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Abstract—During the execution of a process, managing the
collaboration inside a task performed by various actors is not
straightforward due to possible changes of the process’s context
and the collaboration strategy. Process management solutions
which describe the collaboration at modeling time offer a rigid
control for conducting such collaborative tasks and thus cannot
adapt to changes. To enable a flexible execution of collaborative
tasks, we propose using the late-binding mechanism to allow
process actors, at execution time, choosing or adapting strate-
gies to perform their collaboration. To do so, first we model
collaboration strategies as process patterns providing different
ways to implement a collaborative tasks at execution time.
These collaboration patterns describe how to establish necessary
relations for coordinating different instances of the task, for shar-
ing and exchanging working artifacts among actors performing
those instances. Then we define actions to execute collaborative
tasks. These actions take collaboration patterns as parameters.
Thus, by letting process actor selecting a suitable collaboration
pattern, they allow binding dynamically a collaborative task to
its implementation flexibly.

Index Terms—Collaboration Modeling, Process Execution,
Multi-Instance Task, Collaboration Process Pattern

I. INTRODUCTION

Conventionally, a task is the smallest unit of work in a pro-

cess subject to management accountability. Existing process

management systems focus on coordinating different process’s

tasks but pay less attention to managing the collaboration of

different actors inside a given task to achieve a common goal.

We are interested particularly in a special form of collaborative

task, so-called multi-instances task (MIT) which is a task

performed by a group of actors having the same role. Thus, at

execution time, it can have multiple instances, each instance

being performed by one actor and all instances participating

to the completion of the task. As an example, in the RUP

based process [1] applied to analyze a complex system, the

task DescribeUseCases would typically be a collaborative task

performed by a set of engineers playing the role Analyst to

detail different use cases.

A collaboration strategy defines how instances of the same

task are executed, i.e. the order to execute the instances, and

the way the task’s inputs and outputs are shared among the in-

stances [2]. In principle, a collaborative task can be performed

with different strategies based on different contexts (dependen-

cies among artifact’s components, availability of actors, etc).

In practice, if the collaboration strategy is described in the

process model, the relations between the task instances are

already given at modeling time and cannot change at execution

time without modifying the process model or deviating from

the original process. The consequence of such rigid relations

is that the actors cannot adapt the collaboration strategy to fit

to the evolution of the execution context (for example, adding

or removing an actor).

The objective of our work is to enable executing collab-

orative tasks in a controlled but flexible way. To enable a

fine-grained control of collaboration during process execution,

both the structural and behavioral aspects of collaborative tasks

must be known. To enable a flexible execution, these aspects of

a collaborative task are given in two times: at modeling time,

only the task’s structural elements (e.g. performing role, used

artifacts) are described, then at execution time, when the task is

instantiated into several instances performed by various actors,

the relations among the task’s instances (e.g. work-sequences,

exchanged-data) will be specified.

The challenge for the chosen approach is how to generate

at execution time the behavioral model of a collaborative task

without requiring process actors to go back to the modeling

phase. Dealing with this question, first we define a collabo-

ration pattern as a pattern capturing a collaboration strategy

which determines typical relations among the instances of

a multi-instance task at execution time. Then, we use the

late-binding mechanism to let actors selecting dynamically

a suitable collaboration pattern and use it as a template to

generate the inter-instances relations for the collaborative task.

To enable adapting the execution of a collaborative task to
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the evolution of project’s context, during the execution, the

collaborative task can change its collaboration strategy by

selecting another bound collaboration pattern.

The paper is structured as follow. Section II recalls the

concept of collaboration pattern and how it is used to describe

the implementation of a collaborative task at execution time

[2]. Section III describes the main contribution of this paper:

a process engine allowing the late-binding of collaboration

patterns to make the execution of collaborative tasks flexible.

A prototype implementing our work is presented in Section

IV. We discuss in Section V some related works and Section

VI concludes the paper and presents some perspectives.

