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ABSTRACT 

In this paper1, we propose a security methodology that automates 

the process of security zone specification and high-level network 

security requirements elicitation. We define a set of formalized 

rules derived from the principles of complete mediation, least 

privileges and the Clark-Wilson lite formal model making our 

approach traceable and verifiable. We implemented the 

methodology in Answer Set Programming to automatically 

compute an optimal network security zone model considering the 

cost of the security solution. A use case study of an e-commerce 

enterprise network infrastructure illustrates our methodology. 
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1! INTRODUCTION 

Network security is a broad topic to address at multiple layers. 

Indeed, securing a network covers controlling physical access to 

allow only authorized devices to communicate through the 

network, controlling and protecting data flows and protecting end 

systems from being compromised [19,20]. Nevertheless, 

strengthening the security increases also the price of the network 

accordingly. Thereby, a compromise between security and price 

should be established and organizations/industries are seeking 

cost-effective security solutions that protect networks against 

malicious attacks while meeting the business requirements.   

In this context, network security requirement engineering is a 

key activity since bad network security requirements can lead to 

ineffective and costly security or worth security holes in network 

security design [1]. However, the requirement engineering 

research community has neglected network security in spite of its 

vital importance. As a result, current security requirement 

engineering methodologies don’t provide good support to derive 

network security requirements [6–8]. Thus, a methodology 

suitable to network security is mandatory. 

The current practice for eliciting and analyzing early network 

security requirements is driven by network zoning [10]. Network 

zoning (a.k.a. network segmentation) is a key defense-in-depth 

strategy that segregates and protects key company assets and 

limits lateral movements of attackers across corporate network in 

case of intrusion. Partitioning networks is also effective in 

reducing the scope of audits for regulations. Security zones 

represent different trust levels, which exhibit the criticality of the 

systems within the zones. Each security zone constitutes a logical 

grouping of security entities that are subject to similar protection 

requirements (e.g., data confidentiality and integrity, access 

control, audit, etc.).  Determining security zones and respective 

trust levels is a preliminary step for security architects to derive 

other network security requirements such physical access, 

dataflow control and protection, and end-systems protection 

[27,28]. 



In the literature, several research works and best practice 

approaches propose various zone classification schemes and 

patterns [10,21,27]. Nevertheless, this process takes place in an 

ad-hoc manner and do not integrate a rigorous approach to specify 

security zones and rules governing zones interactions. Being 

manual, the design of security zones depends only on the 

expertise of the architects who may forget some details while 

specifying the zone model, which will impact the quality of 

derived network security requirements [5]. As part of the 

IREHDO2 research project, we conducted interviews of senior 

security requirements engineers that revealed network security 

architects are looking for a methodological approach to, at least, 

consolidate the network security architectures they propose. 

Indeed, the task of verifying and validating the network security 

requirements with regards to business security requirements is 

tedious and challenging [12]. How to ensure that the proposed 

network zoning is correct and cost-effective? How to ensure that 

no network security requirement is missing or irrelevant?  

In this paper, we describe a methodology that automates parts 

of the process of eliciting security zones and derived network 

security requirements by using a set of formalized rules derived 

from three well-established security principles (complete 

mediation, least privileges and the Clark-Wilson lite formal 

security model), thereby leaving less space to human errors. We 

implemented the rules in Answer Set Programming (ASP [14]) 

and provide a tool that automates the calculation cost-optimal 

security zone models. We illustrate our methodology using an 

example case study of e-commerce enterprise network 

infrastructure. 

The rest of the article is structured as follows. In section 2, we 

describe the example case study. Section 3 presents the concepts 

related to our approach. Section 4 presents the steps in our zone 

modelling methodology. Section 5 illustrates our methodology by 

applying it to an e-commerce scenario. Section 6 deals with 

related works. Finally, we conclude our work and propose future 

research directions in section 7. 

2! E-COMMERCE ENTERPRISE

NETWORK CASE STUDY 

 We consider an e-commerce enterprise network case study [2] as 

a running example (Figure 1). In brief, the initial network 

architecture (see Figure 1(a)) consists of web server, DNS server, 

application server, database server, and accountability server.  The 

employees are distinguished as administrators and standard users, 

who can connect to the network through LAN or WIFI. If the 

employees are outside the enterprise, they can remotely connect to 

the enterprise network. Finally, when the clients visit the 

enterprise, they are allowed to connect to the web through a 

dedicated WIFI network. 

The accountability server is highly critical as it manages the 

financial information of the company (e.g., salaries of employers). 

The web server hosts the e-commerce web site. Therefore, it is 

also critical because a deny of service attack will highly impact 

the business of the company. Finally, the web server requires 

interactions with the application and database servers to provide 

the e-commerce service. Consequently, they are also highly 

important assets for the business especially the database for which 

data integrity is primordial. 

