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Compound Regularization of Full-waveform
Inversion for Imaging Piecewise Media

Hossein S. Aghamiry, Ali Gholami, Stéphane Operto,

Abstract—Full waveform inversion (FWI) is an iterative nonlin-
ear waveform matching procedure, which seeks to reconstruct un-
known model parameters from partial waveform measurements.
The nonlinear and ill-posed nature of FWI requires sophisticated
regularization techniques to solve it. In most applications, the
model parameters may be described by physical properties (e.g.,
wave speeds, density, attenuation, anisotropy) which are piecewise
functions of space. Compound regularizations are thus benefi-
cial to capture these different functions by FWI. We consider
different implementations of compound regularizations in the
wavefield reconstruction inversion (WRI) method, a formulation
of FWI that extends its search space and prevents the so-
called cycle skipping pathology. Our hybrid regularizations rely
on Tikhonov and total variation (TV) functionals, from which
we build two classes of hybrid regularizers: the first class is
simply obtained by a convex combination (CC) of the two
functionals, while the second relies on their infimal convolution
(IC). In the former class, the model parameters are required to
simultaneously satisfy different priors, while in the latter the
model is broken into its basic components, each satisfying a
distinct prior (e.g. smooth, piecewise constant, piecewise linear).
We implement these compound regularizations in WRI using
the alternating direction method of multipliers (ADMM). Then,
we assess our regularized WRI for seismic imaging applications.
Using a wide range of subsurface models, we conclude that the
compound regularizer based on IC leads to the lowest error in the
parameter reconstruction compared to that obtained with the CC
counterpart and the Tikhonov and TV regularizers when used
independently.

I. INTRODUCTION

FULL waveform inversion (FWI) seeks to estimate consti-
tutive parameters by nonlinear minimization of a distance

between recorded and simulated wavefield measurements. This
technology was originally developed in geophysical imaging
[1], and has spread more recently into other fields of imaging
sciences such as medical imaging [2] and oceanography [3].
This partial-differential equation (PDE)-constrained nonlinear
inverse problem is classically solved with local reduced-space
optimization methods [4]. In this linearized framework, a
challenging source of non linearity is the so-called cycle
skipping pathology which occurs when the initial model does
not allow to match the data with a kinematic error smaller
than half a period [5], [6]. Other sources of error are noise,
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approximate wave physics and ill-posedness resulting from
parameter cross-talk, coarse acquisition sampling and uneven
illumination of the targeted structure. Designing regularization
techniques that mitigate these source of errors is therefore a
key challenge for the success of FWI applications.

A proper regularization should be driven by the shape
and statistical characteristics of the medium to be imaged.
For example, in geophysical imaging, the subsurface can be
represented by a piece-wise smooth medium, that is a model
which contains smoothly varying and blocky components. The
widespread Tikhonov regularizations [7] rely on the smooth-
ness assumption and hence fail to recover sharp interfaces
of such media. Conversely, first order total variation (TV)
regularizations [8] are based on a blockiness assumption and
hence are more suitable to image large contrasts. However,
they generate undesirable staircase imprints in smooth regions
[13]. Hereafter we refer TV to as first order TV regularization,
unless we explicitly mention the order of the TV regular-
ization. Regions characterized by smoothly-varying properties
and those containing sharp contrasts have different statistical
properties. The former are characterized by the normal prior,
while the latter by a heavy tailed prior [9]. Consequently,
simultaneous recovery of both properties is difficult when
one type of regularization is used (Tikhonov, TV, etc). To
overcome this issue, a combination of different regularizations
can be used [10], [11], [12]. A naive approach consists of
the simple additive coupling or convex combinations (CC)
of regularizations. Alternatively, [13] proposed to explicitly
decompose the model into several components of different
statistical properties and use an appropriate regularization to
reconstruct each component. Using this strategy, they com-
bined Tikhonov and TV regularizations (referred to as TT
regularization) to reconstruct piece-wise smooth media. The
smooth components are captured by the Tikhonov regular-
ization, while the blocky ones are determined by the TV
counterpart. In many applications, it has been shown that a
compound regularization based upon infimal convolution (IC)
outperforms the one based upon additive coupling [14].

TT regularization based upon IC has been successfully ap-
plied to FWI for seismic subsurface imaging in the framework
of iteratively-refined wavefield reconstruction inversion (IR-
WRI) [15]. IR-WRI extends the search space of FWI and
decreases cycle skipping through a relaxation of the wave-
equation constraint [16], [17], [18]. Taking advantage of the
bilinearity of the wave equation, IR-WRI breaks down FWI
into two linear subproblems which are solved in an alternating
mode: wavefield reconstruction driven by the observables and
model-parameter estimation by minimization of the source
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residuals the relaxation generated. Furthermore, [19] extended
the method to acoustic multiparameter inversion. The linearity
of the parameter-estimation subproblem provides a suitable
framework to implement sophisticated nonsmooth regulariza-
tions.

In this study, following [13] and [15], we develop a gen-
eral framework to combine a couple of regularization terms
in IR-WRI through IC. Then, we specifically develop this
framework for Tikhonov and TV regularizations, which are
suitable for seismic subsurface imaging applications. Com-
pared to [15], we jointly update the blocky and the smooth
components through a variable projection process rather than
in an alternating mode. We first show that our new IC-based
TT regularization outperforms the CC-based counterpart with
several well-documented numerical benchmarks in the field of
seismic imaging. We also compare the results obtained with
these two TT regularizations with those obtained with total
generalized variation (TGV) regularization, a combination of
first and second order TV, and those obtained with Tikhonov
and TV regularizations when used independently.

