
HAL Id: hal-02456750
https://hal.science/hal-02456750

Submitted on 27 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logic-based Methodology to Help Security Architects in
Eliciting High-Level Network Security Requirements
Romain Laborde, Sravani Teja Bulusu, Ahmad Samer Wazan, François

Barrère, Abdelmalek Benzekri

To cite this version:
Romain Laborde, Sravani Teja Bulusu, Ahmad Samer Wazan, François Barrère, Abdelmalek Benzekri.
Logic-based Methodology to Help Security Architects in Eliciting High-Level Network Security Re-
quirements. 34th ACM/SIGAPP Symposium on Applied Computing (SAC 2019), Apr 2019, Limassol,
Cyprus. pp.1610-1619. �hal-02456750�

https://hal.science/hal-02456750
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1145/3297280.3297437

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24856

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Laborde, Romain and Bulusu, Sravani Teja and

Wazan, Ahmad Samer and Barrère, François and Benzekri, Abdelmalek

Logic-based Methodology to Help Security Architects in Eliciting High-

Level Network Security Requirements. (2019) In: 34th ACM/SIGAPP

Symposium on Applied Computing (SAC 2019), 8 April 2019 - 13 April

2019 (Limassol, Cyprus).

Logic-based methodology to help security architects in eliciting

high-level network security requirements

Romain Laborde
University Paul Sabatier

Toulouse, France
romain.laborde@irit.fr

Sravani Teja Bulusu
University Paul Sabatier

Toulouse, France
sbulusu@irit.fr

Ahmad Samer Wazan
University Paul Sabatier

Toulouse, France
ahmad-samer.wazan@irit.fr

François Barrère
University Paul Sabatier

Toulouse, France
francois.barrere@irit.fr

Abdelmalek Benzekri
University Paul Sabatier

Toulouse, France
abdelmalek.benzekri@irit.fr

ABSTRACT

In this paper1, we propose a security methodology that automates

the process of security zone specification and high-level network

security requirements elicitation. We define a set of formalized

rules derived from the principles of complete mediation, least

privileges and the Clark-Wilson lite formal model making our

approach traceable and verifiable. We implemented the

methodology in Answer Set Programming to automatically

compute an optimal network security zone model considering the

cost of the security solution. A use case study of an e-commerce

enterprise network infrastructure illustrates our methodology.

KEYWORDS

Network Security Requirements, Security Zoning, Integrity

Model, Answer Set Programming

 https://doi.org/10.1145/3297280.3297437

1! INTRODUCTION

Network security is a broad topic to address at multiple layers.

Indeed, securing a network covers controlling physical access to

allow only authorized devices to communicate through the

network, controlling and protecting data flows and protecting end

systems from being compromised [19,20]. Nevertheless,

strengthening the security increases also the price of the network

accordingly. Thereby, a compromise between security and price

should be established and organizations/industries are seeking

cost-effective security solutions that protect networks against

malicious attacks while meeting the business requirements.

In this context, network security requirement engineering is a

key activity since bad network security requirements can lead to

ineffective and costly security or worth security holes in network

security design [1]. However, the requirement engineering

research community has neglected network security in spite of its

vital importance. As a result, current security requirement

engineering methodologies don’t provide good support to derive

network security requirements [6–8]. Thus, a methodology

suitable to network security is mandatory.

The current practice for eliciting and analyzing early network

security requirements is driven by network zoning [10]. Network

zoning (a.k.a. network segmentation) is a key defense-in-depth

strategy that segregates and protects key company assets and

limits lateral movements of attackers across corporate network in

case of intrusion. Partitioning networks is also effective in

reducing the scope of audits for regulations. Security zones

represent different trust levels, which exhibit the criticality of the

systems within the zones. Each security zone constitutes a logical

grouping of security entities that are subject to similar protection

requirements (e.g., data confidentiality and integrity, access

control, audit, etc.). Determining security zones and respective

trust levels is a preliminary step for security architects to derive

other network security requirements such physical access,

dataflow control and protection, and end-systems protection

[27,28].

In the literature, several research works and best practice

approaches propose various zone classification schemes and

patterns [10,21,27]. Nevertheless, this process takes place in an

ad-hoc manner and do not integrate a rigorous approach to specify

security zones and rules governing zones interactions. Being

manual, the design of security zones depends only on the

expertise of the architects who may forget some details while

specifying the zone model, which will impact the quality of

derived network security requirements [5]. As part of the

IREHDO2 research project, we conducted interviews of senior

security requirements engineers that revealed network security

architects are looking for a methodological approach to, at least,

consolidate the network security architectures they propose.

Indeed, the task of verifying and validating the network security

requirements with regards to business security requirements is

tedious and challenging [12]. How to ensure that the proposed

network zoning is correct and cost-effective? How to ensure that

no network security requirement is missing or irrelevant?

In this paper, we describe a methodology that automates parts

of the process of eliciting security zones and derived network

security requirements by using a set of formalized rules derived

from three well-established security principles (complete

mediation, least privileges and the Clark-Wilson lite formal

security model), thereby leaving less space to human errors. We

implemented the rules in Answer Set Programming (ASP [14])

and provide a tool that automates the calculation cost-optimal

security zone models. We illustrate our methodology using an

example case study of e-commerce enterprise network

infrastructure.

The rest of the article is structured as follows. In section 2, we

describe the example case study. Section 3 presents the concepts

related to our approach. Section 4 presents the steps in our zone

modelling methodology. Section 5 illustrates our methodology by

applying it to an e-commerce scenario. Section 6 deals with

related works. Finally, we conclude our work and propose future

research directions in section 7.

2! E-COMMERCE ENTERPRISE

NETWORK CASE STUDY

 We consider an e-commerce enterprise network case study [2] as

a running example (Figure 1). In brief, the initial network

architecture (see Figure 1(a)) consists of web server, DNS server,

application server, database server, and accountability server. The

employees are distinguished as administrators and standard users,

who can connect to the network through LAN or WIFI. If the

employees are outside the enterprise, they can remotely connect to

the enterprise network. Finally, when the clients visit the

enterprise, they are allowed to connect to the web through a

dedicated WIFI network.