The network security requirements engineers of the company 

propose the security architecture in Figure 1(b) (and described in 

[2]). The solution reflects some best practice guidelines by 

defining some zones such as DMZ zone, user’s zones, etc. For 

instance, the accountability server is isolated in a separate zone as 

it is highly critical. However, it is not clear on how the architects 

concluded to this solution? This approach requires additional 

arguments to demonstrate the solution meets the elicited risks. In 

addition, this diagram does not deal with the cost-effectiveness 

ratio of this solution. We believe that a formal approach justifying 

the transition from the problem to the solution is required for a 

traceable and verifiable security zone specification process. 

Figure 1. E-commerce example case study [2] 

3! PROPOSED METHODOLOGY 

CONCEPTS 

In this section, we present the main concepts to develop our 

methodology. 

3.1! Analysing the risk for the enterprise 

We mainly consider three main elements: security domains, 

agents and security zones. A security domain represents the 

organizational authority which controls and manages the entities 

(i.e., servers, software, data, users, etc.) that belong to it. We call 

these entities as agents. Furthermore, a security domain can be 

refined into sub-domains highlighting different policies or 

situations within the same organization. In our scenario, there are 

two domains: the enterprise domain and the rest of the world 

named Internet. The enterprise domain is itself divided into two 

sub-domains (see Figure 2): the internal sub-domain that consists 

in the assets within enterprise premises and the external sub-



domain containing remote employees working outside the 

premises of the enterprise.  

We assume the functional requirements have been elicited 

using an agent-based approach (such as User Requirements 

Notation [18] or Socio-Technical Security Modeling Language 

[11]). Agents are concrete entities (represented by circles with a 

straight line) that have or are assigned to objectives (depicted by 

squares within circles attached to agents). Agents with same 

characteristics can be abstracted with the notion of role (noted by 

a circle with a circle with a curve, e.g., remote users). However, 

we have augmented the notation to differentiate two categories of 

agents/roles. System agents (represented by pink circles) refer to 

entities under direct control such as software/hardware systems 

that are developed and/or maintained by the enterprise. 

Environment agents (represented by violet circles) are not under 

direct control and refer to humans or some off-the-shelf software.  

Finally, security zones constitute logical grouping of agents 

with common protection requirements. As a consequence, our 

methodology mainly aims at grouping agents within security 

zones managed in security domains and eliciting the related 

security requirements.  

Enterprise domain

Internet domain 

Inside Enterprise subdomain

Outside Enterprise 

subdomain

Provide access 

to the

e-commerce

web site

Manage 

accountability of 

the enterprise

Provide 

functionalities of 

the e-commerce     

web site

Store clients’ 

accounts and 

purchases

Provide list of 

products and 

their price

Provide IP 

address of      

web server

Remote

Users

DNS 

Server

Web 

Server

Accountability 

Server

Local

Users

Application 

Server

Database 

Server
Clients

Visitors Administrator

Figure 2. Sample of functional requirements 

We consider that some external risk analysis has assessed 

security domains and agents to provide domain control capability, 

trust of environment agents and criticality of system agents. 

Security domain control capability describes the maturity of an 

enterprise to deploy security controls and/or its capability to 

control a given environment. In our scenario, the enterprise inside 

sub-domain refers to the office premises of the e-commerce 

organization that is physically secured. We consider also that the 

enterprise is mature with well-trained employees. Thus, this sub 

domain is well controlled. The outside sub domain consists in 

employees working from their home using laptops provided by 

the office. Then, it is less controlled. The Internet domain being 

outside the control of the enterprise is uncontrolled. 

Environment agents are given a trust level, which specifies the 

degree of the trustworthiness over the expected behavior of 

environment agents in a given context. For instance, in our use 

case, the administrator is highly trusted because this person is 

well-known and qualified. Local employees are only trusted 

because this role refers to more people. Visitors are partially 

trusted because they are known people and the reception staff 

verifies the visitor's identity card which must be surrendered in 

exchange for a wearable badge.  

Finally, system agents are evaluated based on their criticality 

levels. Criticality level determines the sensitivity to threats and the 

risk impact of system agents’ goals on the overall business. For 

instance, ‘providing access to the e-commerce web site’ is critical 

for the business of the enterprise. Thus, the web server, which is 

assigned to this goal, is critical too. The DNS and the application 

servers have the same criticality as the web server because the risk 

is the same if one of them cannot achieve its associated goal. The 

database server is highly critical. On one side, its goal ‘provide 

list of products and their price’ is only critical. On the other side, 

the goal ‘store clients’ accounts and purchase’ is highly critical 

because a threat on this goal will have a strong impact on the 

reputation of the enterprise. Finally, the accountability server is 

vital because it can lead to bankruptcy if the enterprise can’t 

manage its accountability. 