II. NOTATION

The mathematical symbols adopted in this paper are as
follows. We use italics for scalar quantities, boldface lowercase
letters for vectors, and boldface capital letters for matrices and
tensors. We use the superscript T to denote the adjoint of an
operator. The ith component of the column vector x is shown
by xi and its absolute value is returned by |xi|. For the real-
valued n-length column vectors x and y the dot product is
defined by 〈x,y〉 = xTy and their Hadamard product, denoted
by x ◦ y, is another vector made up of their component-wise
products, i.e. (x ◦y)i = xiyi. The `2- and `1-norms of x are,
respectively, defined by ‖x‖2 =

√
〈x,x〉 =

√∑n
i=1 |xi|2 and

‖x‖1 =
∑n
i=1 |xi|.

III. METHOD

In this section, we briefly review the frequency-domain FWI
as a bi-convex feasibility problem and describe the extended
forms of FWI. We show how the problem can be solved with
the alternating direction method of multipliers (ADMM) [20]
for a general regularization function.

A. Full-waveform inversion

Frequency-domain FWI with a general regularization term
and bounding constraints can be formulated as [17], [21]

min
u,m∈C

Φ(m)

subject to A(m)u = b,

Pu = d,

(1)

where m ∈ Rn×1 gathers unknown squared slowness, n is
the number of discrete grid points, Φ(m) is an appropriate
regularization term which we assume to be convex, C = {x ∈
Rn×1 | ml ≤ x ≤ mu} is the set of all feasible models
bounded by the lower bound ml and the upper bound mu.

The first constraint in (1), A(m)u = b, is a partial-
differential equation (PDE) wherein u ∈ Cn×1 is the wavefield

and b ∈ Cn×1 is the source term. In this study, A(m) ∈ Cn×n
is the discretized PDE Helmholtz operator [22], [23] given by

A(m) = ∆ + ω2C(m)diag(m)B, (2)

with ω the angular frequency and ∆ the discretized Laplace
operator. The diagonal matrix C embeds boundary conditions
and can be dependent or independent on m depending on
the kinds of absorbing boundary conditions (radiation versus
sponge) [17]. Also, B is used to spread the mass term
ω2C(m)diag(m) over all the coefficients of the stencil to
improve its accuracy following an anti-lumped mass strategy
[24], [25], [26].

The second constraint in (1), Pu = d, is the observation
equation, in which d ∈ Cm×1 is the recorded seismic data,
m is the number of recorded data and P ∈ Rm×n is a linear
operator that samples the wavefield at the receiver positions.

1) WRI approach to solving (1): The extended approach,
known as wavefield reconstruction inversion (WRI) [16], re-
casts the constrained optimization problem, equation (1), as
an unconstrained problem where both constraints are imple-
mented with quadratic penalty functions.

min
u,m∈C

Φ(m) +
λ0
2
‖Pu− d‖22 +

λ1
2
‖A(m)u− b‖22, (3)

where λ0, λ1 > 0 are the penalty parameters. For the un-
regularized case where Φ(m) = 0 and also without the
bounding constraint, [16] solved this biconvex minimization
problem with an alternating-direction algorithm, whereby the
joint minimization over u and m is replaced by an alternating
minimization over each variable separately. The main property
of the penalty formulation given by equation (3) is that the
PDE constraint in the original problem is replaced by a
quadratic penalty term, which enlarges the search space and
mitigates the inversion nonlinearity accordingly [16]. Its main
drawback, however, is the difficulty related to the adaptive
tuning of the penalty parameter, which is common to all
penalty methods [27].

2) IR-WRI approach to solving (1): To overcome the above
limitation, the iteratively-refined WRI (IR-WRI) implements
the original constrained problem (1) with the augmented
Lagrangian (AL) method [27], [28].

min
u,m∈C

max
v0,v1

Φ(m) +
λ0
2
‖Pu− d‖22 +

λ1
2
‖A(m)u− b‖22

+ vT0 [Pu− d] + vT1 [A(m)u− b],
(4)

where v0 ∈ Cm×1 and v1 ∈ Cn×1 are the dual variables (the
Lagrangian multipliers). The min-max problem (4) can also
be written in a more compact form (the scaled form AL) as

min
u,m∈C

max
v0,v1

Φ(m) +
λ0
2
‖Pu− d +

1

λ0
v0‖22 −

λ0
2
‖v0

λ0
‖22

+
λ1
2
‖A(m)u− b +

1

λ1
v1‖22 −

λ1
2
‖v1

λ1
‖22.

(5)

Applying a gradient ascent to (5) with respect to the duals,
after a simple change of variables dk = −vk0/λ0 and bk =
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−vk1/λ1, gives the following iteration:

min
u,m∈C

Φ(m) +
λ0
2
‖Pu− d− dk‖22

+
λ1
2
‖A(m)u− b− bk‖22,

dk+1 = dk + d−Pu,

bk+1 = bk + b−A(m)u,

(6)

beginning with d0 = 0 and b0 = 0. Capitalizing on the
bilinearity of the wave equation in m and u, ADMM [20] is a
powerful method to solve this kind of multivariate optimization
problem. ADMM updates m and u separately through a
Gauss-Seidel like iteration, i.e., fixing m and solving for u
and vice versa. Accordingly, beginning with an initial guess
m0, we end up with the following iteration to solve (6) [17],
[21]:

uk+1 = arg min
u

∥∥∥∥
[√

λ0

λ1
P

A(mk)

]
u−

[√
λ0

λ1
(d + dk)

b + bk

]∥∥∥∥2
2

(7a)

mk+1 = arg min
m∈C

Φ(m) +
λ1
2
‖A(m)u

k+1 − b− bk‖22,

(7b)

dk+1 = dk + d−Puk+1, (7c)

bk+1 = bk + b−A(mk+1)uk+1. (7d)

The subproblem (7a) associated with the wavefield recon-
struction is quadratic and admits a closed-form solution. It
relaxes the requirement to satisfy exactly the wave equation
(A(mk)u = b) for the benefit of improved data fitting
(Pu = d). This is achieved by reconstructing the wavefields
that best jointly fit the observations and satisfy the wave
equation in a least-squares sense. While wavefields generated
by the reduced approach (Appendix A) satisfy exactly the
wave equation, ur = A(mk)−1b, this makes classical FWI
highly non-convex.

