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In this note, we prove some non-asymptotic concentration inequalities for functionals, called innovations, of inhomogeneous Neymann-Scott point processes, a particular class of spatial point process models. Innovation is a functional built from the counting measure minus its integral compensator. The result is then applied to obtain almost sure rate of convergence for such functionals.

Introduction

Spatial point patterns are datasets containing random locations of some event of interest. These datasets arise in many scientific fields such as biology, epidemiology, seismology, hydrology. Spatial point processes are the stochastic models generating such data. We refer to [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF] or [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF] for an overview on spatial point processes. These references cover practical as well as theoretical aspects. The reference model is the spatial Poisson point process which models random locations of points without any interaction between points. Several alternative models exist in the literature. In this paper we are interested in the class of Neymann-Scott point process (NSPP for short), a class of models widely used in the literature to produce attractive patterns. Roughly speaking, a NSPP can be seen as a two-level model. Generate first, a set of cluster centers from a (homogeneous or inhomogeneous) Poisson point process. Such points are also sometimes called mothers.

Then, generate several (homogeneous or inhomogeneous) Poisson point processes, each being concentrated similarly around its mother. The resulting pattern formed by these offspring points is a NSPP. Due to this simple interpretation, this model has gained a lot of attention.

Let X be a spatial point process defined on R d which we view as a locally finite random set. We thus assume that X is simple which prevents two points to occur at the same location (see e.g. [START_REF] Daley | An Introduction to the Theory of Point Processes II: General theory and structure[END_REF]). We assume that X has an intensity measure ρ X . By Campbell's Theorem [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF], ρ X is characterized by the fact that for any function h :

R d → R such that hρ X ∈ L 1 (R d ): E u∈X h(u) = R d h(u)ρ X (u)du. (1) 
To prove asymptotic properties for example for estimators of a parametric form of the intensity function, one is often led to study functionals derived from Campbell's formula: these functionals are called 'innovations' in the literature [START_REF] Baddeley | Residual analysis for spatial point processes (with discussion)[END_REF][START_REF] Coeurjolly | Almost sure behavior of functionals of stationary Gibbs point processes[END_REF]. They are defined on a given domain W , with Lebesgue measure |W |, by

I W (X; ϕ) = u∈X∩W ϕ(u) - W ϕ(u)ρ X (u)du, (2) 
for some locally integrable function ϕ : R d → R. Such functionals play an important role in statistics as well as in model validation. For instance, if X is stationary and

ϕ = 1, I W (X, 1) = N (W ) -ρ|W |, so |W | -1 I W (X, 1) = ρ -ρ measures the departure
from the non-parametric estimator of ρ to ρ. For inhomogeneous point processes, such functionals are also used to define the methodology which estimates a parametric form of the intensity function and to prove asymptotic results, see e.g. [START_REF] Schoenberg | Consistent parametric estimation of the intensity of a spatialtemporal point process[END_REF]; [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous processes[END_REF]; [START_REF] Guan | A thinned block bootstrap procedure for modeling inhomogeneous spatial point patterns[END_REF].

In an increasing domain asymptotic framework, i.e. if X is observed in an increasing sequence of bounded domains (W n ) n≥1 , properties are well-understood for very large classes of point process models (which embrace NSPP): for instance |W n | -1 I Wn (X; ϕ)

converges almost surely to 0, |W n | -1/2 I Wn (X; ϕ) tends to a normal distribution, etc.

Concentration inequalities for such functionals have already been considered by Pemantle and Peres (2014) or [START_REF] Coeurjolly | Almost sure behavior of functionals of stationary Gibbs point processes[END_REF] for determinantal point processes and Gibbs point processes respectively. In this paper, we exploit general inequalities for inhomogeneous Poisson point processes obtained by [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF] (see also [START_REF] Ané | On logarithmic Sobolev inequalities for continuous time random walks on graphs[END_REF]; [START_REF] Wu | A new modified logarithmic Sobolev inequality for Poisson point processes and several applications[END_REF]; [START_REF] Breton | Dimension free and infinite variance tail estimates on Poisson space[END_REF]; [START_REF] Bachmann | Concentration bounds for geometric Poisson functionals: logarithmic Sobolev inequalities revisited[END_REF] for more general functionals) to derive non-asymptotic concentration inequalities for inhomogeneous NSPP.