3.2! The three core security principles 

We construct our methodology based on three well established 

principles. First of all, the principle of complete mediation [26] 

stipulates controlling every accesses. Applying to the context of 

network security zones, it means that ‘every data flows between 

zones must be controlled by a security mechanism’. The principle 

of least privileges [26] requires to limit users to access only what 

is necessary for their legitimate purpose. We translate this 

principle in the context of network security zoning as ‘a user can 

access a zone only if he is granting access to all the services 

within the zone’. Here we map the services level privileges to the 

network level privileges. This limit the propagation of an attack 

on a service to only the zone.  

Finally, formal models of integrity foster to avoid critical 

systems to consume untrusted/fake information. We employ also 

the concept of integrity to unify capability, trust and criticality to 

facilitate the integration of risk analysis concepts to our network 

requirement analysis context.  

First, integrity of an agent reflects the assurance of an expected 

behavior. This fits with the concept of trust related to environment 

agents. The more trust the enterprise can have on an entity, the 

more it expects a given agent’s behavior, and hence, the more 

integrity it believes the agent has. As consequence, the trust 

assessment can be transformed into a maximum integrity value 

representing an assumption. Similarly, system agents’ criticality 

can be expressed as a required integrity. Critical goals are 

required to be achieved; hence, it is a required behavior of the 

assigned system agent. It means criticality corresponds to the 

minimum integrity value required for a system agent. For 

instance, the accountability server being vital requires a high level 

of integrity while the web server, which is considered critical only 

for business, requires less integrity. Finally, the integrity of a 



security domain correlates with the maximum integrity an 

enterprise can achieve with its control capability.  

As a consequence, we assume the existence of some utility 

functions (Figure 3) that maps the control capability labels of 

domains, criticality and trust levels of agents into a unified scale 

of integrity values. Figure 3 shows an example assumed for rest of 

the paper.  

Unifying risk and trust within the concept of integrity allows 

us also to integrate formal integrity security models with security 

zone modelling design principles to address the risks pertaining to 

traffic flows and information assurance. There exists several 

models of integrity such as Biba [3], Clark-Wilson [9], which 

propose abstract solutions to preserve the integrity of information 

flows. These models are widely used in current operating systems 

for improving the integrity protection of the information flows in 

inter-process communications (e.g., Microsoft Windows Integrity 

Mechanism [22]). We have chosen to adapt the model of Clark-

Wilson lite [29] (lighter version of Clark-Wilson model) for 

verifying the integrity property of traffic flows traversing multiple 

zones because this model explicitly considers information flows 

and then is more suitable to network data flows analysis. 

Domain Control capability Integrity 

Enterprise internal sub-domain Highly restricted 5 

Enterprise external sub-domain Less controlled 2 

Internet Uncontrolled 1 

System agents Criticality Integrity 

WEB server Critical 3 

DNS server Critical 3 

APP sever Critical 3 

Database server Highly Critical 4 

Accountability server Vital 5 

Environment agents Trust Integrity 

Admin user Highly trusted 4 

Local users Trusted 3 

Visitors Partially trusted 2 

Remote users Partially trusted 2 

Client users Not trusted 1 

Figure 3. Integrity values of domains and agents for the 

example case study 

The main idea of the integrity models is as follows. Entities 

take decisions based on input information (e.g. a program 

executes an algorithm based on its inputs). If input information is 

wrong, then the decision can be wrong too. Therefore, critical 

systems must read information with high levels of integrity only 

(i.e. high level of assurance) while non critical systems are not 

subject to such constraint. In CW-lite model, all information 

flowing from low integrity subjects to high integrity subjects must 

be filtered. Here, the integrity filters correspond to integrity 

validation procedures that sanitize information or block it. For 

instance, in network security analysis context, an integrity 

validation filter can be a web application firewall that checks SQL 

statements or URL formats. Integrity models complete the 

principle of complete mediation by checking the content of flows. 

CW-lite model places the integrity validation filters at the 

receiving subject’s side and express the information flow control 

as follows (Figure 4): “if a subject s receives an information flow 

from a subject si at interface I, then either there is an integrity 

validation filter at interface I or the integrity level of si is greater 

or equal to the integrity of subject s”.  

Figure 4. CW-lite security filtering rule [29] 

4! OUR PROPOSED METHODOLOGY 

Our zone modelling methodology (see Figure 5) is divided into 

two main steps: (1) Determining the security zones and integrity 

validation filters and (2) Identifying data flows integrity 

requirements and data flows access control filters.  

The initial input of the first step is the set of security domains, 

the set of agents, the integrity levels of domains and agents, and 

the data flows between agents. As a result of step1, our process 

computes the security zones and the integrity validation filters. 

