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Abstract

In this note, we prove some non-asymptotic concentration inequalities for functionals,

called innovations, of inhomogeneous Neymann-Scott point processes, a particular class

of spatial point process models. Innovation is a functional built from the counting

measure minus its integral compensator. The result is then applied to obtain almost

sure rate of convergence for such functionals.

Keywords: Spatial point processes; Almost sure convergence rate; Deviation

inequalities; Campbell’s Theorem.

1. Introduction

Spatial point patterns are datasets containing random locations of some event of

interest. These datasets arise in many scientific fields such as biology, epidemiology,

seismology, hydrology. Spatial point processes are the stochastic models generating

such data. We refer to Stoyan et al. (1995) or Møller and Waagepetersen (2004) for

an overview on spatial point processes. These references cover practical as well as

theoretical aspects. The reference model is the spatial Poisson point process which

models random locations of points without any interaction between points. Several

alternative models exist in the literature. In this paper we are interested in the class
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of Neymann-Scott point process (NSPP for short), a class of models widely used in

the literature to produce attractive patterns. Roughly speaking, a NSPP can be seen

as a two-level model. Generate first, a set of cluster centers from a (homogeneous or

inhomogeneous) Poisson point process. Such points are also sometimes called mothers.

Then, generate several (homogeneous or inhomogeneous) Poisson point processes, each

being concentrated similarly around its mother. The resulting pattern formed by these

offspring points is a NSPP. Due to this simple interpretation, this model has gained a

lot of attention.

Let X be a spatial point process defined on Rd which we view as a locally finite

random set. We thus assume that X is simple which prevents two points to occur at

the same location (see e.g. Daley and Vere-Jones (2008)). We assume that X has an

intensity measure ρX. By Campbell’s Theorem (Møller and Waagepetersen, 2004), ρX

is characterized by the fact that for any function h : Rd → R such that hρX ∈ L1(Rd):

E
∑
u∈X

h(u) =

∫
Rd

h(u)ρX(u)du. (1)

To prove asymptotic properties for example for estimators of a parametric form of

the intensity function, one is often led to study functionals derived from Campbell’s

formula: these functionals are called ’innovations’ in the literature (Baddeley et al.,

2005; Coeurjolly, 2015). They are defined on a given domainW , with Lebesgue measure

|W |, by

IW (X;ϕ) =
∑

u∈X∩W

ϕ(u)−
∫
W

ϕ(u)ρX(u)du, (2)

for some locally integrable function ϕ : Rd → R. Such functionals play an important

role in statistics as well as in model validation. For instance, if X is stationary and

ϕ = 1, IW (X, 1) = N(W ) − ρ|W |, so |W |−1IW (X, 1) = ρ̂ − ρ measures the departure

from the non-parametric estimator of ρ to ρ. For inhomogeneous point processes, such

functionals are also used to define the methodology which estimates a parametric form

of the intensity function and to prove asymptotic results, see e.g.Schoenberg (2005);

Waagepetersen (2007); Guan and Loh (2007).
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In an increasing domain asymptotic framework, i.e. if X is observed in an increasing

sequence of bounded domains (Wn)n≥1, properties are well-understood for very large

classes of point process models (which embrace NSPP): for instance |Wn|−1IWn(X;ϕ)

converges almost surely to 0, |Wn|−1/2IWn(X;ϕ) tends to a normal distribution, etc.

Concentration inequalities for such functionals have already been considered by Pe-

mantle and Peres (2014) or Coeurjolly (2015) for determinantal point processes and

Gibbs point processes respectively. In this paper, we exploit general inequalities for

inhomogeneous Poisson point processes obtained by Reynaud-Bouret (2003) (see also

Ané and Ledoux (2000); Wu (2000); Breton et al. (2007); Bachmann and Peccati (2016)

for more general functionals) to derive non-asymptotic concentration inequalities for in-

homogeneous NSPP.

Section 2 presents some additional notation and the general definition of inhomoge-

neous NSPP. We establish our concentration inequality in Section 3. Finally, Sec-

tion 4 proposes an application of this inequality. We obtain the almost sure rate

of convergence for innovation-type functionals in an increasing domain framework.

In particular, we show that for the Matérn cluster process and the Thomas process

which are the two most well-used examples of (inhomogeneous) NSPP (see Section 2),

(|Wn| log |Wn|)−1/2IWn(X;ϕ) converges almost surely to 0 as n→∞.

