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Pollinators play an important role in terrestrial ecosystems by providing key ecosystem 17 

functions and services to wild plants and crops, respectively. The sustainable provision of such 18 

ecosystem functions and services requires diverse pollinator communities over the season. 19 

Despite evidence that climate warming shifts pollinator phenology, a general assessment of these 20 

shifts and their consequences on pollinator assemblages is still lacking. By analyzing 21 

phenological shifts of over 2000 species, we show that on average the mean flight date of 22 

European pollinators shifted 6 days earlier over the last 60 years, while their flight period length 23 

decreased by 2 days. Our analysis further reveals that these shifts have likely altered the 24 

seasonal distribution of pollination function and services by decreasing overlap among 25 

pollinators’ phenologies within European assemblages, except in the most northeastern part of 26 

Europe. Such changes are expected to decrease the functional redundancy and complementarity 27 

of pollinator assemblages and as such, might alter the performance of pollination function and 28 

services and their robustness to ongoing pollinator extinctions. 29 

Numerous studies on plants, birds, amphibians and insects reveal that on average various 30 

phenological events - such as flowering or initiation of flight season – now take place earlier in the 31 

season than in the past decades because of climate warming
1
. Despite this general trend, a substantial 32 

inter-specific variation is observed in these responses, spatially
2
 (e.g. across latitudes), and 33 

temporally
2,3

 (e.g. spring versus summer species). This heterogeneity in species responses together 34 

with the fact that most studies focus on taxonomic rather than functional groups
1
 challenges our ability 35 

to assess the consequences of phenological shifts for the functioning of communities and ecosystems 36 

across large spatial scales. 37 

By modifying the set of species co-occurring in time, heterogeneity in phenological responses can 38 

induce mismatch among interacting species
4
, thereby affecting community structure and related 39 

functions. One key issue to our understanding of the impact of climate warming on ecological 40 

functions is thus to assess how phenological shifts combine themselves among the species assemblage 41 

involved in a given function. This requires to quantify the phenological responses of a large proportion 42 

of the species, not only in terms of mean flight date shifts but also of changes in phenology length, a 43 



currently overlooked aspect of species responses
5
. The few studies that started to tackle this issue 44 

revealed important changes in patterns of species temporal overlap in several local communities of 45 

plants and amphibians, as a result of non-uniform phenological shifts
4,6,7

. However, these studies 46 

remain restricted to a small set of functional or taxonomical groups and to a small set of local 47 

communities. 48 

Pollination is a key ecosystem function
8,9

 mainly performed by four insect orders in Europe: 49 

Hymenoptera, Diptera, Lepidoptera and Coleoptera
10

. These flower visitors present a continuum of 50 

pollination efficiency but the diversity within pollinator assemblage has been proved to increase 51 

pollination performance
11

. Current theoretical knowledge indicates that the level of heterogeneity in 52 

phenological responses to climate warming among pollinators can strongly affect pollination 53 

networks
12

. However, the quantification of the phenological responses of pollinators to climate 54 

warming is still limited, with studies focused on butterflies
13,14

 and to a lesser extent, on bees
3
 and 55 

hoverflies
15

. A better understanding of the consequences of climate change on pollination thus requires 56 

a much more complete assessment of changes in pollinator phenology, including more species and 57 

changes in both timing and duration of the seasonal activities. 58 

We took advantage of recent developments of large biodiversity databases and museum collections 59 

and we compiled a database of over 19 million records of flower visitor occurrences (Supplementary 60 

Table 1), spanning the period 1960-2016. This database includes 2023 European species from the 4 61 

main insect orders of pollinators: Hymenoptera, Diptera, Lepidoptera and Coleoptera (Extended Data 62 