Then, the security architect provides additional information about 

the media of communication (i.e., the networks) between zones 

and launches the second step. The final result is a set of network 

security requirements that are a set security zones, integrity 

validation filters, agents’ integrity requirements, access control 

filters, and integrity data flow protection requirements. For 

implementation, we formalized step1 and step2 in Answer Set 

Programming (ASP) [14]. ASP is a declarative logic based 

approach that facilitates the solving of difficult search problems 

by computing answer sets through stable model semantics. We 

defined the rules at each step and the ASP solver determines the 

set solutions (called answers) that are compliant with the rules and 

the input. This makes our process traceable and verifiable. 
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Figure 5. Our zone modelling methodology approach overview 

In the following, we discuss in detail the modelling rules at 

step1 and step2. The implementation of our zone modelling 

solution will be discussed separately in section 5. 



4.1! Step 1: Specifying zones and filtered flows 

The main goal of this step is specifying zones and identifying 

integrity validation filters. The process starts with a system as a 

set of domains, zones and agents and we represent it as follows: 

S = <DOMAIN, ZONE, AGENT, FLOW, INSIDED
Z, INSIDED

A,

INSIDEZ
A, Int, Intmax, Intmin, Intactual, AgentServer, AgentClient>

Where: 

!! DOMAIN is the set of security domains. 

!! ZONE is the set of security zones. 

!! AGENT is the set of agents, named after entities. 

AGENT = ENV_AGENT ∪ SYST_AGENT with 

ENV_AGENT and SYST_AGENT being the set of 

environment and system agents such that ENV_AGENT ∩ 

SYST_AGENT=∅. 

!! AgentServer: AGENT → {TRUE, FALSE} states if an agent 

is a server (e.g., web server). 

!! AgentClient: AGENT → {TRUE, FALSE} states if an agent 

is a client (e.g., browser). 

!! FLOW ⊆ AGENT × AGENT, is the set of allowed flows 

of information. 

!! INSIDED
z ⊆ ZONE × DOMAIN is a relation that states a

zone is inside a domain. 

!! INSIDED
A ⊆ AGENT × DOMAIN is a relation that states

an agent is inside a domain. 

!! INSIDEZ
A ⊆ AGENT × ZONE is a relation that states an

agent is inside a zone. 

!! Int: DOMAIN →  returns the integrity level of a security 

domain. This value is directly derived from the control 

capability value. 

!! Intmax: ZONE ∪ AGENT →  returns the maximum

integrity of a zone or an agent. For environment agents, 

this value is directly derived from their trust value. 

!! Intmin: AGENT →  returns the minimum integrity level of

an agent. For system agents, this value is directly derived 

from the criticality value. 

!! Intactual: ZONE ∪ AGENT →  returns the actual integrity

of a zone or an agent, which are the final integrity values 

computed at the end of the process. 

!! integrity-validation-filter(a:AGENT,f:FLOW,val1: ,val2: )

states integrity validation requirements such that integrity-

validation-filter(a, f, val1, val2) means some integrity 

protection mechanism at agent a must sanitize dataflow f 

with an integrity level of val1 to achieve a data assurance 

level of val2. 

In other words, Int, Intmax and Intmin represent the integrity 

mapping functions (Figure 3). Accordingly, we define the rules of 

step1 as follows: 

RULE 1: Every agent is inside a domain. 

a  AGENT,  d  DOMAIN | (a,d)  INSIDED
A

RULE 2: Every security domain contains at least one security 

zone. 

d  DOMAIN, card({z | z  ZONE, (z, d)  INSIDED
Z}) ≥ 1

RULE 3: The maximum integrity level of a security zone is equal 

to the integrity level of the domain. This is because, a domain 

controls zone and therefore we cannot have more assurance on a 

zone than the controlling domain. 

d  DOMAIN, z  ZONE, (d, z)  INSIDED
Z

   ⇒

Intmax(z) = Int(d)

RULE 4:  Similar to Rule 3, the maximum integrity level of an 

agent is equal to the integrity level of domain. 

d  DOMAIN,  a  AGENT, (a, d)  INSIDED
A  ⇒

Intactual(a) ≤ Int(d) 

RULE 5: The actual integrity of a zone cannot be greater than its 

maximum integrity. 

z  ZONE, Intactual(z) ≤ Intmax(z)

RULE 6: The actual integrity of agents must be between the 

maximum and the minimum integrity levels of the agents. 

a  AGENT, Intmin(a) ≤ Intactual(a) ≤  Intmax(a)

RULE 7: The actual integrity levels of an agent are same as that 

of its residing zone. 

a  AGENT, z  ZONE, (a,z)  INSIDEZ
A, ⇒

Intactual (a) = Intactual(z) 

RULE 8 - CW-Lite:  The actual integrity levels of the interacting 

agents must adhere to the CW-lite integrity rule. In this way, an 

agent cannot have access to lower integrity information. 