Equation (6) shows that the duals are updated with the
running sum of the data and source residuals in iterations
and are used to update the right-hand sides in the penalty
functions of the scaled AL. These error correction terms in the
AL method are the key ingredients that allow for a constant
penalty parameter to be used in iterations, while guaranteeing
convergence to accurate minimizer [27]. In the next section
we focus on the solution of the model subproblem (7b) when
compound regularizations are used as the regularization term.

IV. THE MODEL SUBPROBLEM

This section presents compound regularization functionals
and the details of our approach to solve the model subproblem
(7b) with these functionals.

A. Compound regularizers

Simple regularizers, Appendix B, are effective for recov-
ering models which can be characterized by a single prior

and structure e.g. smooth, blocky, piecewise linear, etc. The
compound regularizers are more effective for recovering com-
plicated models that are represented by more than one prior.
They are constructed by combining two or more separate
simple regularizers. This can be done by either a convex
combination (CC) or an infimal convolution (IC).

1) Convex combination of simple regularizers: A CC of
r simple regularizer functionals Φ1, ...,Φr is a compound
regularizer functional of the form

Φα(x) = α1Φ1(x) + ...+ αrΦr(x), (8)

where weights αi satisfy αi ≥ 0 and

α1 + α2, ...,+αr = 1. (9)

Definitely, if all of the functions Φ1, ...,Φr are convex then
Φ is so. In CC models, the regularized solution is forced to
satisfy the individual priors simultaneously. As an example, a
compound regularizer functional constructed by a CC of `1-
and squared `2-norms (`1 + `2), known as an elastic net [29],
[30], is

Φα(x) = (1− α)‖x‖22 + α‖x‖1, (10)

with 0 ≤ α ≤ 1. The convexity of `1- and `2-norms implies
that Φα(x) in (10) is convex. One may also construct a
compound regularizer functional by a CC of two `1-norms
which are applied in different domains, such as those spanned
by two different wavelet transforms, or those spanned by a
wavelet transform and the gradient operator [10].

2) Infimal convolution of simple regularizers: In IC models,
the solution is decomposed into simple components and then
each component is regularized by an appropriate prior. Accord-
ingly, the IC of r simple regularizer functionals Φ1, ...,Φr is
a compound functional of the form

Φα(x) = min
x=x1+...+xr

{α1Φ1(x1) + ...+ αrΦr(xr)}. (11)

In the case of two functionals, Φα in (11) takes the form

Φα(x) = min
z
{(1− α)Φ1(x− z) + αΦ2(z)}, (12)

which is similar to the classical formula of convolution, and
hence the term infimal convolution.

The IC of `1- and (squared) `2-norms (`1�`2) is

Φα(x) = min
z
{(1− α)‖x− z‖22 + α‖z‖1}, (13)

which is a denoising problem whose solution is unique and is
given by the well-known soft-threshold function [31]:

z = max

(
1− α

2(1− α)|x|
, 0

)
◦ x, (14)

Putting z from (14) into (13) gives that

Φα(x) =

{
(1− α)|x|2 if |x| ≤ α

2(1−α)
α|x| − α2

4(1−α) if |x| > α
2(1−α)

, (15)

which is nothing other than the Huber function [32]. As seen,
this function has a hybrid behavior: it has a quadratic behavior
for small values of |x| and linear behavior for large values.
The parameter α

2(1−α) determines where the transition from
quadratic to linear behavior takes place.
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Geometrical illustrations of the `1-norm, `2-norm, (`1+`2)-
norm, and (`1�`2)-norm for α = 0.7 are shown in Fig. 1. This
figure shows that the `1- and `2-norms have a uniform behavior
for all values, while the CC norm (the (`1 + `2)-norm) has a
hybrid behavior: it approaches the `1-norm near zero, where
it behaves as a linear function, but approaches the `2-norm for
large values, where it behaves as a quadratic function. Unlike
`1 + `2, the IC function `1�`2 approaches the `2-norm near
zero but is linear and approaches the `1-norm for large values.

In this paper, we consider (12) in the following settings,
though other configurations are possible:

ΦTT
α (x) = min

x=x1+x2

(1− α)‖∇2x2‖22 + α‖∇x1‖1, (16)

and

ΦTGV
α (x) = min

x=x1+x2

(1− α)‖∇2x2‖1 + α‖∇x1‖1, (17)

where, in both (16) and (17), the norms are applied on the
absolute valued components of ∇2x2 ((39) and (41)) and
∇x1 (37). The compound regularizer ΦTT

α is a combination of
the second order Tikhonov and TV (TT) regularizations [13]
and ΦTGV

α is a combination of the first and second order TV
regularizations, called total generalized variation (TGV) [33],
[34]. The former is suitable for recovering piecewise-smooth
models, while the latter is better suited for piecewise linear
models. The next section gives a solution procedure to solve
(7b) with these regularizers.