The accountability server is highly critical as it manages the

financial information of the company (e.g., salaries of employers).

The web server hosts the e-commerce web site. Therefore, it is

also critical because a deny of service attack will highly impact

the business of the company. Finally, the web server requires

interactions with the application and database servers to provide

the e-commerce service. Consequently, they are also highly

important assets for the business especially the database for which

data integrity is primordial.

The network security requirements engineers of the company

propose the security architecture in Figure 1(b) (and described in

[2]). The solution reflects some best practice guidelines by

defining some zones such as DMZ zone, user’s zones, etc. For

instance, the accountability server is isolated in a separate zone as

it is highly critical. However, it is not clear on how the architects

concluded to this solution? This approach requires additional

arguments to demonstrate the solution meets the elicited risks. In

addition, this diagram does not deal with the cost-effectiveness

ratio of this solution. We believe that a formal approach justifying

the transition from the problem to the solution is required for a

traceable and verifiable security zone specification process.

Figure 1. E-commerce example case study [2]

3! PROPOSED METHODOLOGY

CONCEPTS

In this section, we present the main concepts to develop our

methodology.

3.1! Analysing the risk for the enterprise

We mainly consider three main elements: security domains,

agents and security zones. A security domain represents the

organizational authority which controls and manages the entities

(i.e., servers, software, data, users, etc.) that belong to it. We call

these entities as agents. Furthermore, a security domain can be

refined into sub-domains highlighting different policies or

situations within the same organization. In our scenario, there are

two domains: the enterprise domain and the rest of the world

named Internet. The enterprise domain is itself divided into two

sub-domains (see Figure 2): the internal sub-domain that consists

in the assets within enterprise premises and the external sub-

domain containing remote employees working outside the

premises of the enterprise.

We assume the functional requirements have been elicited

using an agent-based approach (such as User Requirements

Notation [18] or Socio-Technical Security Modeling Language

[11]). Agents are concrete entities (represented by circles with a

straight line) that have or are assigned to objectives (depicted by

squares within circles attached to agents). Agents with same

characteristics can be abstracted with the notion of role (noted by

a circle with a circle with a curve, e.g., remote users). However,

we have augmented the notation to differentiate two categories of

agents/roles. System agents (represented by pink circles) refer to

entities under direct control such as software/hardware systems

that are developed and/or maintained by the enterprise.

Environment agents (represented by violet circles) are not under

direct control and refer to humans or some off-the-shelf software.

Finally, security zones constitute logical grouping of agents

with common protection requirements. As a consequence, our

methodology mainly aims at grouping agents within security

zones managed in security domains and eliciting the related

security requirements.

Enterprise domain

Internet domain

Inside Enterprise subdomain

Outside Enterprise

subdomain

Provide access

to the

e-commerce

web site

Manage

accountability of

the enterprise

Provide

functionalities of

the e-commerce

web site

Store clients’

accounts and

purchases

Provide list of

products and

their price

Provide IP

address of

web server

Remote

Users

DNS

Server

Web

Server

Accountability

Server

Local

Users

Application

Server

Database

Server
Clients

Visitors Administrator

Figure 2. Sample of functional requirements

We consider that some external risk analysis has assessed

security domains and agents to provide domain control capability,

trust of environment agents and criticality of system agents.

Security domain control capability describes the maturity of an

enterprise to deploy security controls and/or its capability to

control a given environment. In our scenario, the enterprise inside

sub-domain refers to the office premises of the e-commerce

organization that is physically secured. We consider also that the

enterprise is mature with well-trained employees. Thus, this sub

domain is well controlled. The outside sub domain consists in

employees working from their home using laptops provided by

the office. Then, it is less controlled. The Internet domain being

outside the control of the enterprise is uncontrolled.

Environment agents are given a trust level, which specifies the

degree of the trustworthiness over the expected behavior of

environment agents in a given context. For instance, in our use

case, the administrator is highly trusted because this person is

well-known and qualified. Local employees are only trusted

because this role refers to more people. Visitors are partially

trusted because they are known people and the reception staff

verifies the visitor's identity card which must be surrendered in

exchange for a wearable badge.

Finally, system agents are evaluated based on their criticality

levels. Criticality level determines the sensitivity to threats and the

risk impact of system agents’ goals on the overall business. For

instance, ‘providing access to the e-commerce web site’ is critical

for the business of the enterprise. Thus, the web server, which is

assigned to this goal, is critical too. The DNS and the application

servers have the same criticality as the web server because the risk

is the same if one of them cannot achieve its associated goal. The

database server is highly critical. On one side, its goal ‘provide

list of products and their price’ is only critical. On the other side,

the goal ‘store clients’ accounts and purchase’ is highly critical

because a threat on this goal will have a strong impact on the

reputation of the enterprise. Finally, the accountability server is

vital because it can lead to bankruptcy if the enterprise can’t

manage its accountability.

3.2! The three core security principles

We construct our methodology based on three well established

principles. First of all, the principle of complete mediation [26]

stipulates controlling every accesses. Applying to the context of

network security zones, it means that ‘every data flows between

zones must be controlled by a security mechanism’. The principle

of least privileges [26] requires to limit users to access only what

is necessary for their legitimate purpose. We translate this

principle in the context of network security zoning as ‘a user can

access a zone only if he is granting access to all the services

within the zone’. Here we map the services level privileges to the

network level privileges. This limit the propagation of an attack

on a service to only the zone.

Finally, formal models of integrity foster to avoid critical

systems to consume untrusted/fake information. We employ also

the concept of integrity to unify capability, trust and criticality to

facilitate the integration of risk analysis concepts to our network

requirement analysis context.