2. Spatial point processes and NSPP

Let X be a spatial point process defined on Rd and let o be the origin in Rd. In

this note, we focus on inhomogeneous Neymann-Scott point processes which belong

to the class of Cox processes, a class which is defined as follows (see e.g. Møller and

Waagepetersen (2004)): let Λ = {Λ(u)}u∈Rd be a nonnegative locally integrable ran-

dom field defined on Rd, if X conditionally on Λ is an inhomogeneous Poisson point

process on Rd, then X is said to be a Cox process with latent random intensity Λ. An
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inhomogeneous NSPP is a Cox process driven by a random field Λ of the form

Λ(u) = `(u)
∑
c∈C

k(u, c) (3)

where ` is a locally nonnegative integrable function, where C, the process generating

the mothers, is an inhomogeneous Poisson point process defined on Rd with intensity

function ρC (assumed to be locally integrable) and where k : Rd×Rd → R+ is a kernel

density function, in the sense that for any u ∈ Rd, k(u, ·) is a density on Rd.

Using Campbell’s Theorem applied to C, we obtain the intensity for X

ρX(u) = E Λ(u) = `(u)

∫
Rd

k(u, c)ρC(c)dc. (4)

Let us discuss two situations. On the one hand, usually, see e.g. Waagepetersen (2007),

C is assumed to be homogeneous with intensity parameter ρC > 0. In this case ρX(u) =

ρC `(u). One usually models ρX and let `(u) = ρX(u)/ρC. It is also commonly assumed

that the kernel k is invariant by translation, i.e. k(u, c) = k(u − c, o) = k(u − c)

(with a slight abuse of notation) which makes X second-order reweighted stationary,

i.e. the pair correlation function of X is invariant by translation. Two well-known

examples of such processes are the inhomogeneous Matérn cluster point process and

the inhomogeneous Thomas process respectively defined with k the uniform kernel

k(u, c) = (ωdR
d)−11(‖c − u‖ ≤ R) for some finite R > 0 (where ωd is the volume of

the d-dimensional unit ball) and the d-dimensional Gaussian kernel with variance σ2Id,

for σ > 0. On the other hand and more recently, Mrkvička and Soubeyrand (2017)

model the cluster centers by an inhomogeneous Poisson point process and take ` = 1.

In this situation, if the kernel k is invariant by translation, the intensity of X writes

ρX(u) = ρC ∗ k(u) where ∗ stands for the convolution product. Our main result will be

general enough to embrace both types of inhomogeneity described above.

We now focus on innovations type functionals as defined by (2). As mentioned in

the introduction, such functionals are centered by Campbell’s Theorem. It is therefore

worth understanding how they concentrate around zero. This is investigated in the

next section.
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3. Main result

In what follows, we let W be a bounded set of Rd, ϕ be a bounded function. We

denote by ‖ϕ‖∞ = supu∈Rd |ϕ(u)|. For a nonnegative function ρ ∈ L1(W ), we let

‖ϕ‖ρ =

∫
W

|ϕ(u)|ρ(u)du.

The main result of this note is now presented.

Theorem 1. Let X be an inhomogeneous NSPP with random intensity function Λ

given by (3). Then, for any bounded measurable function ϕ : Rd → R and any t > 0,

we have

P

(
IW (X;ϕ) ≥ a1

√
2t+ a2(2t)3/4 + a3

t

3

)
≤ 3 e−t (5)

where the positive constants a1, a2 and a3 are given by

a1 =
√
‖ψ(ϕ)2‖ρC +

√
‖ϕ2‖ρX , (6)

a2 =
(
‖ψ(ϕ2)2‖ρC

)1/4 (7)

a3 = ‖ϕ‖∞ + ‖ψ(ϕ)‖∞ +
√

6‖ψ(ϕ2)‖∞. (8)

where ψ(·) is an operator acting on measurable functions on W defined for any function

h by

ψ(h)(·) =

∫
W

h(u)`(u)k(u, ·)du.

In the same vein, we have for any t > 0

P

(
|IW (X;ϕ)| ≥ a1

√
2t+ a2(2t)3/4 + a3

t

3

)
≤ 6 e−t. (9)

Proof. Since X | Λ is an inhomogeneous Poisson point process on W with intensity Λ

almost surely bounded, we can apply Reynaud-Bouret (2003, Proposition 7) and obtain

for any t > 0

P

( ∑
u∈X∩W

ϕ(u)−
∫
W

ϕ(u)Λ(u)du ≥
√

2t‖ϕ2‖Λ +
t

3
‖ϕ‖∞

∣∣∣∣Λ
)
≤ e−t
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which by denoting ∆(Λ;h) =
∫
W
h(u)Λ(u)du −