Fig. 1). Numerous species exhibit distinct modes in their phenology, either because they are 63 

multivoltine (i.e. multiple generations per year) or because the phenology differs between sexes or 64 

social casts. Since different modes from a species can shift in a different direction, we studied each 65 

mode separately, leading to 2248 phenology modes (see Methods). For each phenology mode, we 66 

estimated changes in mean flight date and flight period length over the years by modeling the mean 67 

and variance of collection dates (see Methods). Similarly to previous studies working with historical 68 

records
3
, due to the lack of long-term standardized monitoring for many flower visitor taxa and at 69 

large spatial scale, our analysis relies on opportunistic data. However such datasets have been shown 70 



to give estimates of phenological shifts quantitatively consistent with those based on standardized 71 

monitoring data
15,16

. 72 

 73 

Figure 1: Mean flight date (MFD) shifts of European flower visitors between 1960 and 2016. (a) 74 

Phylogeny of studied species and MFD shifts (n=2248). The bars around the phylogeny tips are 75 

proportional to the MFD shifts and colored in blue and red for phenological advancement and delay, 76 

respectively. Values below -0.5 and above 0.5 days/year are truncated to preserve readability. 77 

Histograms show MFD shifts for all studied species of Coleoptera (b, red, n=194), Diptera (c, blue, 78 

n=305), Hymenoptera (d, light green, n=322) and Lepidoptera (e, magenta, n=1427). Full bars 79 

represent number of species with values significantly distinct from zero whereas open bars correspond 80 

to the number of species with a value non-significantly distinct from zero. MFD shifts shown here are 81 

predicted for the averaged latitude, longitude and altitude of each species’ records. 82 

 83 



Results 84 

We find that the mean flight date changes on average at a rate of -0.104±0.004 days/year (mean ± 85 

SE) implying that European pollinators are flying on average 5.8 days earlier in 2016 than in 1960, a 86 

value consistent with previous estimations on bees
3
 and butterflies

13
. Climate warming appears as a 87 

likely cause as mean flight date shift mainly occurred after 1980, following the temperature increase 88 

(Supplementary Method 1, Extended Data Fig. 2). Considering flight period length, we find that on 89 

average the standard deviation of collecting dates decreases slightly with time , at a rate of -90 

0.016±0.003 days/year (mean ± SE), which corresponds to a decrease of 1.8 days of the flight period 91 

length over the last 56 years. This reduced flight period length might be due to a reduced genetic 92 

variability on phenology caused by a directional selection on phenology advancement. Indeed, we 93 

know that a directional selection on a phenotypic trait can reduce the variance of this trait
17

, and the 94 

significant positive Pearson correlation between the changes over time of mean flight date and flight 95 

period length (r = 0.09, tdf=2246=3.89, p-value = 1e-4) can suggest such a mechanism. However, 96 

whether these changes are adaptive or not, and the mechanisms underlying these responses (adaptation 97 

vs phenotypic plasticity), remain unknown. 98 

Despite these overall trends, we observe a substantial heterogeneity among species in the response 99 

of mean flight date and flight period length (Fig. 1, Extended Data Fig. 3). 13% of the phenologies 100 

studied exhibit a significantly delayed mean flight date whereas 30% do not exhibit any significant 101 

shift (Supplementary Table 2). Such heterogeneity is even more striking for flight period length 102 

changes, where 27% of the phenologies studied are significantly lengthened and 43% are unchanged 103 

(Supplementary Table 2). If an increase of winter temperature is known to advance species phenology 104 

by reducing the development time
18

, some species also react in an opposite way
18,19

, which might 105 

explain observed variations in mean flight date shifts. Turning to the heterogeneity in flight period 106 

length responses, a temperature increase can either reduce or increase flight period length, for example 107 

by reducing insect lifespan
20

 or by increasing the number of generations within years
14

.  108 

We further show that this heterogeneity in phenological responses is related to the evolutionary 109 

history of species as shown by the strong phylogenetic signal in mean flight date shifts (Pagel’s λ = 110 



0.75, p-value < 0.001) and in flight period length changes (Pagel’s λ = 0.82, p-value < 0.001). This 111 

phylogenetic signal is related to strong differences among orders in these phenological shifts, Diptera 112 

and Coleoptera advancing their mean flight date more than Lepidoptera and Hymenoptera while 113 

Coleoptera decrease their flight period length more than other orders (Supplementary Table 3). 114 

However the phylogenetic signal remains significant within orders for mean flight date shifts 115 