II. COLLABORATION PATTERNS

A strategy providing a recurrent solution to perform a

collaborative task in a specific context can be captured as a

collaboration pattern. A collaboration pattern describes the

typical relationships among the instances of a collaborative

task at execution time from two main perspectives: the control-

flow and the data-flow. The control-flow perspective provides

the execution order of different task instances, represented by

the work-sequence relations among the instances. The data-

flow perspective specifies, via the task parameter relations, the

data manipulated, exchanged or shared by the task’s instances.

In contrast to the modeling patterns proposed in [3], [4]

and [5] that are applied at modeling time for describing

collaboration scenarios, collaboration patterns presented in this

paper are applied dynamically at execution time to generate

the detailed model of running collaborative tasks.

In our approach, at modeling time a process is partially

defined: the process model contains only structural elements.

The missing part, the elements defining the process’s be-

havior, will be completed at execution by applying a col-

laboration pattern. Considering a collaborative task T in a

process, its model can be seen as a parameterized function

TM(c:CollaborationPattern). c will be bound later to a con-

crete pattern cp selected by the process manager. Executing the

task T means run(TM(cp)) to create the task instance TI . TI

is defined with two sources of information: structural elements

of TI are instantiated from the task model TM , behavioral

elements of TI are created by applying the pattern cp.

We defined the language named ECPML [2] to model

collaborative processes. Beside the standard process concepts,

this language distinguishes in particular two types of task:

a SingleTask which has only one instance at execution time

and a CollaborativeTask which can have several instances

at execution time. The task model TM mentioned above is

represented as a CollaborativeTask in ECPML.

Aiming at developing a built-in operational semantics for

ECPML, in Fig. 1, we present the concepts used to represent

the dynamic instances created at execution time from the

elements defined in a process model. Concretely, a Task

in a process model will be instantiated into one or many

TaskInstance at execution time. A TaskInstance is enacted

by an Actor who plays a Role and produces or uses some

WorkProductInstances (WPI).

Fig. 1. Metamodel defining instances of the concepts in ECPML metamodel

Focusing on controlling the execution of a multi-instance

task performed by several actors, we distinguish SingleTask-

Instance (STI), which is an instance of SingleTask, and Collab-

orativeTaskInstance (CTI), which is an instance of Collabora-

tiveTask. An STI is the main executable element representing a

unit of work assignable to a single actor. A CTI is composed

of several STIs performed by separate actors. The dynamic

semantics of a TaskInstance is given via a StateMachine

describing the states and the transitions during the life cycle

of a task instance.

TaskInstanceSequence relations can be established among

TaskInstances to synchronize their execution. For a Collabo-

rativeTask, such relations among its instances are not given

at modeling time but can be generated by using a template

provided in a collaboration pattern. Thus, we use the concepts

at instance level as presented in Fig.1 to model the solution of

a collaboration pattern. For example, the pattern cp mentioned

previously captures a model of task instances which contains

elements of the metamodel in Fig. 1.

We have identified several patterns based on the way the

manipulated artifacts are shared. In this paper, we consider

only how the output artifacts that are changed by the collabo-

rative task are shared among its instances. The input artifacts

are implicitly considered as ”read-only” items shared by the

instances inside the collaborative task and are not shown in the

patterns. In the following, we present 2 representative patterns

corresponding to the two main types of execution: in parallel

and in sequence.

1) PAR-INSTANCES-COP (Pattern Parallel Instances with

Composite Out Parameter): Given a collaborative task T

having one output parameter P composed of n independent

components Pi, this pattern is used to execute a set of n STIs

ti inside the CTI of T simultaneously. Each task instance ti
will manipulate separately an instance pi of the component

Pi. Fig. 2 shows the solution of PAR-INSTANCES-COP as a

model of the collaborative task T with 2 task instances.



Fig. 2. Collaboration pattern PAR-INSTANCES-COP for a collaborative task
T with two instances at execution.

2) SEQ-INSTANCES-COP (Pattern Sequential Instances with

Composite Out Parameter): Given a collaborative task T

having one output P which is composed of n dependent

components Pi, i ∈ [1, n], this pattern is used to execute a

series of n consecutive STIs ti, i ∈ [1, n] inside the CTI of T .

Fig. 3. Collaboration pattern SEQ-INSTANCES-COP for a collaborative task
T with two instances at execution.

