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The so-called ℓ 0 pseudonorm on the Euclidean space R d counts the number of nonzero components of a vector. We say that a sequence of norms is strictly increasingly graded (with respect to the ℓ 0 pseudonorm) if it is nondecreasing and that the sequence of norms of a vector x becomes stationary exactly at the index ℓ 0 (x). In this paper, with any (source) norm, we associate sequences of generalized top-k and k-support norms, and we also introduce the new class of orthant-strictly monotonic norms (that encompasses the ℓ p norms, but for the extreme ones). Then, we show that an orthantstrictly monotonic source norm generates a sequence of generalized top-k norms which is strictly increasingly graded. With this, we provide a systematic way to generate sequences of norms with which the level sets of the ℓ 0 pseudonorm are expressed by means of the difference of two norms. Our results rely on the study of orthant-strictly monotonic norms.

Introduction

The counting function, also called cardinality function or ℓ 0 pseudonorm, counts the number of nonzero components of a vector in R d . The ℓ 0 pseudonorm shares three out of the four axioms of a norm -nonnegativity, positivity except for x = 0, subadditivity -but the ℓ 0 pseudonorm is 0-homogeneous (hence the axiom of 1-homogeneity does not hold true). The ℓ 0 pseudonorm is used in sparse optimization, either as criterion or in the constraints, to obtain solutions with few nonzero entries. The ℓ 0 pseudonorm is nonconvex, but it has been established that its level sets can be expressed by means of the difference between two convex functions, more precisely two norms, taken from the nondecreasing sequence of socalled top-k norms (see [START_REF] Tono | Efficient DC algorithm for constrained sparse optimization[END_REF] and references therein). In this paper, we generalize this kind of result to a large class of sequences of norms by introducing three concepts and by relating them to the ℓ 0 pseudonorm.

First, we define sequences of generalized top-k and k-support norms, associated with any (source) norm on R d . This extends already known concepts of top-k and k-support norms [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF][START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF]. Second, we introduce a new class of orthant-strictly monotonic norms on R d . We rely on the notion of orthant-monotonic norm1 introduced and studied in [START_REF] Gries | Characterization of certain classes of norms[END_REF][START_REF] Gries | Some results on fields of values of a matrix[END_REF] with further developments in [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF]. With such an orthant-strictly monotonic norm, when one component of a vector moves away from zero, the norm of the vector strictly grows. Thus, an orthantstrictly monotonic norm is sensitive to the support of a vector, like the ℓ 0 pseudonorm. We study this class of norms, using the notions of dual vector pair for a norm [START_REF] Gries | Characterization of certain classes of norms[END_REF][START_REF] Gries | Some results on fields of values of a matrix[END_REF][START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF] (refered to as polar alignment in [START_REF] Fan | Atomic decomposition via polar alignment[END_REF]), and of Birkhoff orthogonality [START_REF] Birkhoff | Orthogonality in linear metric spaces[END_REF], and strict Birkhoff orthogonality [START_REF] Sain | Strictly convex space : Strong orthogonality and conjugate diameters[END_REF]. Third, we define sequences of norms that are strictly increasingly graded (with respect to the ℓ 0 pseudonorm): the sequence of norms of a vector x is nondecreasing and becomes stationary exactly at the index ℓ 0 (x). Thus equipped, we show why and how these three concepts prove especially relevant for the ℓ 0 pseudonorm. This paper has some parts in common with the paper [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF]. Indeed, the paper [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF] built upon [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF][START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF] to prove hidden convexity of any nondecreasing function of the ℓ 0 pseudonorm, using conjugacies based on a class of norms that were not considered in [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF][START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF], the orthant-strictly monotonic norms. This is why, we needed specific results on orthant-strictly monotonic norms, and provided them 2 in [8, Appendix 2]. However, the current paper deals with different issues. Indeed, we focus here on a thorough characterization of orthant and orthantstrictly monotonic norms, and on the properties of derived sequences of norms. The only connection with the ℓ 0 pseudonorm is in the notion of (strictly) increasingly graded norms and how this allows to express the level sets of the ℓ 0 pseudonorm by means of the difference between two norms. This last question was not treated in [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF].

The paper is organized as follows. In Sect. 2 we introduce a new class of orthant-strictly monotonic norms on R d , for which we provide different characterizations. In Sect. 3, we define sequences of generalized top-k and k-support norms, generated from a source norm, and we study their properties, be they general or under orthant-monotonicity. Finally, in Sect. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] we introduce the notion of sequences of norms that are (strictly) increasingly graded with respect to the ℓ 0 pseudonorm. We show that an orthant-strictly monotonic source norm generates a sequence of generalized top-k norms which is strictly increasingly graded with respect to the ℓ 0 pseudonorm. We also study the sequence of generalized k-support norms. In conclusion, we hint at possible applications in sparse optimization.