(Supplementary Table 3). Such phylogenetic signal indicates that species traits underlying 116 

phenological responses are conserved across the phylogeny.  117 

 118 
Figure 2: Spatial and seasonal heterogeneity in phenological shifts among species. Mean flight date 119 

(MFD) shifts (top panels) and changes in flight period length (FPL, bottom panels) against species 120 

MFD (a, d) and averaged latitude (b, e) and longitude (c, f) of species records The horizontal grey 121 

lines show the 0 value whereas red lines are PGLS predictions. Estimates and standard erros are 122 

shown in Supplementary Table 4. 123 

 124 

Mean flight date and flight period length responses also demonstrate spatial and seasonal 125 

heterogeneity among species. Species with southern and western distribution areas show a stronger 126 

mean flight date advancement than species with northern and eastern distribution areas (Fig. 2b-c, 127 

Supplementary Table 4), matching previous results on European plants
2
. We also find that species 128 

with northern and western distribution areas experience a smaller decrease in flight period length than 129 



species with southern and eastern distribution areas (Fig. 2e-f, Supplementary Table 4). In addition we 130 

find a seasonal pattern where spring species experience a significantly greater advancement than 131 

summer/autumn species (Fig. 2a), consistently with previous results on American bees
3
 and European 132 

plants
2
. Regarding flight period length, we find that earlier species shorten their flight period more 133 

than later species (Fig. 2a-2d, Supplementary Table 4). Such differences could be explained by the fact 134 

that summer/autumn and northern species might rely more on photoperiod, a determining factor of 135 

insect phenology
21

, than spring and southern species. Such patterns have been shown for plants
22,23

, 136 

but studies on this point for insects are missing. 137 

We further show that the mean flight date shifts vary within species in a way that echoes the 138 

patterns found at the inter-specific level. Indeed, we detect a significant positive interaction between 139 

latitude and year effect for 29% of species, indicating that southern populations experience a stronger 140 

shift of their mean flight date towards earlier dates than northern populations (Supplementary Table 141 

2). By contrast, no longitudinal pattern was found. The seasonal pattern of stronger advancement 142 

earlier in the season is also found at the intra-specific level. Amongst the 190 species with multimodal 143 

phenology and sufficient data to study them, 59% have their first mode advancing significantly faster 144 

than their second mode while the opposite pattern occurs only in 10.5% of the species (Extended Data 145 

Fig. 4). 146 



Figure 3: Changes in within- and among-orders average overlaps in phenology between 1980 and 147 

2016 across Europe. (a) Average phenology over all species in 1980 (solid lines) and in 2016 (dashed 148 

lines) for one grid cell (centroid = 55,0) by orders: Coleoptera (red), Diptera (blue), Hymenoptera 149 

(light green) and Lepidoptera (magenta). The average phenology is calculated by averaging all 150 

probability density functions (Gaussians representing phenologies) over all species of each orders, 151 

assuming identical species abundances. Observed changes in the average overlap among phenologies 152 

between 1980 and 2016, within orders (b) and among orders (c). Uncolored cells are under-153 

prospected. Number of species by order across Europe is shown in Extended Data Fig. 6. 154 

 155 



To assess the consequences of these phenological shifts for the seasonal structure of pollinator 156 

assemblages across space, we analyzed changes in the phenological overlap of species co-occurring 157 

within locations of 5°×5° grid cells in Europe, between 1980 and 2016. We used the linear models for 158 

mean flight date and flight period length to predict the phenologies of each species for each grid cell 159 

predicted for both years (Fig. 3a). Considering that all phenologies are unimodal, we modelled them 160 

by Gaussian density distribution, in order to calculate the pairwise phenological overlap among all 161 

pairs of pollinators present in a grid cell (see Methods). We averaged these measures among 162 

pollinators belonging either to the same or to different insect orders (see Methods).  163 