Each STI ti manipulates an instance pi of the component

Pi and is performed by actors playing the same role. The

execution order FS among the STIs is imposed by the

dependencies among the components of P : the creation of

Pi + 1 needs the completion of Pi thus ti + 1 (which works

on Pi + 1) has to follow ti (which produces Pi).

III. EXECUTING COLLABORATIVE TASKS

As a dynamic entity, a TaskInstance has a lifecycle com-

posed of different states through which it goes when executed.

To allow deploying and executing an MIT, we need to define

the task instance’s lifecycle, its operational semantics. This

section defines the operational semantics, presented by the

state machine associated to TaskInstance in our meta-model.

It allows to instantiate a task and makes its dynamic instances

evolve flexibly during the execution of the task.

While the lifecycle of an STI can be defined with the

conventional operational semantics of tasks having one in-

stance at execution, our new concept CTI requires a specific

operational semantics that enables its flexible execution. Fig.

4 presents the simplified CTI’s state machine defining the

different states during the lifecycle of a collaborative task.

There are six events that trigger the CTI’s state transitions:

• TaskCreation (Task T): when this event occurs, the

action createCollaborativeTaskInstance(T) will be exe-

cuted to create a CTI node presenting an instance of

the collaborative task T in the state Instantiated. As

discussed in the previous section, we use the late-binding

mechanism to apply a collaboration pattern to a CTI

at execution time in order to obtain dynamically the

sequencing of the different STIs inside the CTI . The

novelty of our proposition consists in not defining rigidly

the actions on state transitions of the CTI’s state ma-

chine. Rather we define them as parameterized functions

taking collaboration patterns as effective parameters to

complete the CTI’s operational semantics.

• TaskAssignment(CTI cti, Actor a[]): this event occurs

when actors are assigned to perform the CTI . The

associated action assignTask(cti, cp) makes the relations

between an actor and the STI that he performs inside the

CTI and puts the task instance into the state Assigned
.During this transition, the relations among the STIs

inside a CTI are created according to the pattern
cpreceived.

• TaskStarting(CTI cti): when the assigned actors start to

perform the collaborative task, this event occurs. If the

condition for starting the task is verified, the associated

action startCollaborativeTaskInstance(cti) puts the task

instance into the state InProgress.

• PatternChange(CTI cti, Pattern cp): during the execu-

tion of a CTI , process actors may want to change the

task’s collaboration strategy, i.e. select another collabo-

ration pattern to carry out the CTI . In that case, this

event happens and the action applyPattern(cti, cp) will

be executed to apply a new collaboration pattern cp
tothe running collaborative task instance cti.

• TaskEvolve(CTI cti): when the need to transform an

STI to a CTI occured, this event happens. The action

associated, applyEvolution(cti, cp), allows to make the

transformation and to apply a newly chosen pattern to

the obtained CTI.



• TaskFinishing(CTI cti): this event occurs when process

actors terminate the task instance’s actions.

Fig. 4. Lifecycle of a CollaborativeTaskInstance.

After the deployment of a process, the instances of process’s

elements, including STIs, CTIs, actors, product instances,

are stored in the process management system (PMS)’s runtime

database (Instances Store, c.f. Section IV). The operational

semantics defined via the state machines of the process’s

elements defines the behavior of the PMS and allows it

updating correctly the running instances of the process.

Following, we describe the algorithms of two important ac-

tions in the CTI’s lifecycle: the application of a collaboration

pattern to carry out the CTI and the evolution of an STI into

a CTI .

A. Applying a Collaboration Pattern to a CTI

We present in fig. 5 a sample of RUP modeled in ECPML. It

contains one single task BuildUseCase and a collaborative task

DescribeUseCase each one being performed by actors playing

the role Analyst. The first task produces the use cases diagram,

used as input in the second task. At the end of this process,

the use cases description is obtained as a set of scenarios.

Fig. 5. Extract of the RUP in ECPML at modeling time.

Algorithm 1 shows the main steps of the action

applyPattern to apply a collaboration pattern cp to a cti.

It uses, as a template, the relations among the stis inside a

cti to reproduce them on the stis of the given cti.