Section 2 presents some additional notation and the general definition of inhomogeneous NSPP. We establish our concentration inequality in Section 3. Finally, Section 4 proposes an application of this inequality. We obtain the almost sure rate of convergence for innovation-type functionals in an increasing domain framework.

In particular, we show that for the Matérn cluster process and the Thomas process which are the two most well-used examples of (inhomogeneous) NSPP (see Section 2),

(|W n | log |W n |) -1/2 I Wn (X; ϕ) converges almost surely to 0 as n → ∞.

Spatial point processes and NSPP

Let X be a spatial point process defined on R d and let o be the origin in R d . In this note, we focus on inhomogeneous Neymann-Scott point processes which belong to the class of Cox processes, a class which is defined as follows (see e.g. [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]): let Λ = {Λ(u)} u∈R d be a nonnegative locally integrable random field defined on R d , if X conditionally on Λ is an inhomogeneous Poisson point process on R d , then X is said to be a Cox process with latent random intensity Λ. An inhomogeneous NSPP is a Cox process driven by a random field Λ of the form

Λ(u) = (u) c∈C k(u, c) (3) 
where is a locally nonnegative integrable function, where C, the process generating the mothers, is an inhomogeneous Poisson point process defined on R d with intensity function ρ C (assumed to be locally integrable) and where k :

R d × R d → R + is a kernel density function, in the sense that for any u ∈ R d , k(u, •) is a density on R d .
Using Campbell's Theorem applied to C, we obtain the intensity for X

ρ X (u) = E Λ(u) = (u) R d k(u, c)ρ C (c)dc. (4) 
Let us discuss two situations. On the one hand, usually, see e.g. [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous processes[END_REF],

C is assumed to be homogeneous with intensity parameter ρ C > 0. In this case ρ X (u) = In this situation, if the kernel k is invariant by translation, the intensity of X writes

ρ X (u) = ρ C * k(u)
where * stands for the convolution product. Our main result will be general enough to embrace both types of inhomogeneity described above.

We now focus on innovations type functionals as defined by (2). As mentioned in the introduction, such functionals are centered by Campbell's Theorem. It is therefore worth understanding how they concentrate around zero. This is investigated in the next section.

Main result

In what follows, we let W be a bounded set of R d , ϕ be a bounded function. We denote by ϕ ∞ = sup u∈R d |ϕ(u)|. For a nonnegative function ρ ∈ L 1 (W ), we let

ϕ ρ = W |ϕ(u)|ρ(u)du.
The main result of this note is now presented.

Theorem 1. Let X be an inhomogeneous NSPP with random intensity function Λ

given by (3). Then, for any bounded measurable function ϕ : R d → R and any t > 0,

we have

P I W (X; ϕ) ≥ a 1 √ 2t + a 2 (2t) 3/4 + a 3 t 3 ≤ 3 e -t (5) 
where the positive constants a 1 , a 2 and a 3 are given by

a 1 = ψ(ϕ) 2 ρ C + ϕ 2 ρ X , (6) 
a 2 = ψ(ϕ 2 ) 2 ρ C 1/4
(7)

a 3 = ϕ ∞ + ψ(ϕ) ∞ + 6 ψ(ϕ 2 ) ∞ . ( 8 
)
where ψ(•) is an operator acting on measurable functions on W defined for any function

h by ψ(h)(•) = W h(u) (u)k(u, •)du.
In the same vein, we have for any t > 0

P |I W (X; ϕ)| ≥ a 1 √ 2t + a 2 (2t) 3/4 + a 3 t 3 ≤ 6 e -t . (9) 
Proof. Since X | Λ is an inhomogeneous Poisson point process on W with intensity Λ almost surely bounded, we can apply Reynaud-Bouret (2003, Proposition 7) and obtain for any t > 0

