. Each camera is then linked to the 3D object from
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the camera model (e.g., pinhole projection model). At least two cameras are needed, although any
larger number can potentially be used, which is the case for the test presented herein. During the
calibration step, the camera model parameters are determined by registering the different views onto
the 3D virtual specimen (whose theoretical shape is known a priori, although it may slightly differ
from reality). The difficulty is that the shape is known, but generally the surface pattern is not.
However, the consistency of the pattern as it can be transferred from each image onto the 3D virtual
object is sufficient to determine the camera geometrical parameters. Therefore, after the global
correlation step, the 3D virtual model is endowed with the “real” pattern. The recourse to this 3D
model dressed with the actual pattern provides a natural opportunity to assemble different camera
views even with partial coverage (provided most of the surface is observed by at least two cameras,
or assuming that the CAD model is reliable enough to bridge partial views). The more redundant
the observation (or the larger the number of cameras and their field of view), the least uncertainty
is achieved (Section 5).

For the present experiment, all geometrical quantities (shape, positions, displacements) are de-
fined in the specimen coordinate system, which is identical for all images. Therefore, a global
multi-view registration is to be carried out gathering the information of all cameras and all surfaces.
A unique set of unknowns (displacement or positions for example) is then to be sought. Let us stress
here the difference with local approaches where camera pairs are treated independently, choosing one
camera as master, and where the final result is obtained from the optimization of the positioning of
the surface shape through a dense cloud of points as a way to solve for incompatibilities [18].

4.2. Camera calibration and shape measurement

Camera calibration allows 3D quantities (defined in the sample coordinate system, X) to be
associated with 2D quantities (defined in the image space Xi) for camera ¢ by determining the
projection matrix [M'] [42] ([M'] is here a matrix representation of an intrinsic object defining the
projection M? (Figure 9)

{x'} = [M'|{X} (1)

where {x'} and {X} are the homogeneous coordinates in the camera i plane, and for the considered
3D point, respectively.
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Figure 9: Front image plane model for camera i and associated coordinate frames. Image symmetry with
respect to  — y plane through the optical center ¢* is assumed [18].

The available CAD model describes the specimen shape. In the present case, it is convenient to
decompose it into a set of n elementary (here planar) surfaces {n®}, indexed by a surface label s,
so that each surface has its own parametric space £€°. Adjacent surfaces sharing an edge will also
share control points, so that surface continuity along the edge is ensured. The CAD model relates
the parametric space £€° to the 3D surface X(&*) [40].

As above mentioned, for global multi-view correlation [41], each camera is considered individually,
calling f* the image captured by camera i, and the calibration step is performed with respect to the
virtual 3D reference by considering the intrinsic pattern, which is denoted as f . Because each camera
may have a different sensitivity and due to its positioning observe the different faces with potentially
different lighting, it is necessary to adjust individually brightness b and contrast ¢ for each camera
i and each surface s. The calibration then consists in minimizing the multi-view and multi-surface

functional .
A=) =303

s=1 i=1

b 4 fHIMIX(E))) - f(€) (2)

‘ 2

with respect to all [Mk] projection matrices associated with the transformations M”. In the above
expression, the sum runs over all n® cameras and all n® surfaces. Let us note that to make the
problem well-posed, the mean value and the variance of f are undetermined, and one may choose
conventionally to set them to 0 and 1, respectively. The norm involves the quadratic difference in
gray levels between image and virtual reference summed over the image plane of each camera 1.
If a (good enough) approximation of the projection matrices is known, which can be determined
using several methods (a point detailed in Section 5), each image point x’ can be mapped onto a
point X (&°) on surface S®, and hence, averaging over all images (after correcting for the appropriate
brightness and contrast corrections of gray levels) observing the same physical surface provides such
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a reference object with its intrinsic pattern

~

FIE) = o DU+ e (M () Q)

which is the average over the images capturing the points £€°. Furthermore, the CAD model itself
can be corrected, as deviations from reality are always present. This correction can be cast into the
very same framework, i.e., minimizing the multi-view functional (2), but now with respect to the
control point positions of the NURBS patches (from the CAD description [43, 44]).