First, integrity of an agent reflects the assurance of an expected

behavior. This fits with the concept of trust related to environment

agents. The more trust the enterprise can have on an entity, the

more it expects a given agent’s behavior, and hence, the more

integrity it believes the agent has. As consequence, the trust

assessment can be transformed into a maximum integrity value

representing an assumption. Similarly, system agents’ criticality

can be expressed as a required integrity. Critical goals are

required to be achieved; hence, it is a required behavior of the

assigned system agent. It means criticality corresponds to the

minimum integrity value required for a system agent. For

instance, the accountability server being vital requires a high level

of integrity while the web server, which is considered critical only

for business, requires less integrity. Finally, the integrity of a

security domain correlates with the maximum integrity an

enterprise can achieve with its control capability.

As a consequence, we assume the existence of some utility

functions (Figure 3) that maps the control capability labels of

domains, criticality and trust levels of agents into a unified scale

of integrity values. Figure 3 shows an example assumed for rest of

the paper.

Unifying risk and trust within the concept of integrity allows

us also to integrate formal integrity security models with security

zone modelling design principles to address the risks pertaining to

traffic flows and information assurance. There exists several

models of integrity such as Biba [3], Clark-Wilson [9], which

propose abstract solutions to preserve the integrity of information

flows. These models are widely used in current operating systems

for improving the integrity protection of the information flows in

inter-process communications (e.g., Microsoft Windows Integrity

Mechanism [22]). We have chosen to adapt the model of Clark-

Wilson lite [29] (lighter version of Clark-Wilson model) for

verifying the integrity property of traffic flows traversing multiple

zones because this model explicitly considers information flows

and then is more suitable to network data flows analysis.

Domain Control capability Integrity

Enterprise internal sub-domain Highly restricted 5

Enterprise external sub-domain Less controlled 2

Internet Uncontrolled 1

System agents Criticality Integrity

WEB server Critical 3

DNS server Critical 3

APP sever Critical 3

Database server Highly Critical 4

Accountability server Vital 5

Environment agents Trust Integrity

Admin user Highly trusted 4

Local users Trusted 3

Visitors Partially trusted 2

Remote users Partially trusted 2

Client users Not trusted 1

Figure 3. Integrity values of domains and agents for the

example case study

The main idea of the integrity models is as follows. Entities

take decisions based on input information (e.g. a program

executes an algorithm based on its inputs). If input information is

wrong, then the decision can be wrong too. Therefore, critical

systems must read information with high levels of integrity only

(i.e. high level of assurance) while non critical systems are not

subject to such constraint. In CW-lite model, all information

flowing from low integrity subjects to high integrity subjects must

be filtered. Here, the integrity filters correspond to integrity

validation procedures that sanitize information or block it. For

instance, in network security analysis context, an integrity

validation filter can be a web application firewall that checks SQL

statements or URL formats. Integrity models complete the

principle of complete mediation by checking the content of flows.

CW-lite model places the integrity validation filters at the

receiving subject’s side and express the information flow control

as follows (Figure 4): “if a subject s receives an information flow

from a subject si at interface I, then either there is an integrity

validation filter at interface I or the integrity level of si is greater

or equal to the integrity of subject s”.

Figure 4. CW-lite security filtering rule [29]

4! OUR PROPOSED METHODOLOGY

Our zone modelling methodology (see Figure 5) is divided into

two main steps: (1) Determining the security zones and integrity

validation filters and (2) Identifying data flows integrity

requirements and data flows access control filters.

The initial input of the first step is the set of security domains,

the set of agents, the integrity levels of domains and agents, and

the data flows between agents. As a result of step1, our process

computes the security zones and the integrity validation filters.

Then, the security architect provides additional information about

the media of communication (i.e., the networks) between zones

and launches the second step. The final result is a set of network

security requirements that are a set security zones, integrity

validation filters, agents’ integrity requirements, access control

filters, and integrity data flow protection requirements. For

implementation, we formalized step1 and step2 in Answer Set

Programming (ASP) [14]. ASP is a declarative logic based

approach that facilitates the solving of difficult search problems

by computing answer sets through stable model semantics. We

defined the rules at each step and the ASP solver determines the

set solutions (called answers) that are compliant with the rules and

the input. This makes our process traceable and verifiable.

!"#$%&'()*()&
+,-./&0-1/223.4&$.56/7&5/89&

!"#$%&'(!$)&

!"#$*&'(!$)&

$::")"'#$%&;)<*=&"#*()&

'+,-./+&01&20++/3.245.03)&

#/86-7>&5/?@738A&7/B@37/0/.85&

&!,2/6.57&803,9:&(25/4;&.35,<6.57&

;,=,;9&01&803,9&43-&4<,359:&

>35,<6.57&=4;.-45.03&1.;5,69:&

(22,99&203560;&1.;5,69:&-454&1;0?&

.35,<6.57&6,@/.6,+,359&

;)<*C&'()*()&

&'!,2/6.57&803,9:&(25/4;&.35,<6.57&

;,=,;9&803,9&43-&4<,359:&

>35,<6.57&=4;.-45.03&1.;5,69)&!5,A%&0/5A/5&$469,6&

'A75B03)&

"#")"$%&"#*()&

+:-0D3.5E&D4/.85E&3.8/4738A&2/F/25E&G2-659&

Figure 5. Our zone modelling methodology approach overview

In the following, we discuss in detail the modelling rules at

step1 and step2. The implementation of our zone modelling

solution will be discussed separately in section 5.

4.1! Step 1: Specifying zones and filtered flows

The main goal of this step is specifying zones and identifying

integrity validation filters. The process starts with a system as a

set of domains, zones and agents and we represent it as follows:

S = <DOMAIN, ZONE, AGENT, FLOW, INSIDED
Z, INSIDED

A,

INSIDEZ
A, Int, Intmax, Intmin, Intactual, AgentServer, AgentClient>

Where:

!! DOMAIN is the set of security domains.

!! ZONE is the set of security zones.

!! AGENT is the set of agents, named after entities.

AGENT = ENV_AGENT ∪ SYST_AGENT with

ENV_AGENT and SYST_AGENT being the set of

environment and system agents such that ENV_AGENT ∩

SYST_AGENT=∅.

!! AgentServer: AGENT → {TRUE, FALSE} states if an agent

is a server (e.g., web server).