a1,a2  AGENT, (a1, a2)  FLOW Λ

¬integrity-validation-filter(a2,flow(a1,a2),      

intactual(a1), intactual(a2)) ⇒  Intactual(a1) ≥ Intactual(a2) 

RULE 9 – Principle of complete mediation:  Server agents and 

client agents cannot reside in same zone. Because, as per the zone 

modelling design principles, intra-zone interactions are usually 

not analyzed. With reference the security design principle of 

complete mediation rule, every access to every object must be 

validated [26]. Therefore, if server and client reside in the same 

zone there will be a conflict. 

c,s  AGENT, z1,z2  ZONE, (c, z1)  INSIDEZ
A,

(s, z2)  INSIDEZ
A, AgentServer (s), AgentClient (c)⇒ z1≠z2

RULE 10 – Principle of least privileges:  The least privileges 

principle aims at minimizing the permissions of users to the 

minimum required for accomplishing their tasks [26]. From a 

network perspective, a client agent can send flows in a security 

zone only if he can send flows to all the server agents within that 

zone.  In this way, we map network level privileges to services 

level privileges. Indeed, server agents will be grouped in zones 

according to users’ privileges. 



c,s1,s2  AGENT, AgentClient(c), AgentServer(s1), AgentServer(s2),

z1,z2  ZONE, (s1, z1)  INSIDEZ
A, (s2, z2)  INSIDEZ

A,

(c,s1)  FLOW, (c,s2) ∉ FLOW ⇒ z1≠z2

4.2! Step2: Specifying integrity requirements for the 

communication medium between zones 

At the end of step1, the set of zones along with the integrity 

validation filters are determined. Step2 addresses the security 

issues related to inter-zone interactions, i.e., the protection of data 

flows through the network communication media (e.g., 

wired/wireless networks, etc.,) that connect the computed zones. 

The main goal of this step is to protect the integrity of data flows 

when traversing untrusted media of communication. Suitably, we 

complete our system model as follows: 

S = <DOMAIN, ZONE, AGENT, FLOW, MEDIUM, INSIDED
z,

INSIDED
A, INSIDEZ

A, INSIDED
M, CONNECT, Int, Intmax,

Intactual>,  

Where: 

!! MEDIUM is the set of media of communication. 

!! INSIDED
M ⊆ MEDIUM × DOMAIN is a relation, which

states that a medium of communication is in a domain. 

!! CONNECT ⊆ MEDIUM × ZONE is a relation, which 

states that a zone is connected to a medium of 

communication. 

!! Intmax: ZONE ∪ AGENT ∪ MEDIUM →  returns the

maximum integrity level of a security zone, agent or 

medium of communication. 

!! Intactual: ZONE ∪ AGENT ∪ MEDIUM →  returns the

actual integrity level of a security zone, agent or medium 

of communication. 

!! PATH ⊆ FLOW × (ZONE ∪ MEDIUM) × (ZONE ∪ 

MEDIUM), is a relation that stores where flows are 

transiting with the constraint that (f, e1, e2)  PATH ⇒

(e1,e2)  CONNECT  (e1,e2)  CONNECT. For

instance, (f,m,z)  PATH means that flow f transits 

between medium m to zone z. 

!! access-control-filter(c:CONNECT,f:FLOW) states access 

control requirements so that access-control-filter(c,f) 

means flow f must be permitted at connection point c. 

!! dataflow-integrity-protection(f: FLOW, e: ZONE ∪ 

MEDIUM, value: ) states dataflow protection 

requirements such that dataflow-integrity-

protection(f,e,val) means some protection mechanism must 

be applied on dataflow f over zone or medium e to preserve 

an integrity level of val. 

Similar to domains, zones, and agent, a medium of 

communication m has two integrity levels: Intmin(m), and 

Intactual(m). Accordingly, we add new rules to include constraints 

on media of communication: 

RULE 11: Every zone must be connected to a medium of 

communication. 

z  ZONE,  m  MEDIUM, (m, z)  CONNECT. 

RULE 12: At each zone, there must be an access control filter 

that permits allowed flow of information. Not explicitly allowed 

flows are denied by default. 

 (f, e1, e2)  PATH, e1  MEDIUM e2  ZONE ⇒

access-control-filter((e1,e2), f) 

And respectively: 

 (f, e1, e2)  PATH, e1  ZONE e2  MEDIUM ⇒

access-control-filter((e2,e1), f) 

RULE 13: The actual integrity level of a medium of 

communication is equal to the minimum value between the 

integrity level of its domain, the initial trust of the medium (i.e., 

its maximum integrity), and the actual integrity levels of the 

connected zones. 

 m  MEDIUM, Intactual(m) = min({Int(d) | d  DOMAIN,

(m,d)  INSIDED
M} ∪ {Intmax(m)} ∪ {Intactual(z) | z  ZONE,

(m,z)  CONNECT}) 

RULE 14:  A flow that transits over a medium or a zone, requires 

an integrity protection, if the integrity level of the medium or the 

zone is lower than the level of integrity of the flow. 