The very same methodology can be used to measure 3D displacement fields of the specimen
surfaces as they are deformed by mechanical loading [44, 41]. Displacement fields are described
within the language of the CAD surface shape description and the parameterization is unique for
each surface. The resulting multi-view functional to be minimized with respect to those displacements
is actually very similar to Equation (2), but now the projection matrices and intrinsic pattern are
set, and only the change in the surface geometry is considered. Each camera adds its contribution to
the global functional with information pertaining to a partial surface coverage. The setting is not a
collection of n® “discrete” stereo-correlation systems but rather a global multi-view and multi-surface
formulation [41].

5. A priori determination of uncertainties

5.1. Bridging 3D rendering and multi-view correlation

Using the previously described Blender procedure, a set of synthetic images as would be captured
in the experimental setup can be generated. Those images can be made more representative of real
experimental conditions by the addition of a (controllable) random noise [18, 37]. They can also be
color adjusted in order to mimic different sensitivities of camera sensors with respect to color or light
intensity.

These pictures can further be processed by global multi-view or stereo-correlation procedures. It
is important to underline that the two codes do not share any common part, so that no bias is to
be feared. A first check of the consistency of the two codes is that the known system geometry from
Blender allows for a good coincidence of the images (and in particular that the intrinsic pattern of
the 3D virtual reference computed at the first stage of the DIC procedure matches the one that was
produced in Blender, although only 2D synthetic pictures were used). In particular, one could study
the calibration phase where the geometry and optical parameters of the experiments are to be mea-
sured. This is usually carried out with calibration targets that are positioned (and possibly moved)
in the real 3D world [18]. The processing of photo-realistic sets of images offers the opportunity to
evaluate the uncertainty of this calibration phase since it can be carried out on virtual images up to
the determination of the projection matrices that can be compared with their exact values.

However these two steps are time consuming as they imply a dialog between different softwares.
Other much faster tools can be envisioned so as to guide the optimization of the setup based on an
estimate of the displacement uncertainty. The following discussion details very low-cost operations
that have been implemented within Blender as a Python script.

5.2. Sensitivity fields

In the above-described registration procedures, one key element that is related to the optical
setup is the so-called sensitivity field s;(£°) for every camera i, namely, the change dx;(£°) in the

16



camera plane induced by a change 6X (&%) in the 3D position of any considered point of the surface
of interest s

s 8Xi s

si(€%) = 55 (&) ()
which is expressed in the parametric space described by £€°. The sensitivity fields are therefore
expressed in pixel/m. For a given 3D point X(&%), the number of cameras that image it has to be
determined. Once this information is available, the global sensitivity corresponds to the L2-norm
of the vector sensitivities of each camera. From Equation (1), it is concluded that the sensitivities
are related to the projection matrices [M']. It is worth noting, however, that a linear relationship is
obtained only when dealing with homogeneous coordinates. When reverting to 3D coordinates for
the physical points, and 2D coordinates at the pixel level, the previous relationships are no longer

linear. This is also true for their first order derivatives defining the sensitivities.

5.2.1. Three-cameras system covering the joint
Figure 10 shows a first test of the virtual experimental setup for which three cameras are moni-
toring the beam-column joint.

Figure 10: 3-camera system and LED lighting monitoring one part of the concrete sample (left). Synthetic
images generated from the 3 cameras (right, from top to bottom: camera 1, 2 and 3).

For the remainder of the paper, the description and designation of the surfaces of the beam-
column assembly is performed according to the first-angle multi-view projection map’ as shown in
Figure 11.

Thttps:/ /en.wikipedia.org/wiki/Multiview_projection#First-angle_projection
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Figure 11: First-angle multi-view projection map. The points of interest are projected in the same direction
as the ray of sight, onto the plane that lies behind the objects as determined by the ray of sight.

Camera 1 (respectively camera 2) is located above the sample, and covers the upper (respectively
lower) part of the top surface of the beam and the beam-column joint. Camera 3 provides a much
higher resolution of the latter as it located close to the joint and focuses on the connection with a
19° tilt with respect to the top plane of the sample. Figure 12 shows the coverage map of the multi-
camera system, i.e., the number of cameras monitoring each point of the surface of the sample. It

however does not take into account the intrinsic parameters of each camera, contrary to the sensitivity
fields.
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Figure 12: Coverage map of the sample (top and left surfaces, according to the projection map Figure 11). Tt
shows the number of cameras monitoring each point of the surface.