∫
W
h(u)ρX(u)du, for some bounded

measurable function h, rewrites

P

(
IW (X;ϕ) ≥ ∆(Λ;ϕ) +

√
2t (‖ϕ2‖ρX + ∆(Λ;ϕ2)) +

t

3
‖ϕ‖∞

∣∣∣∣Λ) ≤ e−t. (10)

Now, observe that ∆(Λ;h) can be rewritten in terms of the Poisson point process C

∆(Λ;h) =
∑
c∈C

ψ(h)(c)−
∫
Rd

ψ(h)(c)ρC(c)dc. (11)

Equation (11) suggests us to apply once more Reynaud-Bouret (2003, Proposition 7)

to the point process C. Doing this, we obtain for any bounded measurable function h

and t > 0

P

(
∆(Λ;h) ≥

√
2t‖ψ(h)2‖ρC +

t

3
‖ψ(h)‖∞

)
≤ e−t. (12)

Let LW (t;h) =
√

2t‖ψ(h)2‖ρC + t‖ψ(h)‖∞/3 and let us consider

F1 = {∆(Λ;ϕ) ≤ LW (t;ϕ)} and F2 = {∆(Λ;ϕ2) ≤ LW (t;ϕ2)}.

Using for an event F , the notation F̄ for the complementary event, we see that both

events satisfy P(F̄i) ≤ e−t. By combining (10) and (12) with h = ϕ, ϕ2, we get

P

(
IW (X;ϕ) ≥ LW (t;ϕ) +

√
2t(‖ϕ2‖ρX + LW (t;ϕ2)) +

t

3
‖ϕ‖∞

)
= E

(
P

(
IW (X;ϕ) ≥ LW (t;ϕ) +

√
2t(‖ϕ2‖ρX + LW (t;ϕ2)) +

t

3
‖ϕ‖∞

∣∣∣∣Λ))
= E

(
P

(
IW (X;ϕ) ≥ LW (t;ϕ) +

√
2t(‖ϕ2‖ρX + LW (t;ϕ2)) +

t

3
‖ϕ‖∞, F1 ∩ F2

∣∣∣∣Λ))
+ E

(
P

(
IW (X;ϕ) ≥ LW (t;ϕ) +

√
2t(‖ϕ2‖ρX + LW (t;ϕ2)) +

t

3
‖ϕ‖∞, F1 ∩ F2

∣∣∣∣Λ))
≤E

(
P

(
IW (X;ϕ) ≥ ∆(Λ;ϕ) +

√
2t (‖ϕ2‖ρX + ∆(Λ;ϕ2)) +

t

3
‖ϕ‖∞

∣∣∣∣Λ))+ P
(
F1 ∩ F2

)
≤3 e−t.

Equation (5) is obtained by noting that

LW (t;ϕ) +
√

2t(‖ϕ2‖ρX + LW (t;ϕ2)) +
t

3
‖ϕ‖∞ ≤ a1

√
2t+ a2

√
2t
√

2t+ a3
t

3
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where a1, a2 and a3 are given by (6)-(8). Equation (9) is easily deduced since (5) can

be applied to −ϕ.

Remark 2. We can simplify the terms appearing in the concentration inequality as

follows. To do so, we note that

‖ψ(ϕ)2‖ρC ≤ ‖ψ(|ϕ|)2‖ρC and ‖ψ(ϕ2)2‖ρC ≤ ‖ϕ‖2
∞‖ψ(|ϕ|)2‖ρC .

Similarly

‖ψ(ϕ)‖∞ ≤ ‖ψ(|ϕ|)‖∞ and ‖ψ(ϕ2)‖∞ ≤ ‖ϕ‖∞‖ψ(|ϕ|)‖∞.

Using this and the fact that
√
ab ≤ (a + b)/2 for a, b ≥ 0, we have the following

upper-bounds

a1 ≤
√
‖ψ(|ϕ|)2‖ρC +

√
‖ϕ2‖ρX

a2

√
2t
√

2t ≤
√
t‖ϕ‖∞2

√
2t‖ψ(|ϕ|)2‖ρC ≤

t

2
‖ϕ‖∞ +

√
2t
√
‖ψ(|ϕ|)2‖ρC ,

a3 ≤ ‖ϕ‖∞ + ‖ψ(|ϕ|)‖∞ +
√
‖ϕ‖∞ × 6‖ψ(|ϕ|)‖∞ ≤

3

2
‖ϕ‖∞ + 4‖ψ(|ϕ|)‖∞.