(a1,a2)  FLOW,  e1,e2  ZONE ∪ MEDIUM |

(flow(a1,a2), e1, e2)  PATH,

min(intactual(a1), intactual(a2))  > intactual(e1) ⇒ data-flow-integrity-

protection(flow(a1,a2),e1,min(intactual(a1), intactual(a2))). 

Respectively: 

(a1,a2)  FLOW,  e1,e2  ZONE ∪ MEDIUM |

(flow(a1,a2), e1, e2)  PATH,

min(intactual(a1), intactual(a2))  > intactual(e2) ⇒ data-flow-integrity-

protection(flow(a1,a2),e2,min(intactual(a1), intactual(a2))). 

5! IMPLEMENTATION 

We implemented our methodology in ASP using the Clingo solver 

[15] and Python. In this section, we describe the security zone

calculation of the scenario using our methodology by detailing

each step of the process.

5.1! Step1 – Eliciting security zones and 

integrity validation filter requirements 

5.1.1 Step1 input

At step1, the initial knowledge on the system concerning the 

agents, domains and their integrities needs to be provided as input. 

Figure 6 shows the graphical view.  

In the example case study, we have considered a total of two 

domains. The enterprise domain is under the control of the e-

commerce enterprise, while the Internet domain corresponds to 

the public domain, which is uncontrolled. The enterprise domain 

has two sub-domains. The inside enterprise sub-domain may refer 

to the office premises of the e-commerce organization that is 

physically secured. The outside sub domain consists in employees 

working from their home using laptops provided by the office. By 

applying the utility function described in Figure 3, these control 

capabilities are transformed into integrity values.  
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Figure 6. Step 1 – input 

The integrity levels of system agents (depicted in triangular 

shapes) correspond to the minimum level of integrity that should 

be maintained in terms of security assurance. Likewise, the 

integrity levels of environment agents (depicted in inverted 

triangular shapes) correspond to the maximum level of integrity, 

which is expected as guaranteed. These integrity values are also 

determined based on the utility function in Figure 3. Finally, the 

initial input includes the list of permitted data flows between 

agents regarding the business objectives. Table 1 lists a sample of 

the data flows considered in the example case study. E.g., role 

adminUser must be able to send data flows to agent 

accountabilityServer. 

Table 1. Step 1 input – sample of permitted data flows 

Flow(adminUser,accountabilityServer) 

Flow(localUsers,accountabilityServer) 

Flow(remoteUsers,accountabilityServer) 

Flow(accountabilityServer,adminUser) 

Flow(accountabilityServer,localUsers) 

Flow(accountabilityServer,remoteUsers)

5.1.2 Step1 output 

Our tool automatically computes the security zones and the 

integrity validation filters according to the rules listed in section 

4.1 (see Figure 7). The Clingo ASP solver can produce many 

solutions (i.e. zone models), which can equally satisfy all the 

rules. However, their costs of implementation can vary. From a 

broad view, the implementation cost is the summation of the cost 

of implementing the network security requirements to preserve the 

actual integrity levels of each zones and of upholding the integrity 

verification filtering requirements. 

The tool determines the optimized solution using the ASP 

optimization statement minimize, to find the solution with 

minimal cost. Figure 8 depicts an example of cost formula where 

the Clingo solver searches for an optimal answer set that 

minimizes the sum of all values of entities’ integrity levels (i.e., 

sum of actual integrity values of agents and integrity to be 

guaranteed by integrity validation filters). The cost calculus can 

vary for different organizations based on their logistics study 

similar to the varying cost effects of the Design Assurance Levels 

[24]. Thus, this cost formula is just an example and another cost 

computation formula more suitable to a specific organization can 

be specified. 
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Figure 7. Step 1 – output 

Figure 8. Example of a cost-based optimization rule 

We executed our tool 30 times on a Mac Book Pro (2.8 GHz 

Core i7, 16GB RAM) and configured the solver to use 4 threads 

in parallel. The execution times to calculate the optimal solution 

based on our cost optimization rule varied between 5.8 seconds 

and 7.6 seconds.  

Our zone model is abstract and design independent therefore 

does not restrict the technical solutions. It specifies a total of 8 

zones with 6 inside the enterprise network, and 2 zones outside. It 

is interesting to note that our tool obtained the same zones as the 

proposed case study (Figure 1(b)).  