!! AgentClient: AGENT → {TRUE, FALSE} states if an agent

is a client (e.g., browser).

!! FLOW ⊆ AGENT × AGENT, is the set of allowed flows

of information.

!! INSIDED
z ⊆ ZONE × DOMAIN is a relation that states a

zone is inside a domain.

!! INSIDED
A ⊆ AGENT × DOMAIN is a relation that states

an agent is inside a domain.

!! INSIDEZ
A ⊆ AGENT × ZONE is a relation that states an

agent is inside a zone.

!! Int: DOMAIN → returns the integrity level of a security

domain. This value is directly derived from the control

capability value.

!! Intmax: ZONE ∪ AGENT → returns the maximum

integrity of a zone or an agent. For environment agents,

this value is directly derived from their trust value.

!! Intmin: AGENT → returns the minimum integrity level of

an agent. For system agents, this value is directly derived

from the criticality value.

!! Intactual: ZONE ∪ AGENT → returns the actual integrity

of a zone or an agent, which are the final integrity values

computed at the end of the process.

!! integrity-validation-filter(a:AGENT,f:FLOW,val1: ,val2:)

states integrity validation requirements such that integrity-

validation-filter(a, f, val1, val2) means some integrity

protection mechanism at agent a must sanitize dataflow f

with an integrity level of val1 to achieve a data assurance

level of val2.

In other words, Int, Intmax and Intmin represent the integrity

mapping functions (Figure 3). Accordingly, we define the rules of

step1 as follows:

RULE 1: Every agent is inside a domain.

a AGENT, d DOMAIN | (a,d) INSIDED
A

RULE 2: Every security domain contains at least one security

zone.

d DOMAIN, card({z | z ZONE, (z, d) INSIDED
Z}) ≥ 1

RULE 3: The maximum integrity level of a security zone is equal

to the integrity level of the domain. This is because, a domain

controls zone and therefore we cannot have more assurance on a

zone than the controlling domain.

d DOMAIN, z ZONE, (d, z) INSIDED
Z

 ⇒

Intmax(z) = Int(d)

RULE 4: Similar to Rule 3, the maximum integrity level of an

agent is equal to the integrity level of domain.

d DOMAIN, a AGENT, (a, d) INSIDED
A ⇒

Intactual(a) ≤ Int(d)

RULE 5: The actual integrity of a zone cannot be greater than its

maximum integrity.

z ZONE, Intactual(z) ≤ Intmax(z)

RULE 6: The actual integrity of agents must be between the

maximum and the minimum integrity levels of the agents.

a AGENT, Intmin(a) ≤ Intactual(a) ≤ Intmax(a)

RULE 7: The actual integrity levels of an agent are same as that

of its residing zone.

a AGENT, z ZONE, (a,z) INSIDEZ
A, ⇒

Intactual (a) = Intactual(z)

RULE 8 - CW-Lite: The actual integrity levels of the interacting

agents must adhere to the CW-lite integrity rule. In this way, an

agent cannot have access to lower integrity information.

a1,a2 AGENT, (a1, a2) FLOW Λ

¬integrity-validation-filter(a2,flow(a1,a2),

intactual(a1), intactual(a2)) ⇒ Intactual(a1) ≥ Intactual(a2)

RULE 9 – Principle of complete mediation: Server agents and

client agents cannot reside in same zone. Because, as per the zone

modelling design principles, intra-zone interactions are usually

not analyzed. With reference the security design principle of

complete mediation rule, every access to every object must be

validated [26]. Therefore, if server and client reside in the same

zone there will be a conflict.

c,s AGENT, z1,z2 ZONE, (c, z1) INSIDEZ
A,

(s, z2) INSIDEZ
A, AgentServer (s), AgentClient (c)⇒ z1≠z2

RULE 10 – Principle of least privileges: The least privileges

principle aims at minimizing the permissions of users to the

minimum required for accomplishing their tasks [26]. From a

network perspective, a client agent can send flows in a security

zone only if he can send flows to all the server agents within that

zone. In this way, we map network level privileges to services

level privileges. Indeed, server agents will be grouped in zones

according to users’ privileges.

c,s1,s2 AGENT, AgentClient(c), AgentServer(s1), AgentServer(s2),

z1,z2 ZONE, (s1, z1) INSIDEZ
A, (s2, z2) INSIDEZ

A,

(c,s1) FLOW, (c,s2) ∉ FLOW ⇒ z1≠z2

4.2! Step2: Specifying integrity requirements for the

communication medium between zones

At the end of step1, the set of zones along with the integrity

validation filters are determined. Step2 addresses the security

issues related to inter-zone interactions, i.e., the protection of data

flows through the network communication media (e.g.,

wired/wireless networks, etc.,) that connect the computed zones.

The main goal of this step is to protect the integrity of data flows

when traversing untrusted media of communication. Suitably, we

complete our system model as follows:

S = <DOMAIN, ZONE, AGENT, FLOW, MEDIUM, INSIDED
z,

INSIDED
A, INSIDEZ

A, INSIDED
M, CONNECT, Int, Intmax,

Intactual>,

Where:

!! MEDIUM is the set of media of communication.

!! INSIDED
M ⊆ MEDIUM × DOMAIN is a relation, which

states that a medium of communication is in a domain.

!! CONNECT ⊆ MEDIUM × ZONE is a relation, which

states that a zone is connected to a medium of

communication.

!! Intmax: ZONE ∪ AGENT ∪ MEDIUM → returns the

maximum integrity level of a security zone, agent or

medium of communication.

!! Intactual: ZONE ∪ AGENT ∪ MEDIUM → returns the

actual integrity level of a security zone, agent or medium

of communication.

!! PATH ⊆ FLOW × (ZONE ∪ MEDIUM) × (ZONE ∪

MEDIUM), is a relation that stores where flows are

transiting with the constraint that (f, e1, e2) PATH ⇒

(e1,e2) CONNECT (e1,e2) CONNECT. For

instance, (f,m,z) PATH means that flow f transits

between medium m to zone z.