First, we show that species co-occurrence in time increases towards the beginning the season and 164 

then abruptly decreases in the second half of the season (Extended Data Fig. 5), consistently with the 165 

average advancement of pollinator mean flight date. This indicates that the advance of mean flight 166 

dates have likely shifted the pollination function and services earlier in the season. Secondly, assuming 167 

no changes in abundance/distribution of species, we show that both within- and among-orders average 168 

overlaps in phenology have decreased within the last 36 years in most parts of Europe, except in the 169 

extreme northern part (Fig. 3b-c. The observed increase of the overlap among phenologies in the 170 

northern Europe is likely due to the fact that there, in contrast to other regions, the average mean flight 171 

date shift is almost null whereas the flight period length slightly increases (Fig. 2). Sufficient data on 172 

long-term dynamics of plant-pollinator networks is currently missing to fully assess the consequences 173 

of such changes in the seasonal structure of pollinator assemblages on pollination function. However, 174 

the within order and among order overlaps should be related to temporal redundancy and 175 

complementarity within pollinator assemblages, respectively. Indeed, the pervasive phylogenetic 176 

signal within pollination networks indicates that related pollinators tend to visit the same plants
24,25

. 177 

This implies that species with overlapping phenologies and belonging to the same insect order should 178 

visit the same set of co-flowering plant species and as such, belong to the same pollinator functional 179 

group. On the contrary, species with overlapping phenologies but from different insect orders are 180 

expected to provide complementary pollination function, by visiting different sets of co-flowering 181 

plant species. 182 



As such, the observed decrease in the overlap within insect orders, by lowering the temporal 183 

redundancy among pollinators, might decrease the robustness of plant-pollinator interaction networks 184 

to pollinator extinction
26

. A decrease in the overlap may also have beneficial effects for pollinators by 185 

decreasing competition for nectar and pollen resources, but such competition release might in turn 186 

restrict pollinator visits to the most profitable plant species following optimal foraging theory 187 

predictions
27

. Turning to the observed decrease in phenology overlap among pollinator orders, it 188 

suggests a decrease in temporal complementarity within pollinator assemblages, thereby weakening 189 

the pollination function delivered to plant communities
28

. This result echoes theoretical findings on 190 

pollination networks showing that the more phenologies are scattered over the season, the more 191 

community diversity decreases
29

. 192 

Discussion 193 

Our results show that flower visitor responses to climate warming depend on their evolutionary 194 

history, geographical location and seasonal earliness. This high variation in species phenological 195 

responses is expected to drive heterogeneity in the consequences of climate warming on pollination 196 

function across Europe and across the season. For most parts of Europe, the observed modifications of 197 

the seasonal structure of pollinator assemblages are expected to have negative consequences on 198 

pollination, while in northeastern Europe they might have positive effects on pollination as they result 199 

in an increased phenology overlap, both within and among pollinator orders (Fig. 3). Moreover, in 200 

most parts of Europe, observed changes are expected to have a positive effect on pollination 201 

performance and robustness early in the season but a negative effect from the middle to the end of the 202 

pollination season (Extended Data Fig. 5). Thus, our results highlight the importance to assess 203 

responses at large spatial and temporal scales and to include many species, in order to capture the high 204 

spatial and seasonal heterogeneity in the consequences of climate change on pollinator assemblages 205 

and related function. 206 

Climate warming is recognized as a major threat to biodiversity. Our results suggest that climate 207 

warming, by reducing pollinator co-occurrence in time within seasons has had negative effect on the 208 

delivery of pollination function as well as on its resistance to further perturbations, in most part of 209 



Europe. Such findings raise the question of potential interactive effects between climate warming and 210 

other pressures related to global change such as agricultural intensification
30,31

, which could amplify 211 

expected negative effects on pollination. In addition to its effect on species phenology, climate 212 

warming is expected to affect the spatial distribution
32

 and the abundance
31

 of flower visitors, and so 213 

are other drivers of global change. How such effects combine with those observed in this study remain 214 

currently unknown. This stresses the need to explore multiple responses of species to multiple drivers 215 

of global change in order to assess potential synergistic effects among species responses to global 216 

change drivers over large scale.  217 



Material and Methods 218 

Constructing the database on flower visitor phenologies 219 

Assembling data on flower visitor occurrences in time and space 220 

European flower visitors mainly belong to four insect orders – Coleoptera, Diptera, Hymenoptera 221 

and Lepidoptera
10

. We first looked for occurrence data (i.e. sighting at a given date and location) of 222 

species that belong to these insect orders and that are defined as floricolous in scientific or grey 223 

literature. We restricted our search to European species listed in Fauna Europaea
33