(a) (b)

(c) (d)

Fig. 1: Geometrical illustration of different regularizers. (a)
the `1-norm, (b) the `2-norm, (c) the (`1 + `2)-norm, and (d)
the (`1�`2)-norm.

B. Solving the subproblem (7b)

In this section we present how to solve the subproblem (7b)
with TT regularization. The solution procedure for the TGV
regularizer follows easily. From the definition of A in (2), we
get that

A(m)u = ∆u + Lm, (18)

where
L =

∂A(m)

∂m
u = ω2Cdiag(Bu), (19)

and we assume that C does not depend on m (this is the case
for perfectly-matched absorbing boundary conditions [17]).
From the explicit decomposition m = m1 +m2 and (18), the
solution of the optimization problem (7b) can be expressed as

arg min
m=m1+m2

m∈C

ΦTT
α (m1,m2) +

λ1
2
‖L[m1 + m2]− y‖22, (20)

where y = b + bk − ∆uk+1. Defining auxiliary variables
p = ∇m1 ∈ R2n×1 and q = m1 +m2 ∈ Rn×1 and recasting
(20) as a constrained problem and then applying ADMM leads
to the following iteration [21, Section 2.2.2][

mk+1
1

mk+1
2

]
= arg min

m1,m2

C(m1,m2,q
k, q̃k,pk, p̃k), (21a)

pk+1 = arg min
p

α‖p‖1 +
γ1
2
‖∇mk+1

1 − p− p̃k‖22, (21b)

qk+1 = arg min
q∈C

γ0
2
‖mk+1

1 + mk+1
2 − q− q̃k‖22, (21c)

where γ0, γ1 > 0 and

C(m1,m2,q
k, q̃k,pk, p̃k) =

λ1
2
‖L[m1 + m2]− y‖22

+ (1− α)‖∇2m2‖22 +
γ1
2
‖∇m1 − pk − p̃k‖22

+
γ0
2
‖m1 + m2 − qk − q̃k‖22.

The auxiliary primal variables p and q are introduced to
decouple the `1 and the `2 minimization problems and solve
the former ones with proximal algorithms following operator
splitting methods. The dual variables p̃ and q̃ are updated
through a gradient ascent step according to the method of
multipliers [27]

p̃k+1 = p̃k + pk+1 −∇mk+1
1 , (22a)

q̃k+1 = q̃k + qk+1 − [mk+1
1 + mk+1

2 ], (22b)

We now discuss how to solve the subsubproblems given in
(21).

1) The subsubproblem (21a): A solution of subsubproblem
(21a) occurs at the point where the derivatives of the objective
function C with respect to m1 and m2 vanish simultaneously.
Accordingly, we end up with the following linear system of
equations: [

G11 G12

G21 G22

] [
m1

m2

]
=

[
h1

h2

]
, (23)

with 
G11 = λ1L

TL + γ1∇T∇+ γ0I,

G12 = G21 = λ1L
TL + γ0I,

G22 = λ1L
TL + (1− α)(∇2)T∇2 + γ0I,

and {
h1 = λ1L

Ty + γ1∇T [pk + p̃k] + γ0[qk + q̃k],

h2 = λ1L
Ty + γ0[qk + q̃k],
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where I is the identity matrix.
[15] broke down the 2n×2n problem (23) into two smaller

n × n systems and updates m1 and m2 in alternating mode
at the expense of convergence speed [15, their eqs. 10 and
11]. Instead, we solve here the original system exactly using a
variable projection scheme, thus leading to faster convergence
and more accurate results. From the first equation of (23), we
find that

m2 = G−112 [h1 −G11m1] (24)

and plugging this into the second equation of (23) we get the
following:

m1 = [G11 −G22G
−1
12 G11]−1[h2 −G22G

−1
12 h1]. (25)

Interestingly, L is diagonal, implying that G12 is also diagonal.
Thus we only need to solve an n× n system to estimate m1,
from which m2 easily follows.

2) The subsubproblem (21b): The sub-problem for p, equa-
tion (21b), is a denoising problem and is straightforward to
solve. Note that p has two components associated with the
gradient in each direction:

p =

[
px
pz

]
. (26)

Equation (21b) is solved with a generalized proximity operator
[35] leading to

pk+1 = proxα/γ1(z) =

[
ξ ◦ zx
ξ ◦ zz

]
, (27)

where
z = ∇mk+1

1 − p̃k =

[
zx
zz

]
, (28)

and
ξ = max(1− α

γ1
√

z2x + z2z
, 0). (29)

3) The subsubproblem (21c): The optimization problem
(21c) also has an entrywise solution given by

qk+1 = projC(m
k+1
1 + mk+1

2 − q̃k), (30)

where the projection operator projects its argument onto
the desired box [ml,mu] according to projC(•) =
min(max(•,ml),mu). Based on the above, the proposed
ADMM based TT regularized IR-WRI algorithm is sum-
marized in Algorithm 1. It should be noted that the total
algorithm consists of two levels of iterations: an outer iteration
(lines 4-13) given in (7) and an inner iteration (lines 5-11)
given in (21) corresponding to the model subproblem (7b).
Numerical results, however, show that only one inner iteration
suffices for convergence of the algorithm, hence significantly
reducing the total computational cost [36], [17]. The main
computational cost of the algorithm is on lines 4 and 5 where
we need to solve the augmented PDE and the n × n sparse
system given in equation 25. The other steps don’t introduce
significant computational overheads. The computational over-
head introduced by compound regularizer compared to single
regularizer results from the larger numerical bandwidth of the
matrix [G11−G22G

−1
12 G11] in equation 25 compared to that

associated with a single regularizer, either G11 or G22.