This yields that a1

√
2t+ a2

√
2t
√

2t+ a3t/3 ≤ b1

√
2t+ b2t/3 with

b1 = 2
√
‖ψ(|ϕ|)2‖ρC +

√
‖ϕ2‖ρX and b2 = 3‖ϕ‖∞ + 4‖ψ(|ϕ|)‖∞

and we finally obtain the following simpler concentration inequalities

P

(
IW (X;ϕ) ≥ b1

√
2t+ b2

t

3

)
≤ 3 e−t, P

(
|IW (X;ϕ)| ≥ b1

√
2t+ b2

t

3

)
≤ 6 e−t.

(13)

4. Almost sure behaviour of IW (X;ϕ)

As an application of the previous inequality, we now assume some increasing domain

asymptotic and establish an almost sure behaviour for innovation-type functionals.
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Proposition 3. Assume we observe X in Wn where (Wn)n≥1 is an increasing sequence

of convex bounded domains of Rd, such that Wn → Rd and such that there exists

β > 0 such that
∑

n≥1 |Wn|−β < ∞. Let X be an inhomogeneous NSPP with ker-

nel k that we assume symmetric and invariant by translation, i.e. k(u, c) = k(u −

c, o) = k(u − c) where u, c ∈ Rd and o is the origin in Rd. Finally, assume that

max(‖ϕ‖∞, ‖`‖∞, ‖ρC‖∞) <∞ , then almost surely

IWn(X;ϕ) = Oa.s.
(√
|Wn| log |Wn|

)
. (14)

Remark 4. We say that Yn = Oa.s.(an) for a sequence of random variables (Yn)n≥1 and

a sequence of real number (an)n≥1 if Yn = O(an) with probability 1 (see e.g.(Serfling,

2009, p.92)). It means that there exists a set Ω0 such that P(Ω0) = 1 such that for each

ω ∈ Ω0, there exists a constant B(ω) such that |Yn(ω)| ≤ B(ω)an for all n sufficiently

large.

Proof. We apply Theorem 1 or more simply (13) with t = tn = β log |Wn| and b1 = b1,n,

b2 = b2,n

P

(
|IWn(X;ϕ)| ≥ b1,n

√
2tn + b2,n

tn
3

)
≤ 6

|Wn|β
.

Since
∑

n≥1 |Wn|−β < ∞,
∑

n≥1 P
(
|IWn(X;ϕ)| ≥ b1,n

√
2tn + b2,n

tn
3

)
< ∞, whereby we

deduce from Borel-Cantelli’s Lemma that

IWn(X;ϕ) = Oa.s.
(
b1,n

√
tn + b2,n

tn
3

)
.

Now, by the assumptions of Proposition 3 and from (4), we deduce that ‖ρX‖∞ = O(1),

‖ϕ2‖ρX = O(|Wn|). Let us now bound ‖ψ(|ϕ|)‖∞ and ‖ψ(|ϕ|)2‖ρC . First, since k is a

density

‖ψ(|ϕ|)‖∞ ≤ ‖ϕ‖∞‖`‖∞ = O(1).

Second, by denoting rn =
∫
Wn

∫
Wn

k ∗ k(v − u)dudv

‖ψ(|ϕ|)2‖ρC =

∫
Rd

ψ(|ϕ|)2(c)ρC(c)dc

=

∫
Rd

∫
Wn

∫
Wn

ϕ(u)`(u)ϕ(v)`(v)k(u− c)k(v − c)dudvdc

≤ ‖ϕ‖2
∞‖`‖2

∞

∫
Wn

∫
Wn

∫
Rd

k(c′)k(u− v + c′)dc′dudv = O(rn).
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This yields that

b1,n

√
tn + b2,n

tn
3

= O
(√

rn log |Wn|
)

+O
(√
|Wn| log |Wn|

)
+O (log |Wn|)

= O
(√
|Wn| log |Wn|

)
.

The latter equality ensues from the fact that rn/|Wn| → 1. To see this, let us denote

A−z = {x− z for x ∈ A}. We note that using a change of variables

rn
|Wn|

=

∫
Rd

|Wn ∩ (Wn)−z|
|Wn|

k ∗ k(z)dz.

Now, by the assumptions made on the sequence (Wn)n≥1 and by David (2008, Lemma A.2)

(see also Heinrich and Klein (2011)), limn→∞ |Wn ∩ (Wn)−z|/|Wn| = 1 for any z ∈ Rd.

Hence, rn/|Wn| tends to
∫
Rd k ∗ k(z)dz = 1 since k is a density.
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