!! access-control-filter(c:CONNECT,f:FLOW) states access

control requirements so that access-control-filter(c,f)

means flow f must be permitted at connection point c.

!! dataflow-integrity-protection(f: FLOW, e: ZONE ∪

MEDIUM, value:) states dataflow protection

requirements such that dataflow-integrity-

protection(f,e,val) means some protection mechanism must

be applied on dataflow f over zone or medium e to preserve

an integrity level of val.

Similar to domains, zones, and agent, a medium of

communication m has two integrity levels: Intmin(m), and

Intactual(m). Accordingly, we add new rules to include constraints

on media of communication:

RULE 11: Every zone must be connected to a medium of

communication.

z ZONE, m MEDIUM, (m, z) CONNECT.

RULE 12: At each zone, there must be an access control filter

that permits allowed flow of information. Not explicitly allowed

flows are denied by default.

 (f, e1, e2) PATH, e1 MEDIUM e2 ZONE ⇒

access-control-filter((e1,e2), f)

And respectively:

 (f, e1, e2) PATH, e1 ZONE e2 MEDIUM ⇒

access-control-filter((e2,e1), f)

RULE 13: The actual integrity level of a medium of

communication is equal to the minimum value between the

integrity level of its domain, the initial trust of the medium (i.e.,

its maximum integrity), and the actual integrity levels of the

connected zones.

 m MEDIUM, Intactual(m) = min({Int(d) | d DOMAIN,

(m,d) INSIDED
M} ∪ {Intmax(m)} ∪ {Intactual(z) | z ZONE,

(m,z) CONNECT})

RULE 14: A flow that transits over a medium or a zone, requires

an integrity protection, if the integrity level of the medium or the

zone is lower than the level of integrity of the flow.

(a1,a2) FLOW, e1,e2 ZONE ∪ MEDIUM |

(flow(a1,a2), e1, e2) PATH,

min(intactual(a1), intactual(a2)) > intactual(e1) ⇒ data-flow-integrity-

protection(flow(a1,a2),e1,min(intactual(a1), intactual(a2))).

Respectively:

(a1,a2) FLOW, e1,e2 ZONE ∪ MEDIUM |

(flow(a1,a2), e1, e2) PATH,

min(intactual(a1), intactual(a2)) > intactual(e2) ⇒ data-flow-integrity-

protection(flow(a1,a2),e2,min(intactual(a1), intactual(a2))).

5! IMPLEMENTATION

We implemented our methodology in ASP using the Clingo solver

[15] and Python. In this section, we describe the security zone

calculation of the scenario using our methodology by detailing

each step of the process.

5.1! Step1 – Eliciting security zones and

integrity validation filter requirements

5.1.1 Step1 input

At step1, the initial knowledge on the system concerning the

agents, domains and their integrities needs to be provided as input.

Figure 6 shows the graphical view.

In the example case study, we have considered a total of two

domains. The enterprise domain is under the control of the e-

commerce enterprise, while the Internet domain corresponds to

the public domain, which is uncontrolled. The enterprise domain

has two sub-domains. The inside enterprise sub-domain may refer

to the office premises of the e-commerce organization that is

physically secured. The outside sub domain consists in employees

working from their home using laptops provided by the office. By

applying the utility function described in Figure 3, these control

capabilities are transformed into integrity values.

Enterprise domain

Inside Enterprise subdomain (max integrity 5)
Outside Enterprise

subdomain (max

integrity 2)

Internet domain

(max integrity 1)

Remote

Users DNS

Server

Web

Server

Accountability

Server

Local

Users

Application

Server
Database

Server

Clients

Visitors

2 3

Administrator

4

3 3 3 4 5

2

1

Figure 6. Step 1 – input

The integrity levels of system agents (depicted in triangular

shapes) correspond to the minimum level of integrity that should

be maintained in terms of security assurance. Likewise, the

integrity levels of environment agents (depicted in inverted

triangular shapes) correspond to the maximum level of integrity,

which is expected as guaranteed. These integrity values are also

determined based on the utility function in Figure 3. Finally, the

initial input includes the list of permitted data flows between

agents regarding the business objectives. Table 1 lists a sample of

the data flows considered in the example case study. E.g., role

adminUser must be able to send data flows to agent

accountabilityServer.

Table 1. Step 1 input – sample of permitted data flows

Flow(adminUser,accountabilityServer)

Flow(localUsers,accountabilityServer)

Flow(remoteUsers,accountabilityServer)

Flow(accountabilityServer,adminUser)

Flow(accountabilityServer,localUsers)

Flow(accountabilityServer,remoteUsers)

5.1.2 Step1 output

Our tool automatically computes the security zones and the

integrity validation filters according to the rules listed in section

4.1 (see Figure 7). The Clingo ASP solver can produce many

solutions (i.e. zone models), which can equally satisfy all the

rules. However, their costs of implementation can vary. From a

broad view, the implementation cost is the summation of the cost

of implementing the network security requirements to preserve the

actual integrity levels of each zones and of upholding the integrity

verification filtering requirements.

The tool determines the optimized solution using the ASP

optimization statement minimize, to find the solution with

minimal cost. Figure 8 depicts an example of cost formula where

the Clingo solver searches for an optimal answer set that

minimizes the sum of all values of entities’ integrity levels (i.e.,

sum of actual integrity values of agents and integrity to be

guaranteed by integrity validation filters). The cost calculus can

vary for different organizations based on their logistics study

similar to the varying cost effects of the Design Assurance Levels

[24]. Thus, this cost formula is just an example and another cost

computation formula more suitable to a specific organization can

be specified.

Zone4

(integrity=3)

Zone7

(integrity=3)

Zone6

(integrity=4)
Zone5

(integrity=5)Zone9

(integrity=2)

Zone3

(integrity=1)

Remote

Users DNS

Server

Web

Server

Accountability

Server

Local

Users

Application

Server
Database

Server

Clients

Zone2

(integrity=2)

Visitors

IVFIVF IVF

Zone1

(integrity=4)

Administrator

IVFIVF

IVF IVF

Figure 7. Step 1 – output

Figure 8. Example of a cost-based optimization rule

We executed our tool 30 times on a Mac Book Pro (2.8 GHz

Core i7, 16GB RAM) and configured the solver to use 4 threads

in parallel. The execution times to calculate the optimal solution

based on our cost optimization rule varied between 5.8 seconds

and 7.6 seconds.