Algorithm 1 ADMM based TT regularized IR-WRI algorithm

1: Initialize: set the dual variables b0, d0, p̃0 and q̃0 equal to 0
2: Input: m0 (initial model parameters)
3: while convergence criteria not satisfied do
4: uk+1 ←

[
λ0
λ1

PTP+A(mk)TA(mk)
]−1[λ0

λ1
PT [d+ dk] +

A(mk)T [b+ bk]
]

5: mk+1
1 ← update according to eq. (25)

6: mk+1
2 ← update according to eq. (24)

7: mk+1 ←mk+1
1 +mk+1

2

8: pk+1 ← proxα/γ1(∇m
k+1
1 − p̃k)

9: qk+1 ← projC(m
k+1 − q̃k)

10: p̃k+1 ← p̃k + pk+1 −∇mk+1
1

11: q̃k+1 ← q̃k + qk+1 −mk+1

12: dk+1 ← dk + d−Puk+1

13: bk+1 ← bk + b−A(mk+1)uk+1

14: end while

V. NUMERICAL EXAMPLES

We assess the performance of our algorithm against 1D and
2D mono-parameter synthetic examples. In Table I we give dif-
ferent regularization functions which are applied for stabilizing
the FWI solution. We start with zero-offset Vertical-Seismic-
Profiling (VSP) examples (1D IR-WRI) where the targeted
wave speed profiles are selected from well-documented 2D
benchmark subsurface velocity models in exploration seismic.
To tackle more realistic applications, we proceed with a target
of the 2D challenging 2004 BP salt model [37] with noiseless
and noisy data when a crude initial model and realistic
frequencies are used as starting points.

A. Performance comparison using 1D test on benchmark
models

First, we assess the performance of our regularized IR-
WRI against 1D mono-parameter synthetic examples when the
true models are 100 vertical profiles selected from the 2004
BP salt [37], Marmousi II [38], SEG/EAGE overthrust [39],
SEG/EAGE salt [39] and synthetic Valhall [40] benchmark ve-
locity models (we extracted 20 profiles from each benchmark
model). For all of the experiments, a single source is used
at the surface and the receivers are evenly deployed along
the entire profile. A single frequency, whose value is set so
that the reduced-space inversion is prone to cycle skipping, is
considered for inversion. The model dimension, the inverted
frequency and the receiver spacing are outlined for each
model in Table II. We perform forward modeling with a 3-
pointO(∆x2) staggered-grid finite-difference stencil and PML
absorbing boundary conditions at the two ends of the model.
The starting model for IR-WRI is a homogeneous velocity
model in which the velocity is the mean value of each profile.
We set the penalty parameters according to the guideline
given in Appendix C. Moreover, for a fair comparison of the
compound regularizers (JTT, TT and TGV), we select for each
of them the optimum value of α among a range of preset values
that minimizes the error in the models estimated by the IR-
WRI. Also, we set the parameter bounds ml and mu equal
to 50% and 150% of the minimum and maximum velocities
of the true model, respectively. The monochromatic inversion
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TABLE I: Different regularization functions.

Abbreviation Expression of Φ(m)

DMP ‖m‖22
Tikhonov ‖∇2m‖22

TV ‖∇m‖1

JTT (1− α)‖∇2m‖22 + α‖∇m‖1

TT min
m=m1+m2

{(1− α)‖∇2m2‖22 + α‖∇m1‖1}

TGV min
m=m1+m2

{(1− α)‖∇2m2‖1 + α‖∇m1‖1}

TABLE II: Experimental setup of 1D model tests

Length
(km)

Inverted
frequency

(Hz)

Grid
interval

(m)

Receiver
interval

(m)
2004 BP salt 11.46 5 6 180
Marmousi II 3.75 12 5 85
Overthrust 4.6 12 20 120

SEG/EAGE salt model 4.2 10 20 120
Synthetic valhall 5.22 5 25 175

is performed with noiseless data when a maximum number of
iterations, equal to 100, is used as a stopping criterion. The
average error of the estimated velocity profiles for the five
benchmark models and the different regularizations are plotted
in Fig. 2. In this paper, the model error is defined as the energy
of the difference between the true model and the estimated one
compared to the energy of the true model. The errors in each
model for different regularizations are normalized to 1 for sake
of clarity (the error of DMP regularizer is not shown because
of its worse performance). Fig. 2 clearly shows that the
compound regularizations based upon infimal convolution (TT
and TGV) always behave better than the CC regularization and
the single regularization functionals (TV and Tikhonov). To
emphasize the effects of the different regularization functions,
we plot some close-ups of the reconstructed profiles in Fig.
3. These results show that TT provides the most accurate
reconstruction for the 2004 BP salt (Fig. 3a) and Overthrust
(Fig. 3c) models. This is consistent with the fact that the
velocity trends of these two models match well the piecewise
smooth prior. In contrast, TGV behaves slightly better than
TT for the Valhall model, whose velocity trend is the closest
one to the piecewise linear prior (Fig. 3d). For Marmousi II
(Fig. 3b), TT and TGV give similar results.

B. 2004 BP salt model

We now consider a more realistic application with a target
of the challenging 2004 BP salt model [37]. The 2004 BP salt
model is representative of the geology of the deep offshore
Gulf of Mexico and mainly consists of a simple background
with a complex rugose multi-valued salt body, sub-salt slow
velocity anomalies related to over-pressure zones and a fast
velocity anomaly to the right of the salt body. The selected
subsurface model is 16250 m wide and 5825 m deep, and is
discretized with a 25 m grid interval (Fig. 4a). We used 108
sources spaced 150 m apart on the top side of the model.