When each camera is positioned, its projection matrix [Ml] is known. Therefore, the sensitivity
fields can be computed via Equation (4) within a Python routine run in Blender. Figure 13(a)
(respectively (b), (c)) shows the sensitivity field along the X (respectively Y, Z) directions. More
than getting these fields per camera, which are singular for a planar surface [42], it is interesting
to study the sensitivity per surface observed by the different cameras. Even though cameras 1 and
2 only provide information on the top surface with a coverage of the node, camera 3 adds a more
detailed input on the top surface of the node, but also on the left surface.

19



(a) Sensitivity along the X direc- | (b) Sensitivity along the Y direc- | (¢) Sensitivity along the Z direc-
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Figure 13: Sensitivity fields in the X (left), ¥ (center) and Z (right) directions provided by the 3 cameras
shown in Figure 10. All fields are expressed in mpixel/pm. Top and left view according to the projection map
defined in Figure 11.

The area of interest is here covered with multiple cameras at different resolutions, all of which
increase the global sensitivity. One can notice that the best coverage of the targeted zones leads to
higher sensitivity. This is an important information in the sense that the uncertainty on measured
displacement fields is related to the inverse of the sensitivity fields, as will be shown in the sequel.
The approach provides quantitative estimators in order to perform constrained optimization in order
to position the cameras to achieve the highest sensitivities in regions of interest.

5.2.2. Full 10-cameras system covering the entire structure

This section shows the results for the full 10-cameras system shown on Figure 3. Figure 14(a)
shows the global coverage map of the multi-camera system, with a specific close-up view on the top
part of the beam-column node (Figure 14(b)) as it is the main region of interest for the study of
complex damage mechanisms. This map shows that the node is covered on each of its surface by at
least 3 cameras, which is more than classical stereo-systems.
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(b) Coverage map — close-up view
on the node

(a) Coverage map
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Figure 14: Coverage for the full test with 10 cameras following Figure 11 (left). Close-up view of the top
surface of beam-column node (right).

Figure 15(a) (respectively (b), (c)) shows the corresponding sensitivity map along the X (re-
spectively YV, Z) directions again computed within Blender using Equation (4). The global coverage
shown in Figure 14 translates well on the sensitivity map. The dense coverage of the node leads to
a high sensitivity in all directions, much higher than for the first example with only 3 cameras (i.e.,
30 mpixel/pm versus 8 mpixel/pm).
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Figure 15: Sensitivity fields in the X (a), Y (b) and Z (c) directions provided by the 10 cameras shown in
Figure 3. All fields are expressed in mpixel/nm. Projections follow Figure 11.

Sensitivity fields are a first step in the process of quantifying a priori the uncertainties on the
displacement field. However it provides a good estimator of this quantity, it is only based on the
geometry of the multi-view system with respect to the specimen as it does not take into account
the pattern (speckle) and the texture of the surfaces, as well as lighting. It is to be recalled that
these fields do not take into account the kinematics of the specimen during the test. In the present
study, the displacement at the end of the column is about 15mm in two directions as shown on
Figure 4. Such displacement should not impact drastically the sensitivity maps. A way to assess
that would be to develop a tool that deforms the mesh in Blenderaccording to the measured or
simulated kinematics. The next section goes a step farther along the estimation of the displacement
uncertainties.
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5.3. Image pixels and gray levels

Multi-view or stereo-correlation use the image contrast in order to measure displacement fields [18,
45]. Thus it is important to have a quantitative description of these image gradients. However,
they depend on the image definition through the correspondence of pixels (from any image) to the
parametric space. It is worth emphasizing that this is a key feature of photo-realistic rendering
softwares.

For the sake of simplicity, let us assume that the speckle pattern in the parametric space, f (&%),
is known with an arbitrary resolution. It was earlier noted that the image of camera ¢ would
be related to the intrinsic pattern f thanks to a brightness b%° and contrast ¢"* adjustment that
depends on camera ¢ and the observed surface s (for punctual light sources and/or curved surfaces
these brightness and contrast terms may have a spatial modulation, but here only flat surfaces are
considered, potential long wavelength variations will be ignored, and thus b and ¢** are assumed
uniform), hence f%(x') = b° + ¢*° f(£°(xY)).