. Data are from 15 224 

distinctive sources, summarized in the Supplementary Table 1, with a high proportion from the Global 225 

Biodiversity Information Facility (GBIF). After the removal of duplicates (same species, date and 226 

locality), the database initially included about 30 million of occurrences between 34° and 72° of 227 

latitude North and between -15° and 32° of longitude.  228 

Modelling multimodal phenologies and removing larval records 229 

Numerous species exhibit distinct modes in their phenology, either because they are multivoltine 230 

(i.e. multiple generations per year) or because the phenology differs between sexes or social casts. 231 

Since different modes in the same species are temporally distant, they might not respond to the same 232 

environmental cues. As a consequence, each mode might potentially shift in a different direction and 233 

should thus be studied separately. Additionally, larvae might be easier to spot than adults for 234 

Lepidoptera and some Coleoptera. So, a substantial proportion of records may actually be larvae, 235 

which are not floricolous and should be removed from the analysis. To split the occurrences of 236 

multimodal imago phenology into distinct modes as well as to identify larval occurrences, we 237 

developed the following method. 238 

The first step of the method was to detect multimodality. Since phenologies vary spatially, 239 

multimodality can be the product of sampling in different localities. In order to take this spatial 240 

variation into account, for each species separately, we fitted the following linear mixed-effects model 241 

accounting for spatial variables on the Julian day of records.  242 

                                                     (1) 243 



Where     is the Julian day of the observation k of the year i,   is the grand mean (intercept),    244 

and     are latitude and longitude effects respectively, while   is an altitude effect.    is a random year 245 

effect (factor) and     is the error term (independent and identically distributed, following N(0,σ²)). 246 

The residuals of this model thus represent the collection dates once spatial and altitudinal variations 247 

have been removed. To detect multimodality in the distribution of these residuals, we smoothed the 248 

distribution with the R function density, using the value 1.3 for the adjust parameter and counted the 249 

number of local maximums (nbmax) which reaches 7% of the highest mode. We used this cut-off in 250 

order to remove small peaks on the edges of the phenology and we defined the value of the threshold 251 

after a visual inspection of phenologies. Several modes were initially detected for 494 species. For 252 

each of these species, we checked in scientific and grey literature whether a multimodal phenology 253 

was expected. In 208 cases, there was no strong biological support of existing multimodal phenology 254 

and we thus considered these species had one single mode. After this step, 288 remaining species 255 

showed a multimodal phenology (nbmax > 1). We applied the second step only for these species. 256 

The second step of the method was to attribute each record to a specific mode. To do so we used 257 

clustering Gaussian mixture-models implemented in the mclust R package
34

, considering a number of 258 

gaussians in 1 to nbmax. This clustering model allow us to initialize the attribution of each record to a 259 

given mode. Using the classification given by these clustering models, we run linear mixed-effects 260 

models, similar to the one described in equation (1) but with the addition of a mode effect (  ): 261 

                                                          (2) 262 

We kept the number of modes that minimize the Bayesian Information Criterion (BIC) of this linear 263 

mixed-effects model. We then manually changed the mode of poorly predicted points. If the change 264 

improved the likelihood of this mixed-effects model we retained it and continued this process 265 

iteratively.  We stopped the process when changing the mode of poorly predicted points did not further 266 

improve the likelihood of the model. The R script of the full method is available here: 267 

https://github.com/f-duchenne/Flower-visitors-phenology. Although the mode effect (  ) is 268 

independent from spatial variables and altitude in equation (2), our method still allows to take into 269 

account spatial and altitudinal variation in the number of modes (Extended Data Fig. 7). We 270 

https://github.com/f-duchenne/Flower-visitors-phenology


confronted the relevance of detected modes regarding what we know on the biology of species. We 271 

found that our method distribute records among modes in a highly consistent way. Some examples can 272 

be seen in Extended Data Fig. 7. We identified 19 species for which we had a mode corresponding to 273 

larval phenology, and we removed the corresponding records. Overall, this analysis lead to 2473 274 

unimodal phenologies from 2179 species.  275 

Database after selection process 276 

Following the separation of distinct phenological modes for each species and the removal of larval 277 

records, we selected phenologies (or phenological modes) with at least 400 records during the period 278 