Fig. 2: Zero offset VSP test. Average model error in estimated
1D profiles for different velocity models and different regu-
larization functions.

We perform forward modeling with a staggered-grid 9-point
finite-difference method [23] with PML boundary conditions
along the four edges of the model. The source signature is
a 10 Hz Ricker wavelet. A line of receivers with a 25 m
spacing are deployed all along the surface leading to a long-
offset stationary-receiver acquisition. We used small batches
of two frequencies with one frequency overlap between two
consecutive batches, moving from the low frequencies to the
higher ones according to a classical frequency continuation
strategy. We use α = 0.7 and set the rest of hyperparameters
according to the guidelines reviewed in appendix C. We set
the parameter bounds ml and mu equal to the minimum and
maximum velocity of the true model, respectively. The starting
and final frequencies are 3 Hz and 13 Hz and the sampling
interval in one batch is 0.5 Hz. The initial velocity model is
a crude laterally-homogeneous velocity-gradient model with
velocities ranging between 1.5 to 4.5 km/s (Fig. 4b). We start
with inverting the first batch of frequencies ({3, 3.5} Hz) with
noiseless data using a maximum number of iterations equal
to 45 as a stopping criterion. To highlight the specific role
of bound constraints, we activate them after 20 iterations. To
emphasize the effect of regularization, the result of bound con-
strained IR-WRI with a simple DMP regularization is shown
in Fig. 5a, while the bound-constrained IR-WRI results with
Tikhonov and TV regularizations are shown in Figs. 5b and 5c,
respectively. Although the TV reconstruction is better than the
Tikhonov one, it provides a velocity model which is far from
the optimal one. A direct comparison between the true model,
the starting model and the estimated models is shown in Fig. 6a
along three vertical logs at 2.5, 9.0 and 15.0 km distance (as
depicted with dashed white lines in Fig. 4a). We continue with
compound regularization results which are shown in Fig. 5d-f
and Fig. 6b. Clearly, the TT regularizer better captures the
long wavelengths of the salt body and the smooth subsalt
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Fig. 3: Zero offset VSP test. Some part of (a) 2004 BP salt, (b)
Marmousi II, (c) Overthrust, and (d) synthetic Valhall models
estimated with different regularizations.

background model. The joint evolution in iterations of the
observation-equation (‖Pu− d‖2) and wave-equation errors
(‖A(m)u− b‖2), Fig. 7a-b, and the relative model errors in
iterations, Fig. 7c-d, further confirm the relative performance
of each regularizer during the inversion of the first frequency
batch. Note the complex zigzag path followed by the inversion
to jointly minimize the data residuals and the wave equation
error in Fig. 7a-b. As already highlighted by [17], this results
from the dynamic balancing in iterations of the observation-
equation and wave-equation constraints performed by the dual
updates with the data and source residuals.

We continue the inversion at higher frequencies using the
final models of the {3, 3.5} Hz inversion, Fig. 5a-f, as initial
models when the stopping criteria is either kmax = 15 or

‖A(m
k+1

)uk+1 − b‖2 ≤ εb, ‖Puk+1 − d‖2 ≤ εd, (31)

where kmax denotes the maximum iteration count, εb=1e-3,
and εd=1e-5. We perform three paths through the frequency
batches to improve the IR-WRI results, using the final model

Fig. 4: 2004 BP salt case study. (a) True velocity model. The
vertical dashed lines indicate the location of vertical logs of
Figs. 6, 9 and 15. (b) The velocity-gradient initial model.

Fig. 5: Noiseless 2004 BP salt case study. Velocity models
obtained after the {3, 3.5} Hz inversion when the velocity-
gradient model (Fig. 4b) is used as initial model. (a-f) Bound
constrained IR-WRI with (a) DMP, (b) Tikhonov, (c) TV, (d)
JTT, (e) TT and (f) TGV regularization.

of one path as the initial model of the next one (these
cycles can be viewed as outer iterations of IR-WRI). The
starting and finishing frequencies of the paths are [3.5, 6], [4,
8.5], [6, 13] Hz respectively, where the first element of each
pair shows the starting frequency and the second one is the
finishing frequency. The bound-constrained IR-WRI models
obtained from noiseless data are shown in Fig. 8. As for the
inversion of the first batch, direct comparison between the
true model, the starting model and the estimated models are
shown in Fig. 9 along three vertical logs at 2.5 km, 9.0 km
and 15 km distance (vertical dashed lines in Fig. 4a). The TT
and TGV regularizers lead to high-quality velocity models,
that capture both the fine-scale structure of the rugose large-
contrast salt body and the high-velocity shallow anomaly on
the right, as well as the smoother sub-salt background model
including the low-velocity over-pressure structure. It is also
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Fig. 6: Noiseless 2004 BP salt case study. Direct comparison
along the logs shown in Fig. 4a between the true velocity
model (black), the initial model (dashed line) and the estimated
models obtained after the {3, 3.5} Hz inversion (Fig. 5) with
(a) simple regularizations (DMP in olive-green, Tikhonov in
blue and TV in red) and (b) compound regularizations (JTT
in orange, TT in green and TGV in pink).

worth noting the significant differences between the JTT and
TT IR-WRI models in particular in the deep part of the model.
Moreover, the number of iterations performed by IR-WRI for
each regularization shows that TT has the best convergence
speed (Table III).