P u∈X∩W ϕ(u) - W ϕ(u)Λ(u)du ≥ 2t ϕ 2 Λ + t 3 ϕ ∞ Λ ≤ e -t
which by denoting ∆(Λ; h) = W h(u)Λ(u)du -W h(u)ρ X (u)du, for some bounded measurable function h, rewrites

P I W (X; ϕ) ≥ ∆(Λ; ϕ) + 2t ( ϕ 2 ρ X + ∆(Λ; ϕ 2 )) + t 3 ϕ ∞ Λ ≤ e -t . (10) 
Now, observe that ∆(Λ; h) can be rewritten in terms of the Poisson point process C

∆(Λ; h) = c∈C ψ(h)(c) - R d ψ(h)(c)ρ C (c)dc. ( 11 
)
Equation ( 11) suggests us to apply once more Reynaud-Bouret (2003, Proposition 7) to the point process C. Doing this, we obtain for any bounded measurable function h

and t > 0 P ∆(Λ; h) ≥ 2t ψ(h) 2 ρ C + t 3 ψ(h) ∞ ≤ e -t . ( 12 
) Let L W (t; h) = 2t ψ(h) 2 ρ C + t ψ(h) ∞ /3
and let us consider

F 1 = {∆(Λ; ϕ) ≤ L W (t; ϕ)} and F 2 = {∆(Λ; ϕ 2 ) ≤ L W (t; ϕ 2 )}.
Using for an event F , the notation F for the complementary event, we see that both events satisfy P( Fi ) ≤ e -t . By combining [START_REF] Serfling | Approximation theorems of mathematical statistics[END_REF] and ( 12) with h = ϕ, ϕ 2 , we get

P I W (X; ϕ) ≥ L W (t; ϕ) + 2t( ϕ 2 ρ X + L W (t; ϕ 2 )) + t 3 ϕ ∞ = E P I W (X; ϕ) ≥ L W (t; ϕ) + 2t( ϕ 2 ρ X + L W (t; ϕ 2 )) + t 3 ϕ ∞ Λ = E P I W (X; ϕ) ≥ L W (t; ϕ) + 2t( ϕ 2 ρ X + L W (t; ϕ 2 )) + t 3 ϕ ∞ , F 1 ∩ F 2 Λ + E P I W (X; ϕ) ≥ L W (t; ϕ) + 2t( ϕ 2 ρ X + L W (t; ϕ 2 )) + t 3 ϕ ∞ , F 1 ∩ F 2 Λ ≤ E P I W (X; ϕ) ≥ ∆(Λ; ϕ) + 2t ( ϕ 2 ρ X + ∆(Λ; ϕ 2 )) + t 3 ϕ ∞ Λ + P F 1 ∩ F 2 ≤3 e -t .
Equation ( 5) is obtained by noting that

L W (t; ϕ) + 2t( ϕ 2 ρ X + L W (t; ϕ 2 )) + t 3 ϕ ∞ ≤ a 1 √ 2t + a 2 2t √ 2t + a 3 t 3 6
where a 1 , a 2 and a 3 are given by ( 6)-( 8). Equation ( 9) is easily deduced since (5) can be applied to -ϕ.

Remark 2. We can simplify the terms appearing in the concentration inequality as follows. To do so, we note that

ψ(ϕ) 2 ρ C ≤ ψ(|ϕ|) 2 ρ C and ψ(ϕ 2 ) 2 ρ C ≤ ϕ 2 ∞ ψ(|ϕ|) 2 ρ C . Similarly ψ(ϕ) ∞ ≤ ψ(|ϕ|) ∞ and ψ(ϕ 2 ) ∞ ≤ ϕ ∞ ψ(|ϕ|) ∞ .
Using this and the fact that √ ab ≤ (a + b)/2 for a, b ≥ 0, we have the following upper-bounds

a 1 ≤ ψ(|ϕ|) 2 ρ C + ϕ 2 ρ X a 2 2t √ 2t ≤ t ϕ ∞ 2 2t ψ(|ϕ|) 2 ρ C ≤ t 2 ϕ ∞ + √ 2t ψ(|ϕ|) 2 ρ C , a 3 ≤ ϕ ∞ + ψ(|ϕ|) ∞ + ϕ ∞ × 6 ψ(|ϕ|) ∞ ≤ 3 2 ϕ ∞ + 4 ψ(|ϕ|) ∞ .
This yields that a