Our zone model is abstract and design independent therefore

does not restrict the technical solutions. It specifies a total of 8

zones with 6 inside the enterprise network, and 2 zones outside. It

is interesting to note that our tool obtained the same zones as the

proposed case study (Figure 1(b)).

Table 2. Step 1 output – Sample of IVF requirements

IVF(accountabilityServer,

 flow(localUsers,accountabilityServer),

 sanitize(3,5))

IVF(accountabilityServer,

 flow(remoteUsers,accountabilityServer),

 sanitize(2,5))

IVF(accountabilityServer,

 flow(adminUser, accountabilityServer),

 sanitize(4,5))

Our tool cannot classify the zone types like DMZ, restricted,

etc. However, integrity values of zones provide zone integrity

requirements. The resulting calculated integrity levels attached to

zones also apply to all the agents within the zones. These integrity

levels have to be interpreted as the pre-requisite requirements to

achieve at minimum by the future security implementation related

to software development processes, code practices, software

verification and validation, etc. Indeed, in practice, there already

exist code assurance level standards such as the DALs for aircraft

systems requirements [4]. The higher the DAL is, the higher the

assurance activities and design verification methods are

demanded. In our methodology context, the actual integrity levels

of system agents exhibit similar characteristics as DALs.

Additionally, the tool identifies integrity validation filters

(IVF) attached to agents. They are depicted by yellow squares in

Figure 7. A sample from the set of IVF rules automatically

generated by our tool is given in Table 2. For instance,

IVF(accountabilityServer,flow(localUsers,accountabilityServer),

sanitize(3,5)) is a requirement stating that there must be a data

flow integrity validation procedure at agent accountabilityServer

that sanitizes the data flows sent by localUsers. The input data

flows sent by the localUsers are expected to satisfy integrity level

3 and the integrity validation process must check these data flows

to guarantee they conform to constraints of integrity level 5.

Interpretation of such integrity validation requirement, i.e. what

means validation to conform integrity level 5, can be carried out

on the basis of dedicated documents such as the specification for

data assurance levels by EUROCONTROL [13]. Suitably, this

IVF requirement might be implemented by a security mechanism

such as a web application firewall that checks for SQL

injection/viruses/etc. Thus, as mentioned in Figure 5, at the end of

Step1, the security architect obtains the list of security zones, the

integrity values of agents and zones and integrity validation filters

requirements.

5.2! STEP 2 – Eliciting access control and data flow

protection filters requirements

5.2.1 Step2 input

Before running step2, the security architect must complete the

output of step1 by providing additional information about the

media of communication. The input information concerning

media of communication includes the integrity values of the

media, the domain in which the media belong to, and finally, the

zones connected to them (the white clouds and the black lines in

Figure 9).

In our example scenario, we assumed three media of

communication: Private access, Public Access and Internet

Access. The integrity value attached to a medium of

communication represents the level of trust one can have about

the packets transmitted by the medium. As consequence, this

integrity value depends on the assurance level of the users that can

connect to it. The integrity value will be calculated as the

minimum between the integrity value of the domain and the

connected zones. We also allow the security architect to specify

an initial integrity value that represents the risk that unexpected

users or attackers have access to the medium. For instance, it is

easier to physically access a wireless network than a wired

network. Also, it is easier for unwanted users to connect a device

to an Ethernet socket in the reception lounge of a building (since

many unknown people can enter in this place) than in a restricted

area of this building. In this way, our methodology can integrate a

second risk analysis phase dedicated to assess the difficulty to

physically connect to networks. Figure 10 shows an example of

the integrity levels of the media. They are calculated based on the

restricted levels of the medium considered in our example

scenario. As mentioned in Figure 5, our tool takes two sets of

input information at step2: the result of step1, and the media of

communication with the associated integrity values when

explicitly specified.

Zone7

(integrity=3)

Zone6

(integrity=4)
Zone5

(integrity=5)Zone9

(integrity=2)

Zone3

(integrity=1)

Remote

Users DNS

Server

Web

Server

Accountability

Server
Application

Server
Database

Server

Clients

Zone2

(integrity=2)

Visitors

IVFIVF IVF

Zone1

(integrity=4)

Administrator

IVF

Zone4

(integrity=3)

Local

Users

IVF

Internet

Access

Private

Access

Public

Access

IVF IVF

Figure 9. Step 2 - input

Figure 10. Example of medium integrity levels

5.2.2 Step2 – final output.

For the execution of step2, we developed a separate python code

that parses the output of step1 and calculates all the paths of every

data flows in regards with the consolidated input information at

step2. The output of the python code is then re-injected in the

ASP solver to compute the final output of step2, i.e., access

control filter (ACF) and data flow integrity protection

requirements. Figure 11 depicts the graphical representation of the

final network security requirements after step2.

The access control filter requirements (ACF) are defined at

the interfaces of each zone in order to control all the inter-zone

communications. They are depicted by blue squares in Figure 11.

These requirements describe the list of permitted flows that are

given as input at step1. Data flows not explicitly stated in an ACF

requirement are denied. Table 3 shows a sample of the generated

ACF requirements. For instance, the requirement statement

ACF(connectedTO(publicAccess,2), flow(dnsServer, visitors))

indicates that there must be an ACF at the interconnection point

between medium of communication publicAccess and security

zone2 that permits data flows from the dnsServer to visitors.

Depending on the security design choices, these ACFs may be

implemented by one or more access control mechanisms such as

firewalls, application gateways, etc.