However, for DIC purposes, the speckle pattern is designed to have sharp gradients at very
small scales. The physical effect of pixel discretization is mimicked by a regular sampling not of
fixh = b + ¢ f(€5(x")) but rather of a convolution of this speckle pattern transported on the
image plane f’(xz) with the shape function of the pixel. When a high degree of regularity (e.g.,
cubic spline) is used for sub-pixel displacement, it is natural to use a smooth shape function, and a
Gaussian filter reveals to be very convenient and accurate. This Gaussian filter contains the physical
scale of the pixel. This convolution can also be transported in the parametric space through the £(x)
mapping. It is useful to introduce the Jacobian of the mapping

0x
A=— 5
S 5)
so that, locally, the Gaussian convolution filter reads
det(A
Gp(&) = M oy (1726747 A¢) )

The symmetric tensor AT A can be diagonalized. It defines two eigen-directions e; and ey with
eigenvalues a% and a%, respectively. When transported in the parametric space, the pixel becomes
an anisometric surface element that can be approached by its geometric moment of inertia, with
semi-axis a;, in the eigen-direction e;. When the surface is observed with a grazing incidence by
camera ¢, one such axis, say ai, becomes large. Similarly, along this direction, the speckle pattern
is coarsened to scale a; and hence if a high-frequency speckle was initially dealt with, details are
averaged out.

Equipped with the above tools, the way displacements are measured can now be addressed. The
sensitivity s’, as defined in Equation (4), translates into a 3D displacement vector dU and into its
2D manifestation in camera i, du’. The previous transfer of speckle pattern allows the gray level
gradients to be computed

Vsef' = " AT IVe[Gy(€) * £ ()] (7)
where x stands for the convolution product. Thus, the change in gray level at position x (surface s)
in camera plane ¢ due to the displacement dU writes

B .dU = V,f'-s'-dU (8)

From the latter expression, the uncertainty due to a white Gaussian noise of variance (¢%)? is char-
acterized by the inverse of its covariance matrix that reads

Ci,s = (O_i)—QBi,sTBi,s (9)
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Furthermore, when different cameras are assembled together for multi-view correlation, these inverse
covariance matrices C* are added when noise is uncorrelated between cameras. The computation
of C»* is thus a very powerful tool as it allows for an easy assembly of different cameras within a
framework where they speak the same language, and where an appropriate weight is given to each
camera, accounting for its noise level, distance, orientation with respect to the surface of interest.
Let us emphasize that as the surface gets to the limit of grazing incidences, the gradient of texture
along this grazing direction projected onto the surface vanishes, and so does its weight, so that the
transition to non-visible faces is gradual and comes in naturally.

5.4. Mean-field estimate of the uncertainty

It is possible to proceed one step farther and propose a mean field estimate of the previous
inverse covariance so that the speckle pattern dependence can be precomputed and replaced by its
statistical average (denoted with angular brackets, ((J)). The expectation value of the gray level
gradients needs to be evaluated for different short scale cut-offs. The speckle pattern is assumed to
be isotropic for the sake of simplicity. However, a realistic pattern may be taken into account as it
is important to have a multiplicity of scales being present so that some signal remains even when
the image is blurred because of a coarse effective pixel size in the parametric space. Therefore, the
expectation value of the squared modulus of the texture gradient is computed after convolution by
an isotropic Gaussian filter of width ¢ as a function of ¢, g¢(¢) = (1/2)((VG¢ * ).

This quantity may now be used to compute the expectation value of the dyadic (tensor) product

T = (Vxf'® Vxf')

) a a 10
= (c"%)? (gf(Ql)e1 ®ey + gf(22)62 ® e2> (10)
ay as

and from the latter, the inverse covariance assumes the following simple expression

is ¢\ ? Ty
<C’):<0i>s-T-s (11)

With this expression, any flat surface of the studied domain is characterized with the 3 x 3 matrix
C%® coming from all cameras ¢ that can see the zone. With one camera, the rank of this matrix
is only 2, and hence the uncertainty is infinite along one direction (i.e., that of the optical axis).
However, when several cameras are used to monitor the same surface, generically the sum of all C%*
matrices becomes symmetric, positive and definite. Therefore the uncertainty that results from a
particular camera setup (due to image noise) can be quickly computed and hence the optimization
of the setup is easily accessible once add-on tools are implemented as they were for the sensitivity
fields.

Let us note that only the uncertainty coming from image noise is considered in this section. Other
sources of uncertainty are present (e.g., pixel interpolation, projection matrix errors, distortions) but
are not discussed herein.