Algorithm 1: applyPattern(cti, cp)

Input: CollaborativeTaskInstance cti, CollaborationPattern
cp;

Output: SingleTaskInstance[] sti;
begin

wsType = identifyPatternWorkSequenceType(cp);
dfType = identifyPatternDataFlowType(cp);
sti = cti.linkedSTI;
for i = 1 to sti.length− 1 do

applySequencing(sti[i], sti[i+ 1], wsType);
applyDataFlow(sti[i], sti[i+ 1], dfType);

end
end

Here, identifyPatternWorkSequence(cp) and identifyPattern-

DataFlow(cp) allow to recognize respectively the work-

sequence type and the data-flow type of inter-instances rela-

tions defined inside the pattern cp. applySequencing(sti1, sti2,

wsType) and applyDataFlow(sti1, sti2, dfType) establish the

identified relation types between two STIs of the CTI . After

repeating this procedure, every STI of cti is linked to the next

one according to the sequencing defined in the pattern cp.

Applying a collaboration pattern to a CTI can be done

at task instance’s creation, during its execution to change the

collaboration strategy used for carrying out the task or during

the evolution of an STI.

Fig. 6 gives the final result after creating a CTI for the

task DescribeUseCases and applying the collaboration pattern

SEQ-INSTANCES-COP to this CTI. This pattern represents a

sequential strategy to execute the collaborative task, thus the

worksequence between the three STIs, DUC1, DUC2, DUC3

is FinishToStart.

Fig. 6. DescribeUseCases after applying the pattern SEQ-INSTANCES-COP.

B. Evolving an STI into a CTI

At any time during execution, it would be useful to con-

sider a single task as a collaborative one. This functionality



reinforces the dynamic flexibility of our approach. Algorithm

2 shows the different steps for the evolution of an STI into a

CTI. During the application, a collaboration pattern is selected

to be applied to the newly created CTI.

Algorithm 2: applyEvolution(cti, cp)

Input: SingleTaskInstance sti, CollaborationPattern cp;
Output: CollaborativeTaskInstance cti;
begin

cti = changeNodeType(sti)
sti.linkedCTI.add(cti)
sti.linkedCTI = null
applyCTIDataFlow(cti)
applyCTISequencing(cti, sti)
applyPattern(cti, cp)

end

During the execution of this algorithm, a new CTI is

created through changeNodeType(sti). Afterwards, it is linked

to the former CTI linked to the STI to be changed. ap-

plyCTIDataFlow(cti) and applyCTISequencing(cti, sti) allow

to establish respectively the relations between the new CTI

and the input/output if existing and the relation between the

new CTI and the successor and predecessor of the STI to

be changed. The pattern cp is used to apply a collaboration

pattern to cti. For that purpose the algorithm applyPattern(cti,

cp) defined on algorithm 1 is used. For example, considering

the process in fig. 6, actors can be dealing with constraints

forcing them to split the third STI into two or more. In this

situation, DUC3 will evolve into a CTI requiring a pattern for

its execution. Fig. 7 gives the final result after evolution of

the third STI and application of the pattern PAR-INSTANCES-

COP for the new CTI, thus no worksequence between the STIs

inside that CTI.

Fig. 7. DescribeUseCases CTI and its linked instances after evolution of the
third STI into a CTI.

The state machines defining the operational semantics of

ECPML presented in this section have been implemented and

tested in a prototype.

IV. IMPLEMENTATION OF A PROTOTYPE

As introduced in [6], we have developed a CPE (Collabora-

tive Process Engine) supporting flexible execution of MITs. It

allows users to chose the collaboration patterns corresponding

to an actual execution context. Since, CPE has been enriched

with the implementation of the algorithms defined in section

III. Fig. 8 below describes the general architecture of CPE.

Fig. 8. General architecture of CPE.

The two main components of CPE are the Process Editor

allowing process designers to model processes that are stored

in the Process Model Repository using ECPML and the Pro-

cess Engine helping process actors to perform their process.

This latter updates the process’s instances during execution by

mean of their operational semantics.

The physical artifacts and human resources manipulated

during the process execution are managed by external

Databases: Artifacts Management System for artifacts and

Resources Management System for actors. These databases

are connected to CPE which manages just the references of

artifacts and actors inside its InstancesStore.