2 Orthant-monotonic and orthant-strictly monotonic norms

In §2.1, we recall well-known definitions for norms. In §2.2, we provide new characterizations of orthant-monotonic norms. Then, in §2.3, we introduce the new notion of orthant-strictly monotonic norm, and we provide characterizations, as well as properties, that will prove especially relevant for the ℓ 0 pseudonorm.

Background on norms

We work on the Euclidean space R d (where d is a nonzero integer), equipped with the scalar product •, • (but not necessarily with the Euclidean norm). Thus, all norms define the same (Borel) topology. We use the notation j, k = {j, j + 1, . . . , k -1, k} for any pair of integers such that j ≤ k. For any vector x ∈ R d , we define its support by

supp(x) = j ∈ 1, d x j = 0 ⊂ 1, d . (1) 
For any norm |||•||| on R d , we denote the unit sphere and the unit ball of the norm |||•||| by

S = x ∈ R d |||x||| = 1 , (2a) 
B = x ∈ R d |||x||| ≤ 1 . (2b) 

Dual norms

We recall that the following expression It is well-known that the dual norm of the norm • p is the ℓ q -norm • q , where q is such that 1/p + 1/q = 1 (with the extreme cases q = ∞ when p = 1, and q = 1 when p = ∞).

|||y||| ⋆ = sup
We denote the unit sphere and the unit ball of the dual norm |||•||| ⋆ by

S ⋆ = y ∈ R d |||y||| ⋆ = 1 , (4a) 
B ⋆ = y ∈ R d |||y||| ⋆ ≤ 1 . (4b) For any subset X ⊂ R d , σ X : R d → [-∞, +∞] denotes the support function of the subset X: σ X (y) = sup x∈X x, y , ∀y ∈ R d . (5) 
It is easily established that

|||•||| = σ B⋆ = σ S⋆ and |||•||| ⋆ = σ B = σ S , (6a) 
where B ⋆ , the unit ball of the dual norm, is the polar set B ⊙ of the unit ball B:

B ⋆ = B ⊙ = y ∈ R d x, y ≤ 1 , ∀x ∈ B . (6b) 
Since the set B is closed, convex and contains 0, we have [START_REF] Aliprantis | Infinite dimensional analysis[END_REF]Theorem 5.103]

B ⊙⊙ = B ⊙ ⊙ = B , (6c) 
hence the bidual norm

|||•||| ⋆⋆ = |||•||| ⋆ ⋆ is the original norm: |||•||| ⋆⋆ = |||•||| ⋆ ⋆ = |||•||| . ( 6d 
)

|||•|||-duality

By construction of the dual norm in (3), we have the inequality

x, y ≤ |||x||| × |||y||| ⋆ , ∀(x, y) ∈ R d × R d . (7a) One says that y ∈ R d is |||•|||-dual to x ∈ R d , denoted by y |||•||| x, if equality holds in Inequality (7a), that is, y |||•||| x ⇐⇒ x, y = |||x||| × |||y||| ⋆ . (7b) 
The terminology |||•|||-dual comes from [14, page 2] (see also the vocable of dual vector pair in [START_REF] Gries | Characterization of certain classes of norms[END_REF]Equation (1.11)] and of dual vectors in [12, p. 283], whereas it is refered as polar alignment in [START_REF] Fan | Atomic decomposition via polar alignment[END_REF]). We illustrate the |||•|||-duality in the case of the ℓ p -norms

• p , for p ∈ [1, ∞]. The notation x • x ′ = (x 1 x ′ 1 , . . . , x d x ′ d
) is for the Hadamard (entrywise) product, for any x, x ′ in R d . For any x ∈ R d , we denote by sign(x) ∈ {-1, 0, 1} d the vector of R d with components the signs sign(x i ) ∈ {-1, 0, 1} of the entries x i , for i ∈ 1, d . Let x ∈ R d \{0} be a given vector (the case x = 0 is trivial). We easily obtain that a vector y is

• ℓ 2 -dual to x iff (if and only if) there exists λ ∈ R + such that y = λx; • ℓ p -dual to x for p ∈]1, ∞[ iff there exists λ ∈ R + such that y = λsign(x) • |x i | p/q i∈ 1,d
, where q is such that 1/p + 1/q = 1;

• ℓ 1 -dual to x iff the vectors y and y ∞ sign(x) coincide on supp(x), the support of the vector x as defined in (1);

• ℓ ∞ -dual to x iff y j = 0 for all j ∈ arg max i∈ 1,d |x i |, and y • x ≥ 0.