As a final quality control of the different IR-WRI models,
it is instructive to check the wave-equation and data residuals
left by the different regularization methods for the starting
3-Hz frequency (Fig. 10 and 11). The real part of wave-
equation error (Fig. 10) and data residuals (Fig. 11) are plotted
at the first and final iterations of the inversion. Both of the
final data and source residuals suggest that the TT regularizer
slightly outperforms the TGV counterpart at low frequencies.
To further illustrate the ability of compound regularizations to
manage the blocky and smooth components of the subsurface,
we show separately the two model components of IC based
regularizations (m1 and m2) estimated with TT (Fig. 12a-b)
and TGV regularizations (Fig. 12c-d) as well as histograms
of ∇m1 and ∇2m2 (Fig. 13). The trend of the reconstructed
m1 and m2 shows that the IC based compound regularizations
mostly succeeded in de-coupling the reconstruction of the
blocky structure from that of the smooth background for TT
regularization (Fig. 12a-b) and de-coupling the reconstruction
of the blocky structure from that of the piecewise linear back-

Fig. 7: Noiseless 2004 BP salt case study. {3, 3.5} Hz inver-
sion with the velocity-gradient initial model. (a-b) convergence
history of the algorithm in the (‖Puk − d‖2 − ‖A(m

k
)uk −

b‖2) plane for (a) simple regularizations and (b) compound
regularizations. The black arrow points the starting point. (c-d)
evaluation of ‖mk−m∗‖2/‖m∗‖2 during the iteration where
m∗ is the true model. The panels (a) and (b) as well as (c)
and (d) are plotted with the same horizontal and vertical scale.

TABLE III: Total number of IR-WRI iterations for each
regularization.

DMP Tikhonov TV JTT TT TGV

Noiseless data 426 448 399 415 361 394

Noisy data 285 293 264 271 270 274

ground for TGV regularization (Fig. 12c-d). This statement
is further supported by the long-tail shape and the Gaussian
shape of the histograms of the ∇m1 and ∇2m2 components
of TT regularization (Fig. 13a-b) and the long-tail shapes of
the ∇m1 and ∇2m2 components of TGV regularization (Fig.
13c-d).

We continue by assessing the resilience of the different
regularization strategies to noise when data are contaminated
with a Gaussian random noise with a SNR=10 db, where SNR
is defined as

SNR = 20 log

(
Asignal
Anoise

)
, (32)

in which A denotes root mean square (RMS) amplitude. We
use the same setup and the same initial velocity model (Fig.
4b) as those used for the noiseless case. The stopping criterion
is defined by (31), where εd is now set to the noise level.
The final models of bound-constrained IR-WRI obtained from
noisy data are shown in Fig. 14. The number of iterations
performed by IR-WRI with the different regularizations are
outlined in Table III. As for the inversion of the first batch,
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Fig. 8: Noiseless 2004 BP salt case study. Final inversion
results with the velocity models of Fig. 5a-f as initial models.
The display of the panels is the same as that of Fig. 5.

Fig. 9: Noiseless 2004 BP salt case study. Direct comparison
of final inversion results with Fig. 5a-f as initial models. The
panels are same as Fig. 6 for final results of Fig. 8.

direct comparison between the true model, the starting model
and the estimated models are shown in Fig. 15 along three
vertical logs at 2.5 km, 9.0 km and 15 km distance. The

Fig. 10: Noiseless 2004 BP salt case study. For a source at
x=8.12 km and the 3-Hz frequency: (a) Real part of wave-
equation residual at first iteration of wavefield reconstruction,
namely (A(m0)u1 − b). (b-g) Real part of wave-equation
residual at the final iteration achieved respectively with DMP,
Tikhonov, TV, JTT, TT, and TGV regularization.

Fig. 11: Noiseless 2004 BP salt case study. For a source at
x=8.12 km and the 3-Hz frequency: (a) Real part of data
residual (Pu − d) at first iteration. (b-g) Real part of data
residual at the final iteration achieved respectively with DMP,
Tikhonov, TV, JTT, TT, and TGV regularization.
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Fig. 12: Noiseless 2004 BP salt case study. Final blocky and
smooth components, m1 and m2, reconstructed by IR-WRI
with (a-b) TT and (c-d) TGV regularizations. The correspond-
ing velocity models are shown in Figs. 8e and 8f. (a,c) m1.
(b,d) m2. Note that m1 and m2 are parametrized with squared
slownesses.
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Fig. 13: Noiseless 2004 BP salt case study. Histograms of the
model components shown in Fig. 12. The red lines show the
probability density functions fitted to the histograms.

results further confirm that TT regularization provides the most
reliable results and illustrate the resilience of this compound
regularization to noise.

VI. CONCLUSIONS

In this study, we first show how to efficiently implement
different kinds of regularization and bound constraints in the
wavefield reconstruction inversion method with the alternating
direction method of multipliers (ADMM). Then, we show
the capability of IR-WRI when equipped with compound
Tikhonov and TV regularizations to accurately reconstruct
large-contrast subsurface media when starting from a very
crude initial model. This compound regularization is suitable
for seismic imaging of the subsurface as it can often be
represented by piecewise smooth media. We show that the
infimal convolution (IC) of the Tikhonov and TV regularizers
captures much more accurately the blocky and smooth com-

Fig. 14: Noisy 2004 BP salt case study. Final inversion results
with Fig. 4b as initial model. (a-f) bound constrained IR-WRI
with (a) DMP, (b) Tikhonov, (c) TV, (d) JTT, (e) TT and (f)
TGV regularization.

ponents of the subsurface than the convex combination of the
two regularizers. It also outperforms the Tikhonov and TV
regularizers when used alone. We also show how the infimal-
convolution regularizer can be efficiently implemented by
jointly updating the smooth and blocky subsurface components
through variable projection. Alternatively, TGV regularized
IR-WRI can be a suitable tool to reconstruct piecewise linear
media and provides similar results than TT IR-WRI. We con-
clude that such hybrid regularizations in the extended search-
space IR-WRI potentially provide a suitable framework to
reconstruct, without cycle skipping, large-contrast subsurface
media from ultra-long offset seismic data. It should also find
applications in other fields of imaging sciences such as medical
imaging.
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Fig. 15: Noisy 2004 BP salt case study. Direct comparison
(along the logs shown in Fig. 4a) between the true velocity
model (black), the initial model (dashed line) and the estimated
models with (a) simple regularizations (DMP in olive-green,
Tikhonov in blue and TV in red) and (b) compound regular-
izations (JTT in orange, TT in green and TGV in pink).