1960-2016 and with at least 40 records from the period 1960-1980, to be able to study phenological 279 

shifts between early and more recent period. We removed species (n=30) with phenology peaking 280 

during winter by excluding species with a mean flight date before 60 or after 306 Julian days. 281 

Studying the phenology of such species raises methodological questions that we will not address here. 282 

We also removed records with imprecise localization (above 1km²) except for small countries 283 

(Luxembourg, Belgium, Switzerland, Netherlands, Denmark, Lichtenstein, Monaco, Andorra and 284 

Kosovo). Thus, our dataset includes some records with imprecise localization (above 1km²) but they 285 

represent less than 0.1% of the final dataset. This selection process lead to 19 845 792 occurrence 286 

records with 2248 phenologies for 2023 species (Supplementary Table 1). The repartition of records 287 

among insect orders and throughout the study period is presented in Extended Data Fig. 1.  288 

Supplementary Table 1 indicates the amount of data coming from the various data sources. 289 

Analyses of species phenological shifts over time 290 

Estimating species phenological shifts 291 

To estimate changes in both the mean flight date (MFD) and the flight period length (FPL), we 292 

modeled jointly the mean and the variance of collection dates using the dispmod R package
35

 which 293 

performs two nested linear models, one for the mean and one for the variance. Due to computational 294 

limits it was not possible to use one model including the whole dataset, modelling both, MFD shifts 295 

and FPL changes, and modelling spatial effects properly for each species. Thus, we studied each 296 



species and phenology mode separately. For each phenology modes, the model for the mean collection 297 

date was: 298 

                                                                      299 

                 
            

                   
            

     300 

                         
               

                     (3) 301 

   is the Julian day of the observation k,   is the grand mean (intercept),   is the time effect on the 302 

mean collection date as well as on its variation across latitude ( ) and longitude (  .          and 303 

          are linear, quadratic and cubic effects for latitude and longitude, respectively,          are 304 

spatial interactions terms,   is an altitude effect and    is the error terms (independent and identically 305 

distributed, following N(0,σ²)).  306 

The joint model for variance of collection date was: 307 

                                                            (4) 308 

Where σ² is the variance of the collection date,    is a constant term,   ,   ,    and    are latitude, 309 

longitude, altitude and year effects respectively. We performed model simplification based on the 310 

Akaike Information Criterion (AIC), first on the model for the mean collection date, removing only 311 

polynomials effect of latitude and longitude (                      and interactions between spatial 312 

variables and time effect (  and  ), and second on the model for the variance in collection date.  313 

The MFD shifts presented in the paper are                                                  from equation (3) 314 

where                     and                        are averaged latitude and longitude of the species records respectively. 315 

The FPL changes are the    from equation (4) for each species. 316 

Phylogenetic analysis 317 

In order to get a phylogeny of all the studied species we combined several published phylogenies. 318 

We used the phylogeny from Rainford et al.
36

 as the backbone to which we added some available and 319 

recent phylogenies to get a phylogeny at the genus level for Papilionoideae
37

, Vespidae
38

 and 320 

Apoidea
39

. For all other families, genus (as defined by the GBIF taxonomy) were inserted on a 321 



polytomy positioned midway between the family origin and the tip. Then species from each genus 322 

were placed on a polytomy positioned midway between the genus origin and the tip. Such method 323 

does not allow a good estimation of the recent evolutionary history but because there is no phylogeny 324 

of insects at the species or genus level, it is the only way to include all species responses and take in 325 

account for intra-family heterogeneity. Moreover, because these polytomies were not too old relative 326 

to the entire phylogeny, it should not affect strongly our results. Because they are not present in our 327 

phylogeny three families of Diptera (Heleomyzidae, Limoniidae and Pediciidae) and two Lepidoptera 328 

species (Sphrageidus similis, Lymantriidae, and Agria desoptilete, Lycaenidae) were excluded from 329 

phylogenetic analysis. 330 

We estimated phylogenetic signal in phenological shifts using Pagel’s λ
40

 implemented in the 331 

phylosignal  R package
41

, because it is much more robust to polytomies than Blomberg’s K
42

.  332 

Links between phenological traits and phenological shifts 333 

To test if the seasonal precocity and the spatial distribution of species were linked to phenological 334 

shifts, we used the following phylogenetic generalized least squares model (PGLS) implemented in the 335 

caper R package
43

 controlling for the Pagel’s lambda of the residuals at the maximum likelihood: 336 