Table 2. Step 1 output – Sample of IVF requirements 

IVF(accountabilityServer, 

 flow(localUsers,accountabilityServer), 

  sanitize(3,5)) 

IVF(accountabilityServer, 

 flow(remoteUsers,accountabilityServer), 

  sanitize(2,5)) 

IVF(accountabilityServer, 

 flow(adminUser, accountabilityServer), 

 sanitize(4,5))

Our tool cannot classify the zone types like DMZ, restricted, 

etc. However, integrity values of zones provide zone integrity 

requirements. The resulting calculated integrity levels attached to 

zones also apply to all the agents within the zones. These integrity 

levels have to be interpreted as the pre-requisite requirements to 

achieve at minimum by the future security implementation related 

to software development processes, code practices, software 

verification and validation, etc. Indeed, in practice, there already 

exist code assurance level standards such as the DALs for aircraft 

systems requirements [4]. The higher the DAL is, the higher the 

assurance activities and design verification methods are 



demanded. In our methodology context, the actual integrity levels 

of system agents exhibit similar characteristics as DALs. 

Additionally, the tool identifies integrity validation filters 

(IVF) attached to agents. They are depicted by yellow squares in 

Figure 7. A sample from the set of IVF rules automatically 

generated by our tool is given in Table 2. For instance, 

IVF(accountabilityServer,flow(localUsers,accountabilityServer), 

sanitize(3,5)) is a requirement stating that there must be a data 

flow integrity validation procedure at agent accountabilityServer 

that sanitizes the data flows sent by localUsers. The input data 

flows sent by the localUsers are expected to satisfy integrity level 

3 and the integrity validation process must check these data flows 

to guarantee they conform to constraints of integrity level 5. 

Interpretation of such integrity validation requirement, i.e. what 

means validation to conform integrity level 5, can be carried out 

on the basis of dedicated documents such as the specification for 

data assurance levels by EUROCONTROL [13]. Suitably, this 

IVF requirement might be implemented by a security mechanism 

such as a web application firewall that checks for SQL 

injection/viruses/etc. Thus, as mentioned in Figure 5, at the end of 

Step1, the security architect obtains the list of security zones, the 

integrity values of agents and zones and integrity validation filters 

requirements. 

5.2! STEP 2 – Eliciting access control and data flow 

protection filters requirements 

5.2.1 Step2 input

Before running step2, the security architect must complete the 

output of step1 by providing additional information about the 

media of communication. The input information concerning 

media of communication includes the integrity values of the 

media, the domain in which the media belong to, and finally, the 

zones connected to them (the white clouds and the black lines in 

Figure 9).  

In our example scenario, we assumed three media of 

communication: Private access, Public Access and Internet 

Access. The integrity value attached to a medium of 

communication represents the level of trust one can have about 

the packets transmitted by the medium. As consequence, this 

integrity value depends on the assurance level of the users that can 

connect to it. The integrity value will be calculated as the 

minimum between the integrity value of the domain and the 

connected zones. We also allow the security architect to specify 

an initial integrity value that represents the risk that unexpected 

users or attackers have access to the medium. For instance, it is 

easier to physically access a wireless network than a wired 

network. Also, it is easier for unwanted users to connect a device 

to an Ethernet socket in the reception lounge of a building (since 

many unknown people can enter in this place) than in a restricted 

area of this building. In this way, our methodology can integrate a 

second risk analysis phase dedicated to assess the difficulty to 

physically connect to networks. Figure 10 shows an example of 

the integrity levels of the media. They are calculated based on the 

restricted levels of the medium considered in our example 

scenario. As mentioned in Figure 5, our tool takes two sets of 

input information at step2: the result of step1, and the media of 

communication with the associated integrity values when 

explicitly specified. 
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Figure 9. Step 2 - input 

Figure 10. Example of medium integrity levels 

5.2.2 Step2 – final output. 

For the execution of step2, we developed a separate python code 

that parses the output of step1 and calculates all the paths of every 

data flows in regards with the consolidated input information at 

step2. The output of the python code is then re-injected in the 

ASP solver to compute the final output of step2, i.e., access 

control filter (ACF) and data flow integrity protection 

requirements. Figure 11 depicts the graphical representation of the 

final network security requirements after step2.  

The access control filter requirements (ACF) are defined at 

the interfaces of each zone in order to control all the inter-zone 

communications. They are depicted by blue squares in Figure 11. 

These requirements describe the list of permitted flows that are 

given as input at step1. Data flows not explicitly stated in an ACF 

requirement are denied. Table 3 shows a sample of the generated 

ACF requirements. For instance, the requirement statement 

ACF(connectedTO( publicAccess,2), flow(dnsServer, visitors)) 

indicates that there must be an ACF at the interconnection point 

between medium of communication publicAccess and security 

zone2 that permits data flows from the dnsServer to visitors. 

Depending on the security design choices, these ACFs may be 

implemented by one or more access control mechanisms such as 

firewalls, application gateways, etc. 
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Figure 11. Step 2 output – final network security requirements 

Finally, the tool produces data flow integrity requirements 

representing security protection needs attached to data flows while 

transiting over a medium or a zone (see Table 4). For instance, 

requirement dataFlowIntegrityRequirement(flow(databaseServer, 

adminUser), privateAccess,4) states that the data flows from 

databaseServer to adminUser must be protected over medium of 

communication privateAccess to ensure the data flows maintain 

integrity level 4. Different integrity mechanisms such as digital 

signatures can implement these requirements. 