Zone7

(integrity=3)

Zone6

(integrity=4)
Zone5

(integrity=5)Zone9

(integrity=2)

Zone3

(integrity=1)

Remote

Users DNS

Server

Web

Server

Accountability

Server
Application

Server
Database

Server

Clients

Zone2

(integrity=2)

Visitors

IVFIVF IVF

Zone1

(integrity=4)

Administrator

IVF

Zone4

(integrity=3)

Local

Users

IVF

Internet

Access

Private

Access

Public

Access

ACF

ACFACFACF

ACF

ACF

ACFACF

ACF

IVF IVF

Figure 11. Step 2 output – final network security requirements

Finally, the tool produces data flow integrity requirements

representing security protection needs attached to data flows while

transiting over a medium or a zone (see Table 4). For instance,

requirement dataFlowIntegrityRequirement(flow(databaseServer,

adminUser), privateAccess,4) states that the data flows from

databaseServer to adminUser must be protected over medium of

communication privateAccess to ensure the data flows maintain

integrity level 4. Different integrity mechanisms such as digital

signatures can implement these requirements.

Table 3. Sample of Access Control Filter requirements

ACF(connectedTO(publicAccess,2),

 flow(dnsServer,visitors))

ACF(connectedTO(publicAccess,2),

 flow(webServer,visitors))

ACF(connectedTO(publicAccess,2),

 flow(visitors,dnsServer))

ACF(connectedTO(publicAccess,2),

 flow(visitors,webServer))

ACF(connectedTO(publicAccess,7),

 flow(dnsServer,visitors))

ACF(connectedTO(publicAccess,7),

 flow(webServer,visitors))

ACF(connectedTO(publicAccess,7),

 flow(visitors,dnsServer))

ACF(connectedTO(publicAccess,7),

 flow(visitors,webServer))

Table 4. Sample of data flow integrity requirements

dataFlowIntegrityRequirement(

 flow(databaseServer,adminUser),

 privateAccess,4)

dataFlowIntegrityRequirement(

 flow(appServer,adminUser),

 privateAccess,4)

dataFlowIntegrityRequirement(

 flow(appServer,localUsers),

 privateAccess,3)

6! RELATED WORKS

Most of the related works come from industrial/government

sectors [10,21,27], which provide best practice guidelines and

generic patterns for building secured networks. These guidelines

propose some generic zone categories as well as predefined inter

and intra zone interactions rules. For instance, the British

Columbia model [21] describes seven zones and allows

communication inside the zones and only between adjacent zones.

Secure Arc [27] defines eight zones. It also introduces a parallel

cross-zones segmentation concept, called silos. Communications

are allowed only between adjacent zones and within the same silo,

or between adjacent silos within the same zone. The aim is to

limit the interaction between zones to only dedicated traffic even

though they are adjacent to each other. However, these documents

are only guidelines and must be manually adapted. As a

consequence, they don’t support security architects in validating

their own network security requirements.

The academic community has published only few works

concerning network security zones. Gontarczyk et al. [16]

proposed a standard blue-print that includes three classes of

security zone (no physical measures, limited physical measures,

and strong physical measures). It also provides a classifier to

guide the deployment of systems/applications. However, this is a

high level guideline that must be manually adapted by the security

architects. Furthermore, the classifier is ambiguous (e.g. some

systems can be placed in any of the zones). They also don’t

consider other network security requirements. Ramasamy et al

[25] proposed a bottom-up approach for discovering the security

zone classification of devices in an existing enterprise network.

Although this work does not deal with eliciting network security

requirements, it complements our top-down approach. Several

works [17,23] take an existing network security zone model and

perform risk analysis using different methods to determine the

efficiency of security zones. In the same way, they do not serve

the purpose of eliciting high-level network security requirements

and cannot be compared to our work. However, they can be used

to refine the high-level security requirements calculated by our

approach in later stages. Finally, as far as we known, none of the

related works consider the notion of cost of network security

zones.

7! CONCLUSION AND FUTURE WORK

Network security zone modelling is a well-known approach that

contributes to the defense-in-depth strategy from the network

security perspective. However, no rigorous approach formally

supports this process. In this article, we proposed a zone

modelling methodology based on three security principles:

complete mediation, least privileges and Clark-Wilson lite formal

model. We defined a set of formal rules as well as the list of initial

integrity levels values computed based on risk impact, which

makes our methodology approach traceable and verifiable. The

whole process has been implemented to automate the security

zones computation. It produces a set of network security

requirements: security zones, integrity validation filters, access

control filters, and data flow integrity requirements. We illustrated

the use of this methodology through an e-commerce use case

scenario.

Our future works are two folded. First, we plan to formally

integrate this work in a global security requirements engineering

process to get traceability from business level security objectives

to network design level requirements. Secondly, we want to

investigate the refinement of the high-level network security

requirements produced by our current work. As an example, IVF

attached to agents may require to be refined due to design

constraints. For instance, it might be impossible to enforce the

IVF on the accountabilityServer for technical constraints. In this

case, the initial security requirements needs to be refined by

introducing new security agents (e.g., network security proxies) to

achieve the IVF, similar to the final zone model in the case study

[2]. In parallel, we would like to extend our security zone

modelling approach to consider the confidentiality and availability

requirements. Access control filters, defined by our methodology,

partially address confidentiality requirements only. We intend to

explicitly integrate formal confidentiality models.

ACKNOWLEDGMENTS

This work was supported by the IREHDO2 project funded by

DGA and managed by DGAC. We would like to thank our

partners from Airbus for their cooperation and their feedback.

REFERENCES

[1] Ross J. Anderson. 2010. Security engineering: a guide to building

dependable distributed systems. John Wiley & Sons.

[2] ANSSI. 2017. Sensibilisation et initiation à la cybersécurité. In Module 4 :

La gestion de la cybersécurité au sein d’une organisation. Retrieved from

https://www.ssi.gouv.fr/uploads/2016/05/cyberedu_module_4_cybersecurite
_organisation_02_2017.pdf

[3] Kenneth J. Biba. 1977. Integrity considerations for secure computer

systems. DTIC

[4] Pierre Bieber, Rémi Delmas, and Christel Seguin. 2011. DALculus–theory
and tool for development assurance level allocation. In International

Conference on Computer Safety, Reliability, and Security, 43–56.

