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Abstract. A few papers relate that multi-channel consideration can be
beneficial for side-channel analysis. However, all were conducted using
classical attack techniques. In this work, we propose to explore a multi-
channel approach thanks to machine/deep learning. We investigate two
kinds of multi-channel combinations. Unlike previous works, we investi-
gate the combination of EM emissions from different locations capturing
data-dependent leakage information on the device. Additionally, we con-
sider the combination of the classical leaking signals and a measure of
mostly the ambient noise. The knowledge of the ambient noise (due to
WiFi, GSM, . . . ) may help to remove it from a noisy trace. To investigate
these multi-channel approaches, we describe one option of how to extend
a CNN architecture which takes as input multiple channels. Our results
show that multi-channel networks are suitable for side-channel analysis.
However, if one channel alone already contains enough exploitable infor-
mation to reach high effectiveness, naturally, the multi-channel approach
cannot improve the performance further.

Keywords: Side-channel analysis, profiled attacks, deep learning, power con-
sumption, electromagnetic emanations, multi-channel, neural networks

1 Introduction

Since the end of the second world war and the breaking of ENIGMA, cryptog-
raphy has moved to a new age. Modern standards such as RSA, DSA, AES or
SHA-3 have been the subject of an extensive cryptanalysis effort to assess their
security. Nowadays, breaking a product security by finding a theoretical flaw in
the cryptography it uses is highly unlikely (except for proprietary cryptogra-
phy). On the contrary, finding a bug in some cryptographic code, exploiting a
misuse of a cryptographic scheme or leveraging the physical implementation of
a cryptographic primitive are attack paths that are frequently used. The former
one has been introduced as side-channel attacks by Kocher et al. in [10] where
the power consumption of some cryptographic device was monitored to recover
the secret key.

Since its introduction at the end of the 90’s, the idea of exploiting side-
channel information observed from a cryptographic device has grown using dif-
ferent physical quantities such as e.g. time, heat, power, electromagnetic field,
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photon emission, sound. While for most of them the attacker needs a physical
access to the target device, this threat model is not overlooked. Defense against
these attacks can be found in smart-cards, set-top boxes, video games consoles
or smartphones for instance.

The main challenge for a designer is to determine whether his device is secure
up to the level he targeted. Put another way: for a given attacker power, is it
possible to break the security of his product? To do so the designer can send his
device to evaluation labs that are in charge of making tests to provide evidences
of its security level to a certification body.

For a civilian use, products do not need a very high level of security or at least
not for a very long time (the lifetime of a smart-card is not more than five years).
At the opposite, defense industry is making security products that will be used
for tens of years once deployed. Moreover, while a set-top box will at worst be
attacked by a mafia organization, military encryption engines may be challenged
by high level state agencies. Thus, in the defense setting, the knowledge of what
an attacker can do with a given computational power is even more crucial.

Hopefully, it is possible to mitigate side-channel attacks using different kind
of techniques. In a nutshell, they either reduce the sensitive signal level, increase
the surrounding noise or complicate the links between the signal and the sensitive
data. Moreover, the current trend of increasing the chip complexity (many-cores,
caches, speculative execution, . . . ) while making sometimes new security holes
is adding pitfalls to the exploitation of side-channel information.

A new trend in side-channel is to explore machine learning (ML) tools. This
tools may help in solving problems as trace misalignment or high dimension data.
In this paper we present first experiments on the use of ML tools for combining
measures from various sources. More precisely, we explore the opportunity of
gathering information of different types of electromagnetic probes, from electro-
magnetic probes at different positions or by combining a signal and a pure noise
measure hoping that it may help in removing the noise in the second signal.

2 State-of-the-Art on machine and deep learning
techniques for SCA

The first works using machine learning techniques in side-channel analysis showed
that Support Vector Machines (SVM) and Random Forests (RF) are effective
profiled side-channel attacks [11, 8]. Indeed, template attacks have been shown
to be optimal from an information theoretic point of view [6], however, when the
set of measurements in the profiling phase is limited SVM can be more efficient
due to the underlying estimation problem [7].

More recently, deep learning techniques have shown to be even more advan-
tageous in several settings. Using the advantages from deep learning in side-
channel analysis is becoming a very “fruitful” topic, with newly published works
very frequently. Still, of how to use the full potential combined with a deeper
understanding of how to use deep learning for side-channel analysis may not
have been developed yet.
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The first work [13] showed that when an implementation is protected with
a masking countermeasures neural networks are able to reveal sensitive key in-
formation even without the need of a higher order combination function [15] or
an additional step of points of interest selection. Due to the use of convolutions
exploitable points of interests are combined and it is possible to perform the
attack even without specifying leakage models related to the masking scheme.