Restriction norms

For any subset K ⊂ 1, d , we denote by R K the set of functions from K to R -which can be identified with R |K| , where |K| denotes the cardinality of K ⊂ 1, d ) -and we introduce the subspace of R d made of vectors whose components vanish outside of K by3 

R K = R K × {0} -K = x ∈ R d x j = 0 , ∀j ∈ K ⊂ R d , (8) 
where R ∅ = {0}. We denote by π K : R d → R K the orthogonal projection mapping and, for any vector x ∈ R d , by x K = π K (x) ∈ R K the vector which coincides with x, except for the components outside of K that are zero. It is easily seen that the orthogonal projection mapping π K is self-dual (equal to its dual operator), giving

x K , y K = x K , y = π K (x), y = x, π K (y) = x, y K , ∀x ∈ R d , ∀y ∈ R d . ( 9 
)
Definition 1 For any norm |||•||| on R d and any subset K ⊂ 1, d , we define three norms on the subspace R K of R d , as defined in [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF], as follows. It has been established (see [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF]Proposition 2.2]) that, for any nonempty subset K ⊂ 1, d , one has the inequality |||•||| K,⋆ ≤ |||•||| ⋆,K . We will discuss the equality case in Proposition 4.

• The K-restriction norm |||•||| K is the norm on R K defined by |||x||| K = |||x||| , ∀x ∈ R K . (10) 
• The (⋆, K)-norm |||•||| ⋆,K is the norm |||•||| ⋆ K ,

New characterizations of orthant-monotonic norms

We recall the definitions of monotonic and of orthant-monotonic norms before introducing, in the next §2.3, the new notion of orthant-strictly monotonic norms. For any

x = (x 1 , . . . , x d ) ∈ R d , we denote |x| = (|x 1 |, . . . , |x d |) ∈ R d . Definition 2 A norm |||•||| on the space R d is called • monotonic [3] if, for all x, x ′ in R d , we have |x| ≤ |x ′ | ⇒ |||x||| ≤ |||x ′ |||, where |x| ≤ |x ′ | means |x i | ≤ |x ′ i | for all i ∈ 1, d ,
• orthant-monotonic [START_REF] Gries | Characterization of certain classes of norms[END_REF][START_REF] Gries | Some results on fields of values of a matrix[END_REF] if, for all

x, x ′ in R d , we have |x| ≤ |x ′ | and x • x ′ ≥ 0 ⇒ |||x||| ≤ |||x ′ ||| .
We will use the following, easy to prove, properties: any monotonic norm is orthantmonotonic; if a norm is orthant-monotonic, so are its restriction norms in Definition 1 (as norms on their respective subspaces). All the ℓ p -norms • p , for p ∈ [1, ∞], are monotonic, hence orthant-monotonic. The definition of an orthant-monotonic seminorm is straightforward, and it is easily proven that the supremum of a family of orthant-monotonic seminorms is an orthant-monotonic seminorm.

We recall the definitions of Birkhoff orthogonality [START_REF] Birkhoff | Orthogonality in linear metric spaces[END_REF], and of strict Birkhoff orthogonality [START_REF] Sain | Strictly convex space : Strong orthogonality and conjugate diameters[END_REF].

Definition 3 Let U and V be two subspaces of R d . Let |||•||| be a norm on R d .
• We say that the subspace U is Birkhoff orthogonal [START_REF] Birkhoff | Orthogonality in linear metric spaces[END_REF] to the subspace V, denoted by

U ⊥ |||•||| V if |||u + v||| ≥ |||u|||, for any u ∈ U and any v ∈ V, that is, U ⊥ |||•||| V ⇐⇒ |||u + v||| ≥ |||u||| , ∀u ∈ U , ∀v ∈ V . (11) 
• We say that the subspace U is strictly Birkhoff orthogonal [START_REF] Sain | Strictly convex space : Strong orthogonality and conjugate diameters[END_REF] to the subspace V, denoted by U ⊥ 

The norm |||•|||

⋆ is orthant-monotonic. 3. |||•||| K,⋆ = |||•||| ⋆,K , for all K ⊂ 1, d . 4. R K ⊥ |||•||| R -K , for all K ⊂ 1, d . 5. R K ⊥ |||•||| R -K , for all K ⊂ 1, d with |K| = d -1.

For any vector

u ∈ R d \{0}, there exists a vector v ∈ R d \{0} such that supp(v) ⊂ supp(u), that u • v ≥ 0 and that v is |||•|||-dual to u as in (7b).
7. The norm |||•||| is increasing with the coordinate subspaces, in the sense that, for any x ∈ R d and any

J ⊂ K ⊂ 1, d , we have |||x J ||| ≤ |||x K |||. 8. π K (B) = R K ∩ B, for all K ⊂ 1, d .
Proof. The equivalence between all statements but the two last ones can be found in [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF]Proposition 2.4].