APPENDIX

A. Reduced approach to solving (1)

The reduced approach, which is more commonly used for
sake of computational efficiency, strictly enforces the PDE
constraint at each iteration by projection of the full space
onto the parameter search space, leading to the following
unconstrained optimization problem [5], [22], [41]

min
m∈C

Φ(m) +
λ0
2
||PA−1(m)b− d||22, (33)

where λ0 > 0 is the penalty parameter. A number of methods
have been proposed to solve the optimization problems of the
form (33), either for unregularized form Φ(m) = 0 [22], or the
regularized form [42], [43]. Although this reduced approach is
more computationally tractable than the full-space approach,
the highly-oscillating nature of the inverse PDE operator A−1

makes the inverse problem highly nonlinear, and hence prone
to convergence to a spurious local minima when the initial
m is not accurate enough [5], [44]. The extended approach
described in this paper (section III) is an alternative way which
is more immune to local minima.

B. Simple regularizers

The two most widely used regularizers rely on the (squared)
`2 and `1-norms. The squared `2-norm, defined as

‖x‖22 =

n∑
i=1

|xi|2, (34)

promotes smooth reconstruction, since the minimization of the
squared value of components will penalize large components
more severely than small ones.

In contrast, the `1-norm, defined as

‖x‖1 =

n∑
i=1

|xi|, (35)

promotes sparse reconstruction (with many zero components),
since the minimization of the absolute value of components
will penalize small components more severely than the large
counterparts.

The priors can be defined under a suitable transformation.
For example, one may minimize the `1- or `2-norms of the
first and/or second order differences of the model. The first
order forward differences for discrete scalar field f in x- and
z-direction are denoted by ∇xf and ∇zf , with{

(∇xf)i,j = fi,j − fi,j−1,
(∇zf)i,j = fi,j − fi−1,j ,

(36)

with appropriate boundary conditions, where i and j run over
the domain of the model parameters. Accordingly, the discrete
first order operator in 2D is defined as ∇ =

[
∇Tx ∇Tz

]T
with

(|∇f |)i,j =
√

(∇xf)2i,j + (∇zf)2i,j . (37)

The squared `2-norm of |∇f | gives the first order Tikhonov
regularization [7], which returns a flat regularized model (with
a small gradient), while its `1-norm gives the total variation
regularization [8], which returns a piecewise constant model
(with a sparse gradient).

Analogously, the second order forward differences are de-
noted by ∇xxf and ∇zzf , with{

(∇xxf)i,j = fi,j−1 − 2fi,j + fi,j+1,

(∇zzf)i,j = fi−1,j − 2fi,j + fi+1,j ,
(38)

with appropriate boundary conditions, where again i and j run
over the domain of the model parameters. Accordingly, the dis-
crete second order operator is defined as ∇2 =

[
∇Txx ∇Tzz

]T
with

(|∇2f |)i,j =
√

(∇xxf)2i,j + (∇zzf)2i,j . (39)

The squared `2-norm of |∇2f | gives the second-order
Tikhonov regularization, which returns a smooth regularized
model (with a small Laplacian), while its `1-norm gives the
second order TV regularization, which returns a piecewise
linear model (with a sparse Laplacian).

Mixed second-order differences can also be constructed as
∇xzf ≡ ∇z∇xf with

(∇xzf)i,j = fi,j − fi,j−1 − fi−1,j + fi−1,j−1. (40)
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A discrete second-order operator, which includes mixed dif-
ferences is defined as ∇2 =

[
∇Txx

√
2∇Txz ∇Tzz

]T
with

(|∇2f |)i,j =
√

(∇xxf)2i,j + 2(∇xyf)2i,j + (∇yyf)2i,j , (41)

which equals the Frobenius norm of the Hessian matrix [45],
[46], [47].

C. Parameter tuning

Here, we provide some guidelines to tune the different
hyperparameters in the regularized IR-WRI method. The
reader is also referred to [21] for more details. We start
with γ1 (step 8 of Algorithm 1), which controls the soft
thresholding performed by the TV regularization, and set it
equal to 0.02×max |∇mk

1 − p̃k|. This tuning can be refined
according to prior knowledge of the geological structure,
coming from well logs for example. Also, we use the same
weight for the bound constraints and the TV regularization:
γ0 = γ1. Once we set γ1, we define λ1 such that γ1/λ1 is a
percentage of mean absolute value of the diagonal coefficients
of LTL. Parameter λ1 may be increased during iterations to
reduce the weight of TV regularization and bound constraints
near the convergence point. Finally, we set λ0 such that
λ = λ1/λ0 is a small fraction of the highest eigenvalue ξ of the
normal operator A(m)−TPTPA(m)−1 during the wavefield
reconstruction subproblem according to the criterion proposed
by [48]. In all the numerical tests, we use λ = 1e-5ξ and
λ = 1e-3ξ for noiseless and noisy data, respectively.
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