Shortly after the introduction of deep learning techniques for side-channel
analysis, a database of side-channel measurements (called ASCAD) has been
published [16] to facilitate comparable research works in this direction. The
database consists of EM measurements of an AES-128 implementation pro-
tected with a masking countermeasure. Furthermore, the authors provide a soft-
ware tool to artificially add a random delay countermeasure. Together with the
database the authors provide a study of neural networks architectures and pa-
rameter selections.

On the same lines as against masking countermeasures, it has been shown
that neural networks are extremely effective against random delay countermea-
sures [4]. Again, due to the use of convolutions many types of shuffling and
random delays are becoming less effective to be used as side-channel protection.

Moreover, to even strengthen profiled side-channel attacks based on neural
networks, recent works showed techniques to further improve their attacking
strength. The authors in [4] highlighted that data argumentation techniques, i.e.
the addition of artificial data, is significantly improving the success of an attack
when shuffling (jitter-based) protections are present. In the machine learning
domain, and particularly, for deep learning, the problem of overfitting to given
data in the learning phase, is a crucial problem. In [9] the authors showed that
indeed overfitting may also be a problematic in side-channel analysis, and they
showed that adding zero-mean Gaussian noise is helping to generalize the de-
rived model in the training phase. Using this simple trick, which works without
adding additional data, the authors could improve the success of the attacks,
and stabilize performances over multiple folds.

In previous works deep learning techniques have been treated mostly as black
box techniques. In [14] the authors describe a gradient visualization tool that
aims to proceed a post-mortem information leakage characterization after the
successful training of a neural network. Using their approach it is possible to
visualize which points of interests neural networks are utilizing.

A practical parameter selection guide is given in [12], i.e. the author provides
some recommendations and practical hints to either enhance the efficiency from
an adversary’s perspective or to strengthen the resistance of the cryptographic
implementations against these attacks from a security developer’s perspective.
Another realistic real-world study has been performed in [3], and similarly in [5,
19]. The works investigated the scenario when in fact the profiling and the at-
tacking device is different (to some extend), which is relevant in practice, but
not always studied in research.

As highlighted, deep learning techniques, and in particular, convolutional
neural networks, have been applied, studied, and enhanced for side-channel anal-
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ysis. However, there is still potential that has not been explored yet. We describe
a novel approach in the next section that models a stronger attacker and there-
fore provides a more realistic security assessment.

3 Combination of multiple sources for SCA

3.1 Motivation

A limited number of works analysed the advantage of using multiple sources
of side-channel information at once and compared these to mono-channel at-
tacks [18, 2, 20]. In particular, the first work on multi-channel attacks compared
the use of power and EM leakage in order to determine what channel provides
more information than the other one [18]. The comparison was made with dif-
ferent types of template attacks to evaluate the information theoretic impact. It
was shown that when combining the power signal with EM emission, one channel
improves the weaknesses of the other one. In [2] the authors provided a broader
overview of side-channel analysis using multi-channels. The main contribution [2]
was to present a new metric in order to select the channels which are suitable
for combination and which channels do not require additional knowledge of the
key. The authors in [20] show that template attacks using multi-channels (both
an EM channel and a power signal) are superior to attacks that use only a single
channel (on CMOS device). Interestingly, this does not hold for unprofiled DPA.

These works provided evidence that the consideration of multi-channels can
be beneficial for side channel analysis However, all previous studies used tradi-
tional techniques (e.g. template attack, DPA). Given the advantages of machine
and deep learning techniques in SCA (see Sect. 2) our approach consists of deriv-
ing multi-channel machine and deep learning techniques. This allows us to make
use of the information provided from multi-channels as well as the advantages
given from machine/deep learning techniques. We are extending the approach
of multi-channels also to different EM locations. This is detailed in the next
subsection.

3.2 Approach

Combining EM from different locations may have various reasons as we detail
next. Clearly, with a fine-grained probe the captured EM leakage may be very
localized such that the measured side-channel information only reflects partic-
ular parts of the processed program or particular hardware (e.g. RAM) during
the execution. Thus, combining different localized EM measurements may com-
plement each other and therefore provide additional information. Besides that,
another direction is to particularly concentrate not on leakage related to data,
but to measure “pure” noise. Therefore we obtain measurement traces capturing
exploitable data dependent leakages and one set of measurement traces captur-
ing noise. Having additional noise measurement traces then allows to combine
both sources. Another approach, which we leave for future work, is to preprocess
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the data dependent leakage measurement traces first. For example, one straight-
forward preprocessing step constitutes in noise subtraction, i.e. data dependent
leakage minus noise measurement trace.