Table 3. Sample of Access Control Filter requirements 

ACF(connectedTO(publicAccess,2), 

  flow(dnsServer,visitors)) 

ACF(connectedTO(publicAccess,2), 

  flow(webServer,visitors)) 

ACF(connectedTO(publicAccess,2), 

  flow(visitors,dnsServer)) 

ACF(connectedTO(publicAccess,2), 

  flow(visitors,webServer)) 

ACF(connectedTO(publicAccess,7), 

  flow(dnsServer,visitors)) 

ACF(connectedTO(publicAccess,7), 

  flow(webServer,visitors)) 

ACF(connectedTO(publicAccess,7), 

  flow(visitors,dnsServer)) 

ACF(connectedTO(publicAccess,7), 

 flow(visitors,webServer))

Table 4. Sample of data flow integrity requirements 

dataFlowIntegrityRequirement( 

 flow(databaseServer,adminUser), 

  privateAccess,4) 

dataFlowIntegrityRequirement( 

 flow(appServer,adminUser), 

 privateAccess,4) 

dataFlowIntegrityRequirement( 

 flow(appServer,localUsers), 

 privateAccess,3) 

6! RELATED WORKS 

Most of the related works come from industrial/government 

sectors [10,21,27], which provide best practice guidelines and 

generic patterns for building secured networks. These guidelines 

propose some generic zone categories as well as predefined inter 

and intra zone interactions rules. For instance, the British 

Columbia model [21] describes seven zones and allows 

communication inside the zones and only between adjacent zones. 

Secure Arc [27] defines eight zones.  It also introduces a parallel 

cross-zones segmentation concept, called silos. Communications 

are allowed only between adjacent zones and within the same silo, 

or between adjacent silos within the same zone. The aim is to 

limit the interaction between zones to only dedicated traffic even 

though they are adjacent to each other. However, these documents 

are only guidelines and must be manually adapted. As a 

consequence, they don’t support security architects in validating 

their own network security requirements.  

The academic community has published only few works 

concerning network security zones. Gontarczyk et al. [16] 

proposed a standard blue-print that includes three classes of 

security zone (no physical measures, limited physical measures, 

and strong physical measures). It also provides a classifier to 

guide the deployment of systems/applications. However, this is a 

high level guideline that must be manually adapted by the security 

architects. Furthermore, the classifier is ambiguous (e.g. some 

systems can be placed in any of the zones). They also don’t 

consider other network security requirements. Ramasamy et al 

[25] proposed a bottom-up approach for discovering the security

zone classification of devices in an existing enterprise network.

Although this work does not deal with eliciting network security

requirements, it complements our top-down approach. Several

works [17,23] take an existing network security zone model and

perform risk analysis using different methods to determine the

efficiency of security zones. In the same way, they do not serve

the purpose of eliciting high-level network security requirements

and cannot be compared to our work. However, they can be used

to refine the high-level security requirements calculated by our

approach in later stages. Finally, as far as we known, none of the

related works consider the notion of cost of network security

zones.

7! CONCLUSION AND FUTURE WORK 

Network security zone modelling is a well-known approach that 

contributes to the defense-in-depth strategy from the network 

security perspective. However, no rigorous approach formally 

supports this process. In this article, we proposed a zone 

modelling methodology based on three security principles: 

complete mediation, least privileges and Clark-Wilson lite formal 

model. We defined a set of formal rules as well as the list of initial 

integrity levels values computed based on risk impact, which 

makes our methodology approach traceable and verifiable. The 

whole process has been implemented to automate the security 

zones computation. It produces a set of network security 



requirements: security zones, integrity validation filters, access 

control filters, and data flow integrity requirements. We illustrated 

the use of this methodology through an e-commerce use case 

scenario. 

Our future works are two folded. First, we plan to formally 

integrate this work in a global security requirements engineering 

process to get traceability from business level security objectives 

to network design level requirements. Secondly, we want to 

investigate the refinement of the high-level network security 

requirements produced by our current work. As an example, IVF 

attached to agents may require to be refined due to design 

constraints. For instance, it might be impossible to enforce the 

IVF on the accountabilityServer for technical constraints. In this 

case, the initial security requirements needs to be refined by 

introducing new security agents (e.g., network security proxies) to 

achieve the IVF, similar to the final zone model in the case study 

[2]. In parallel, we would like to extend our security zone 

modelling approach to consider the confidentiality and availability 

requirements. Access control filters, defined by our methodology, 

partially address confidentiality requirements only. We intend to 

explicitly integrate formal confidentiality models.  
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