1 √ 2t + a 2 2t √ 2t + a 3 t/3 ≤ b 1 √ 2t + b 2 t/3 with b 1 = 2 ψ(|ϕ|) 2 ρ C + ϕ 2 ρ X and b 2 = 3 ϕ ∞ + 4 ψ(|ϕ|) ∞
and we finally obtain the following simpler concentration inequalities

P I W (X; ϕ) ≥ b 1 √ 2t + b 2 t 3 ≤ 3 e -t , P |I W (X; ϕ)| ≥ b 1 √ 2t + b 2 t 3 ≤ 6 e -t . (13) 
4. Almost sure behaviour of I W (X; ϕ)

As an application of the previous inequality, we now assume some increasing domain asymptotic and establish an almost sure behaviour for innovation-type functionals.

Proposition 3. Assume we observe X in W n where (W n ) n≥1 is an increasing sequence of convex bounded domains of R d , such that W n → R d and such that there exists

β > 0 such that n≥1 |W n | -β < ∞.
Let X be an inhomogeneous NSPP with kernel k that we assume symmetric and invariant by translation, i.e. k(u, c) Proof. We apply Theorem 1 or more simply (13) with t The latter equality ensues from the fact that r n /|W n | → 1. To see this, let us denote

= k(u - c, o) = k(u -c) where u, c ∈ R d and o is the origin in R d . Finally, assume that max( ϕ ∞ , ∞ , ρ C ∞ ) < ∞ , then almost surely I Wn (X; ϕ) = O a.s. |W n | log |W n | . ( 14 
= t n = β log |W n | and b 1 = b 1,n , b 2 = b 2,n P |I Wn (X; ϕ)| ≥ b 1,n √ 2t n + b 2,n t n 3 ≤ 6 |W n | β . Since n≥1 |W n | -β < ∞, n≥1 P |I Wn (X; ϕ)| ≥ b 1,n √ 2t n + b 2,n tn 
A -z = {x -z for x ∈ A}. We note that using a change of variables

r n |W n | = R d |W n ∩ (W n ) -z | |W n | k * k(z)dz.
Now, by the assumptions made on the sequence (W n ) n≥1 and by David (2008, Lemma A.2) (see also [START_REF] Heinrich | Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes[END_REF] 
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 3 ∞, whereby we deduce from Borel-Cantelli's Lemma thatI Wn (X; ϕ) = O a.s. b 1,n √ t n + b 2,n t n 3 .Now, by the assumptions of Proposition 3 and from (4), we deduce that ρ X ∞ = O(1),ϕ 2 ρ X = O(|W n |). Let us now bound ψ(|ϕ|) ∞ and ψ(|ϕ|) 2 ρ C . First, since k is a density ψ(|ϕ|) ∞ ≤ ϕ ∞ ∞ = O(1).Second, by denoting rn = Wn Wn k * k(v -u)dudv ψ(|ϕ|) 2 ρ C = R d ψ(|ϕ|) 2 (c)ρ C (c)dc = R d Wn Wn ϕ(u) (u)ϕ(v) (v)k(u -c)k(v -c)dudvdc ≤ ϕ 2 ∞ 2 ∞ Wn Wn R d k(c )k(u -v + c )dc dudv = O(r n ). n log |W n | + O |W n | log |W n | + O (log |W n |) = O |W n | log |W n | .

)

  Remark 4. We say that Y n = O a.s. (a n ) for a sequence of random variables (Y n ) n≥1 and a sequence of real number (a n ) n≥1 if Y n = O(a n ) with probability 1 (see e.g.(Serfling, 2009, p.92)). It means that there exists a set Ω 0 such that P(Ω 0 ) = 1 such that for each

ω ∈ Ω 0 , there exists a constant B(ω) such that |Y n (ω)| ≤ B(ω)a n for all n sufficiently large.

  ), lim n→∞ |W n ∩ (W n ) -z |/|W n | = 1 for any z ∈ R d . Hence, r n /|W n | tends to R d k * k(z)dz = 1 since k is a density.