6. Discussion

Before concluding on the various aspects highlighted in this paper, it appears to be important to
open a discussion about the results presented herein. What was aimed at lied at a rather method-
ological level, a new paradigm in the field of experimental mechanics, as it is believed that the use
of photo-realistic imaging softwares, main ingredient of what was introduced as virtual experimental
design, will become an essential step (not to say mandatory) in the near future as a preparation tool
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for complex experiments monitored with many cameras. This thought comes from the observation
that the geometries of the objects to be studied become ever larger, and very often are 3D and thus
require the use of a growing number of cameras [46]. The complexity of the experiment is then also
increasing and the use of virtual testing is a powerful tool to reduce the time of preparation of such
experiments.

The software Blender used in this work shows great advantages for this step. Its first main
ingredient is that it is free and open-source, which is believed to be extremely important for academic
research (the authors acknowledge that Maya or CATIAVS could perform the same renderings, with
a much higher cost for the first one and rendering time — and options — for the second). It is also
to be mentioned that its development relies on a huge community of users and developers, which is
a great advantage for developing new tools such as those mentioned herein. The most useful feature
of Blender is probably its Python interface, which allows for process scripting (as a way to automate
the rendering procedure), extraction and computation of the different parameters or operators (such
as the pixel size or the projection matrices) in order to perform goal-oriented optimization. All these
features provide a priori elements for a better preparation of the experiment, as well as time savings
in the set up of such complex mechanical tests.

7. Conclusion and outlook

One of the most remarkable features of full-field measurements is their ability to quantify de-
formations such as those resulting either from a complex shape and/or loading history or from a
constitutive law leading to localized phenomena (e.g., instabilities or fracture). Experiments can be
classified into two categories, namely, those aiming at the calibration of constitutive laws of a specific
material and those reproducing in-service conditions for a complete industrial part. The first category
seeks the most uniform stress/strain state so that either local (e.g., strain gauge) or global (e.g.,
extensometer) measurement devices were sufficient to characterize strains and stresses (thanks to
load cells) in the region of interest. The advent of full-field measurement techniques allowed for com-
plex sample shape to be characterized in a complete fashion, so that instead of a simple uniformity
assumption, analyses can be used to “read” displacement fields and evaluate unknown components
of the constitutive law, and additionally validate the numerical model and assess its relevance for the
analyzed test. This opens up the possibility of using in-service tests in order to quantify and validate
the selected model for the part of interest. This is a major change of perspective for experimental
mechanics, which requires the development of new tools.

As soon as the specimen shape is complex, or when symmetry is broken down by an instability (be
it due to geometry or to the deformation mechanism itself), displacements have to be characterized
in 3D. An exhaustive characterization requires that any surface element where displacements are to
be measured should be observed by at least two cameras (or two viewpoints if the imaging system is
moving [47]). Moreover, as grazing incidence gives a very poor determination, one may restrict the
considered cameras observing a surface element only by those whose angle with the surface normal
is less than a prescribed level. This criterion is a natural extension of the obscuration criterion.
Therefore, in order to observe a given shape over its entire surfaces, a minimum of four cameras
are needed, even for a simple (convex) surface. Even if it can be rightly argued that a model may
allow for an appropriate interpolation for those regions where not enough viewpoints are accessible,
having a global and redundant coverage is recommended. Hence, the positioning of the cameras and
the calibration of the geometrical model that is needed in order to use all cameras simultaneously
becomes key to the success of the mechanical test. It was shown herein that photo-realistic tools
could be instrumental to achieve such goals.

The above discussion, which was applied to the considered example, has a much broader scope
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of relevance. Because this is a clear trend in experimental mechanics, it is of high importance to
recognize it as such, and develop suited strategies to not only avoid unadapted test conditions, but
rather to optimize the setup to benefit from the potentialities of full-field measurement capabilities
in particular in a global framework of analysis.

Most of the proposed tools were unfortunately ready only after completion of the test, and
although the methodology is now available, it was not used further than to assess the uncertainty of
the kinematic measurements, and hence not for optimization.

It is the authors’ conviction that accounting for uncertainties and minimizing them is the way
to optimize mechanical tests in the future where accessing rich and redundant information will be
the rule rather than the exception. Thus, it is essential to be able to predict in a trustful way the
uncertainty that will result from the setup and the analyzing tools. Along this route, 3D rendering
softwares, at the heart of the methodology proposed herein, are extremely valuable instruments to
pre-design and optimize experimental setups before they effectively exist.
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