Thanks to CPE, the project manager can monitor the execu-

tion of collaborative tasks and adapt the collaboration strategy

for conducting collaborative tasks at any moment according to

the alteration of project’s constraints and needs. CPE provides

process actors with not only the necessary functionalities to

perform their task (by verifying the condition to create, start,

end or assign resources to a task instance) but also a global

and real-time view on the progress of development tasks (by

showing the information about the collaborative task that he

participates in: what is the current state, who are other actors

performing the task, what are the exchanged data, etc.).

Although CPE is helpful for all kinds of processes which

have multi-instance tasks, it can benefit particularly system

and software processes which are often performed by several

teams to produce different parts of the final product. Moreover,

generally system and software processes’ projects have chang-

ing contexts because of the evolution of product’s specification

as well as the evolution of production’s constraints. The above



characteristics make system and software processes require

more assistance during their execution - as offered by CPE.

V. RELATED WORK

The need for process flexibility has often been addressed

in literature. In the workflow and process technology com-

munities, a process is considered flexible if it is possible to

change it without replacing it completely [7]. This definition

is not different from our approach since we do not intend

to change the process itself but allow a flexible execution of

it. The work in [8] introduces some premises of how process-

based applications could be. They expressed the ability to deal

with unpredictable situations by allowing the process model

to be partially unknown at design-time and refined at runtime.

Works, such as [9] and [10] are focused on flexible exe-

cution through deviations management. They rely on PSEE

(Process-Centered Software Engineering Environment) to de-

tect and tolerate agent deviations. In contrast, we do not allow

deviating from the original process model, rather we use the

late-binding to precise the way of executing during enactment.

Reference [11] introduced a Workflow management system

aiming at supporting cooperative work, and among these

requirements were high flexibility and dynamicity. They pro-

posed an approach allowing users to modify the instance of a

process, such as adding an activity and starting an activity

even when the activation conditions are not met. While it

allows a certain flexibility, it cannot be applied to processes

that require a fine-grained control of the dataflow. In order

to achieve flexibility by looseness, [12] proposes DECLARE,

a constraint-based system for supporting loosely-structured

process models. As for [13], it proposed a process-aware

CSCW system supporting process schemas that are created

on-the-fly. AristaFlow [7] allows flexibility through process

composition and ad hoc changes of single process instances.

Compared to the cited works, we also adopt the late-binding,

but propose to use dynamically patterns to parameterize the

behavior of the process engine and thus make it flexible.

VI. CONCLUSION

Our current research focuses on the flexible management

of collaborative processes. Our work targets the modeling and

execution of collaborative tasks. The work presented in this

paper considers in particular multi-instance tasks (MIT) which

are instantiated several times at execution and performed by

different actors but all collaborating to produce a common

result. The novelty of our approach is providing a solution

to model partially MITs and then using the late-binding to

complete the tasks behavior flexibly at execution time.

We have proposed a set of collaboration patterns describing

the typical behavior models of MITs. Then we have defined

the operational semantics of the different executable elements

inside a process, especially collaborative tasks. This opera-

tional semantics allows binding a pattern to a collaborative

task instance during its execution to deploy a collaboration

strategy. By taking collaboration patterns as parameters of a

task’s execution, we enable a more flexible way to enact a

collaborative task. The collaboration strategy can be changed

at any time during the task’s execution. Moreover, we allow

the evolution of a single task into a collaborative task so that

process actors can delegate their works when necessary.

To improve the validation of our approach, we need to apply

it to other case studies and especially to real projects. Adding

new collaboration patterns is also desirable but the limited

set of collaboration patterns implemented, so far, does not

question the validity of our approach.

We aim also supporting more complex collaborative task

behaviors. Currently, we only deal with patterns describing

one kind of work-sequence relations among the single task

instances of a collaborative task (for example Finish2Start).
However, sometimes in practice there are many kinds of inter-

instances relations inside a task. To support more complex

collaborations, we intend to investigate the proposition of new

patterns covering those situations. We explore also the possi-

bility of automatically recommending collaboration patterns to

the project manager based on project’s context analysis.
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