Additionally to measuring multiple EM locations, another approach consti-
tutes in measuring EM locations as well as power consumption. In this work, we
purely use EM channels, but we consider the extension to power signal (or any
other physical quantity) as future work.

3.3 Multi-channel setup

We were not able to reproduce the exact same setup as the one used for producing
the ASCAD dataset but we tried to be the closest as possible to it. The target
we used for experiments is a raw AtMega8515 micro-controller on the AVR
STK500 platform4. We used the same AES-128 encryption than the one from
ASCAD which is protected using a masking countermeasure [1], the compiler
optimization flag was set to -O0 but we did not embedded the SOSSE operating
system. The chip frequency were set to 3.686MHz.

The measurements were obtained using different Langer near-field EM probes
(two RF-B 0,3-3 and one RF-K 7-4) connected to 30dB amplifiers the overall
having a bandwidth maximum frequency of 3GHz. The signal were then digitized
by an RTO2014 oscilloscope from Rohde & Schwarz having a bandwidth of 1GHz
(thus being the limiting element of the chain).

Fig. 1: Multi-channel experiment setup

We focused on the first AES round with a sampling frequency of 1Gs per
second and obtained traces containing 20K samples.

4 For ASCAD a smart-card embedding this micro-controller has been used.
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The main two differences between our setup and the one from [16] are

1. the fact that we use a raw micro-controller on a development board instead
of a smart-card,

2. the measurement of EM radiations instead of power consumption.

We observed that the leakages we obtained have a different behavior than
the one reported in [16], that is different time locations but also different signal
powers. However, we obtained similar leakages for the most informative part of
he signal (later denoted as P4 see Section 3.5).

3.4 CNN architecture

ASCAD network The first deeply studied neural networks was introduced
in [16] and is commonly called ASCAD network. Its network architecture was
chosen through exhaustive evaluation of design principles and parameters. The
best performing network (from their selection) was relying on the architecture
of VGG-16 [17] with 5 blocks and 1 convolutional layer by block, a number of
filters equal to (64, 128, 256, 512, 512) with kernel size 11 (same padding), ReLU
activation functions and an average pooling layer for each block. The CNN has 2
final dense layers of 4 096 units. In our study we are using this network as a base
for extension (see next subsection) and for experiments when only one channel
is selected.

Multi-channel ASCAD network In this work, we extend the 1D data rep-
resentation by another dimension similarly as it is commonly used for images
classification with RGB images. Therefore instead of one D input signal, the
network has s input layers each consisting of D points. Each input layer s repre-
sents the data measurement by one probe. We developed two additional neural
networks: for two channels and three channels. The basic parts of the architec-
ture for the three neural networks is kept identical, except the shape of input
layer. In particular, the first architecture takes a frame of 700 points of interest
(PoI) with one dimension (equal to the measurement of one probe), the second
architecture takes a frame of 700 PoI with two dimensions (equal to the mea-
surement of two probes) and the third architecture takes a frame of 700 PoI with
three dimensions (equal to the measurement of all probes) as input.

3.5 Experimental results

Metrics To evaluate the amount of leakage, the ability to classify different
labels, and to retrieve the key, we use the signal-to-noise-ratio (SNR), the accu-
racy (acc), the loss, and the guessing entropy (GE). Let X denote the captured
EM measurement for one channel, let Y be the label that is determined by the
plaintext P and the secret fixed key k∗, then we define the metrics as follows.



Combining sources of side-channel information 7

– The SNR gives the ratio between the deterministic data-dependent leakage
and the remaining noise, i.e.

SNR =
Var(E(X|Y )

E(Var(X|Y )
, (1)

where E(·) is the expectation and Var(·) the variance of a random variable.
– The accuracy gives the mean of correctly classified labels. For a set of m

measurement traces x1, . . . , xm let y1, ..., ym be the corresponding correct
label, and ŷ1, . . . , ŷm be the label predicted by the classifier, then

acc =
1

m

m∑
i=1

1yi=ŷi
. (2)

– As a loss function L(y, ŷ), the categorical cross-entropy is used. Let |Y | be
the amount of labels and let p̂i,j with 1 ≤ i ≤ m and 1 ≤ j ≤ |Y | be the
probability that the classifier is predicting the i-th measurement with the
label j, then

L = −
|Y |∑
j=0

m∑
i=1

(1yi,j=j) · log(p̂i,j)). (3)

– The guessing entropy gives the ranking of the secret key k∗ within a vector
of key guesses. In particular, the vector of key guesses gi,1, . . . , gi,|K| for the
ith measurement is calculated by mapping each key guess k to a label j with
probability p̂i,j and applying the maximum-likelihood principle over 1 to m.
The guessing entropy (aka rank) is then the position of the secret key k∗ in
the sorted vector of key guess, where the sorted is applied to the probabilities
in descending order. In other words, the guessing entropy gives the amount
of key guesses an attacker needs to perform before he reveals the secret key.
In case his first guess is the secret key GE = 0.