[5] Sravani Teja Bulusu, Romain Laborde, Ahmad Samer Wazan, François
Barrère, and Abdelmalek Benzekri. 2016. Towards the weaving of the

characteristics of good security requirements. In International Conference

on Risks and Security of Internet and Systems, 60–74.

[6] Sravani Teja Bulusu, Romain Laborde, Ahmad Samer Wazan, Francois
Barrère, and Abdelmalek Benzekri. 2017. Which security requirements

engineering methodology should i choose?: Towards a requirements
engineering-based evaluation approach. In Proceedings of the 12th

International Conference on Availability, Reliability and Security, 29.
[7] Sravani Teja Bulusu, Romain Laborde, Ahmad Samer Wazan, Francois

Barrère, and Abdelmalek Benzekri. 2018. A Requirements Engineering-
Based Approach for Evaluating Security Requirements Engineering

Methodologies. In Information Technology - New Generations (Advances in

Intelligent Systems and Computing), 517–525.
[8] Sravani Teja Bulusu, Romain Laborde, Ahmad Samer Wazan, Francois

Barrere, and Abdelmalek Benzekri. 2018. Applying a Requirement
Engineering Based Approach to Evaluate the Security Requirements

Engineering Methodologies. In Proceedings of the 33rd Annual ACM

Symposium on Applied Computing (SAC ’18), 1316–1318.

DOI:https://doi.org/10.1145/3167132.3167417
[9] David D. Clark and David R. Wilson. 1987. A comparison of commercial

and military computer security policies. In Security and Privacy, 1987 IEEE

Symposium on, 184–184.

[10] CSEC. 2007. Baseline Security Requirements for Network Security Zones in

the Government of Canada.

[11] Fabiano Dalpiaz, Elda Paja, and Paolo Giorgini. 2016. Security

requirements engineering: designing secure socio-technical systems. MIT

Press.
[12] Hicham El Khoury, Romain Laborde, François Barrère, Maroun Chamoun,

and Abdelmalek Benzekri. 2012. A Formal Data Flow-Oriented Model For

Distributed Network Security Conflicts Detection. In ICNS 2012, The

Eighth International Conference on Networking and Services, 20–27.

[13] EUROCONTROL. 2018. Specification for Data Assurance Levels.
EUROPEAN ORGANISATION FOR THE SAFETY OF AIR

NAVIGATION. Retrieved from
https://www.eurocontrol.int/sites/default/files/content/documents/single-

sky/specifications/EUROCONTROL%20DAL%20Specification%20Ed%20
1.1_Released%20Issue.pdf

[14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. 2012. Answer set solving in practice. Synthesis Lectures on

Artificial Intelligence and Machine Learning 6, 3 (2012), 1–238.
[15] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten

Schaub. 2014. Clingo= ASP+ control: Preliminary report. arXiv preprint

arXiv:1405.3694 (2014).
[16] Andrew Gontarczyk, Phil McMillan, and Chris Pavlovski. 2015. Blueprint

for Cyber Security Zone Modeling. INFORMATION TECHNOLOGY IN

INDUSTRY 3, 2 (2015), 38–45.

[17] Hannes Holm, Khurram Shahzad, Markus Buschle, and Mathias Ekstedt.
2015. P2CySeMoL: Predictive, Probabilistic Cyber Security Modeling

Language. IEEE Transactions on Dependable and Secure Computing 12, 6
(2015), 626–639.

[18] ITU-T. 2012. User Requirements Notation (URN) – Language definition.
[19] Romain Laborde, François Barrère, and Abdelmalek Benzekri. 2013.

Toward authorization as a service: a study of the XACML standard. In
Proceedings of the 16th Communications & Networking Symposium, 9.

[20] Romain Laborde, Michel Kamel, François Barrère, and Abdelmalek

Benzekri. 2007. Implementation of a Formal Security Policy Refinement
Process in WBEM Architecture. Journal of Network and Systems

Management 15, 2 (June 2007), 241–266.
[21] C. Lyons. 2012. Enterprise IT security architecture security zones: Network

security zone standards. Retrieved from
https://www2.gov.bc.ca/assets/gov/government/services-for-government-

and-broader-public-sector/information-technology-services/standards-
files/network_security_zone_standards.pdf

[22] Microsoft. What is the Windows Integrity Mechanism? Retrieved
September 23, 2018 from https://msdn.microsoft.com/fr-

FR/library/bb625957.aspx
[23] Robert Mitchell and Elizabeth Walkup. 2017. Further refinements to the

foundations of cyber zone defense. In Military Communications Conference

(MILCOM), MILCOM 2017-2017 IEEE, 823–828.
[24] PRICE. 2015. True Planning guidance for estimating the cost impacts of

ARP-4754, DO-254 and DO-178b/c certification. Retrieved from
https://www.pricesystems.com/Portals/1/Blog/02-05-15-A/DO-

178bc%20and%20DO-254%20TP%20Modeling%20Guidance%20-
%20DRAFT.pdf

[25] HariGovind V. Ramasamy, Cheng-Lin Tsao, Birgit Pfitzmann, Nikolai
Joukov, and James W. Murray. 2011. Towards Automated Identification of

Security Zone Classification in Enterprise Networks. In Hot-ICE.
[26] J.H. Saltzer and M.D. Schroeder. 1975. The protection of information in

computer systems. Proceedings of the IEEE 63, 9 (September 1975), 1278–

1308. DOI:https://doi.org/10.1109/PROC.1975.9939
[27] SecurArc. Logical Security Zone Pattern. Retrieved from

http://www.securearc.com/wiki/index.php/Logical_Security_Zone_Pattern
[28] Adam Sedgewick. 2014. Framework for improving critical infrastructure

cybersecurity, version 1.0.
[29] Umesh Shankar, Trent Jaeger, and Reiner Sailer. 2006. Toward Automated

Information-Flow Integrity Verification for Security-Critical Applications.
In NDSS.