                                                 (5) 337 

Where     is the phenological shift (i.e. MFD shift or FPL change) of the species z,    is the grand 338 

mean (intercept),   is the effect of the mean flight date calculated with recent records (from 2000),   339 

is the effect of the average latitude of records,   is the effect of the average longitude of records and 340 

   is an error term following N(0,σ²). 341 

Analyses of the seasonal structure of pollinator assemblages 342 

Predicting species phenology in different locations and years 343 

To assess the effect of phenological shifts at the scale of the full pollinator assemblages, we 344 

calculated changes in the overlap among phenologies. Because phenological shifts depend on location, 345 

we discretized the studied area in cells of 5°×5°. This size was chosen in order to smooth the 346 

differences in sampling effort among localities. To ensure a representative pollinator assemblage, we 347 



only included grid cells with at least 3 insect orders with 20 species with at least 30 records each. The 348 

remaining cells were considered as under-prospected. Thus species are considered present in a grid-349 

cell if it has at least 30 records between 1960 and 2016. By doing so, we assume that the composition 350 

of species assemblages are the same in 1980 and in 2016, which allows to study only the effect of 351 

phenological shifts on seasonal structure.We considered that all species have the same abundance, and 352 

a circular Gaussian phenology. We used wrapped circular normal distributions instead of a classical 353 

Gaussian distribution in order to take phenologies that span winter into account. We estimated the 354 

mean and the standard deviation of these Gaussians for the years 1980 and 2016 and for each grid cell, 355 

using the predictions of the linear models used to estimate phenological shifts, described in equations 356 

(3) and (4). 357 

Calculation of phenological overlaps within assemblages 358 

For each sufficiently prospected grid cell we calculated pairwise overlap among pollinator 359 

phenologies present in the given grid cell. We considered that all species have the same abundance, 360 

and a circular Gaussian phenology. The overlap between two phenologies is the integral of the 361 

minimum of both gaussians. We calculated two overlap measures for each grid cell: the first one 362 

focusing on the overlap within insect orders and the other one among insect orders. To give equal 363 

weight to each insect order, and thus avoid over-representation of Lepidoptera, we first calculated the 364 

mean overlap by insect order, or by pair of insect orders, respectively for the overlap within and 365 

among orders. Second, we averaged these mean values per grid cell. Finally, in order to have more 366 

robust values, we repeated this overlap calculation after shifting segmentation of the latitude and the 367 

longitude by 1.25°, 2.5° and by 3.75°. Then we averaged values obtained by 1.25°×1.25° grid cells for 368 

both measures, overlap within and among orders. 369 

In order to study the seasonal dynamic of overlap changes, we calculated a proxy of the 370 

phenological overlaps day by day in 1980 and in 2016 for each grid cell (Extended Data Fig. 5). We 371 

do not use exactly the same calculation of overlap as previously for computational reasons. To 372 

simplify the calculation method, we aggregated predicted phenologies at the order level to get a 373 

density distribution by order, henceforth called order phenologies, as presented in Fig. 3a. Then we 374 



calculated the pairwise overlap among order phenologies day by day for both years, 1980 and 2016, 375 

and for each grid cell. We also evaluated the day-by-day density value for each order phenologies for 376 

both years, 1980 and 2016, and for each grid cell. This density value is a proxy of the phenological 377 

overlap within order, because we assume that every species has the same constant abundance. Then we 378 

calculate the daily changes of these both indexes between 1980 and 2016 (Extended Data Fig. 5). We 379 

did so for one grid pattern only (i.e. without sliding windows). 380 
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