Leakage models In this work, we concentrate on the following mappings (leak-
age models) between the key and the label:

– In the first model (P4) we target the masked substitution output after the
substitution operation (SBox)5:

y = SBox(tb ⊕ k)⊕mb, (4)

with tb being the plaintext byte 2 and the m being the mask of byte 2.
– additionally we target the masked substitution output (P2)6:

y = SBox(tb ⊕ k)⊕mout, (5)

For more details on the leakage models we refer to [16].

5 This leakage model corresponds to snr4 in [16].
6 This leakage model corresponds to snr2 in [16].
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Cross-validation In order to have a more reliable estimation of the per-
formance of our neural network with different channels (one, two and three
channels), we decide to use cross-validation. K-fold cross-validation is a com-
mon model validation tool used in machine learning, which randomly splits the
dataset into k folds, i.e.:

1. Split randomly the original samples X and their corresponding labels Y into
k subsets.

2. Take k − 2 sets as training Xtraining and 1 as validation set Xvalidation and
1 as 1 test set Xtest.

3. Train the model on Xtraining.
4. Evaluate the performance of the model with a metric (e.g. accuracy, cross-

entropy loss) on Xvalidation.
5. Test the performance on Xtest (e.g. compute guessing entropy).

In this work, we use k-fold cross-validation with k equal to 10.

Evaluation We exemplary show a measurement trace for each of the three
channels in Fig. 2. Recall that the probe on channel 1 and 2 (EM1,EM2) are
placed to capture data-dependent leakage signals, whereas channel 3 (EM3) is
capturing mostly noise. Moreover, EM1 and EM2/EM3 are different types of
probes, which explains the different amplitude as well.

Fig. 2: Measurement trace from each of the three channels

This is confirmed in Fig. 3 showing the SNRs for EM2, EM3, EM4 and the
previously defined leakage models. One can see that EM2 provides higher SNRs
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levels then EM3, and EM4, however, the leakage positions in time are consistent.
Note that, even though EM4 is very noisy one can still observe minor leakages
of P4.

(a) EM2

(b) EM3

(c) EM4

Fig. 3: SNR evaluation for each leakage model, zoom in into considered time
frame on the left
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(a) 1 channel

(b) 2 channels

(c) 3 channels

Fig. 4: Accuracy during validation (left: P2, right: P4)

Next, in Figs. 4a-4c we show the accuracy in the validation step for each
fold using one, two, and all three channels for each of the leakage models. Ad-
ditionally, we plot the mean value over all folds in black. In general, one can
observe that the validation accuracy for P2 rises quicker than for P4, while P4
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has a higher accuracy value. Further, for both leakage models all channels (one,
two or three) are behaving similarly with a very minor advantage using 3 chan-
nels. This indicates that the information provided by the first channel is already
sufficient in our considered scenario.

(a) 1 channel

(b) 2 channels

(c) 3 channels

Fig. 5: Guessing entropy (rank), left: P2, right: P4
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Figure 5 shows the guessing entropy for all three channel options. Like ac-
curacy we see a similar behavior between one, two, and three channels. Leakage
model P4 is performing slightly better than P2, which can be explained due to
the higher SNR value of P4. Again this indicates that in our considered scenario
the information given with one channel is sufficiently high. Indeed, even with
one channel the attack is able to achieve a guessing entropy below 5 within only
two traces.

4 Conclusion

In this work we motivated the use of multi-source side-channel attacks and its fea-
sibility in this context. We investigated the combination of two data-dependent
leakage channels, and the combination with three channels where one channel
was mostly capturing ambient noise. Our results show that in our measurement
setup using one channel and the previously introduced ASCAD network we are
able to reach a guessing entropy below 5 using only 2 traces. Indeed, in this
setup the multi-channel approach does not increase the performance further as
one channel is already providing enough information. Furthermore, we do not
observe a clear different when adding a third channel which mostly captures a
noise signal.

We see several potential directions for future work. We would like to study:

– investigation in the scenario where one channel is not yet providing enough
information to build an efficient attack model,

– the combination of multiple leakage sources (e.g power consumption with
EM),

– analysis of different probe positions,
– different neural network architectures.

References

1. https://github.com/ANSSI-FR/secAES-ATmega8515
2. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel attacks. In: Walter, C.D., Koç,
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