It is easily established that Item 7 is equivalent to Item 4. Indeed, suppose that Item 7 holds true. We consider x ∈ R d and J ⊂ K ⊂ 1, d . By setting u = x J ∈ R J and v = x Kx J , we get that v ∈ R -J . By Item 7, we have that |||u||| ≤ |||u + v|||, hence that |||x J ||| ≤ |||x K |||. The reverse implication is proved in the same way.

We now show that Item 3 and Item 8 are equivalent. For this purpose, let |||•||| be a norm on R d and K ⊂ 1, d , and let us admit for a while that

|||y||| ⋆,K = σ π K (B) (y) = σ π K (S) (y) , ∀y ∈ R K , ( 13a 
)
|||y||| K,⋆ = σ R K ∩B (y) = σ R K ∩S (y) , ∀y ∈ R K . (13b) 
Therefore, the equality

|||•||| ⋆,K = |||•||| K,⋆ is equivalent to σ π K (B) = σ R K ∩B ,
when this last equality is restricted to the subspace R K . Now, on the one hand, the subset π K (B) of R K is convex and closed (in the subspace R K ) as the image of the convex and compact set B by the linear mapping π K . On the other hand, the subset

R K ∩ B of R K is convex and closed (in the subspace R K ). Therefore, |||•||| ⋆,K = |||•||| K,⋆ if and only if π K (B) = R K ∩ B.
Thus, we have shown that Item 3 and Item 8 are equivalent. It remains to prove (13a) and (13b).

• We prove (13a). For any y ∈ R K , we have = sup

x ′ ∈π K (B)
x ′ , y

= σ π K (B) (y) .
(by definition (5) of the support function σ π K (B) )

Thus, we have proved that |||y||| ⋆,K = σ π K (B) (y). It remains to prove that σ π K (B) (y) = σ π K (S) (y). Now, as the unit ball B is equal to the convex hull co(S) of the unit sphere S, we get that π K (B) = π K (co(S)). As π K is a linear mapping, we easily obtain that π K (co(S)) = co(π K (S)). Since σ co(π K (S)) = σ π K (S) [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Prop. 7.13], we conclude that |||y||| ⋆,K = σ π K (B) = σ co(π K (S)) = σ π K (S) on R K , that is, equality (13a) holds true.

• We prove (13b).

By (6a), we have the equality |||•||| K,⋆ = σ R K ∩B on R K , as R K ∩B is easily seen to be the unit ball (in R K ) of the restriction norm |||•||| K in [START_REF] Fan | Atomic decomposition via polar alignment[END_REF]. Therefore, we have proved that |||y||| K,⋆ = σ R K ∩B (y) for any y ∈ R K . Now, we prove that σ R K ∩B (y) = σ R K ∩S (y) for any y ∈ R K . It is easy to check that the unit sphere (in R K ) of the restriction norm |||•||| K in (10) is R K ∩ S. Then, using the fact that the convex hull (be it in R K or in R d ) of the unit sphere R K ∩ S is the unit ball R K ∩ B, we have that co

(R K ∩ S) = R K ∩ B. As σ co(R K ∩S) = σ R K ∩S [4, Prop. 7.13], we conclude that |||•||| K,⋆ = σ R K ∩B = σ co(R K ∩S) = σ R K ∩S on R K , that is, equality (13b) holds true.
As an example, we illustrate Item 6 of Proposition 4 with the ℓ 1 and ℓ ∞ norms, which both are orthant-monotonic. Let I ∈ R d denote the vector whose components are all equal to one. For any vector u ∈ R d ,

• the vector v = sign(u) is such that supp(v) = supp(u), that u • v ≥ 0, and is • 1 -dual to the vector u; this last assertion is obvious for u = 0 and, when u = 0, we have that

u, v = u, sign(u) = |u|, I = u 1 = u 1 × 1 = u 1 v ∞ , • the vector v = sign(u) • I U , where U = arg max i∈ 1,d |u i |, is such that supp(v) ⊂ supp(u), that u • v ≥ 0,
and is • ∞ -dual to the vector u, as we have

u, v = u, sign(u) • I U = |u| U , I U = u ∞ I U , I U = u ∞ I U 1 = u ∞ v 1 .

Orthant-strictly monotonic norms

After these recalls, we introduce two new notions, that are the strict versions of monotonic and orthant-monotonic norms. Then, we provide characterizations that will prove especially relevant for the ℓ 0 pseudonorm.

Definition 5 A norm |||•||| on the space R d is called • strictly monotonic if, for all x, x ′ in R d , we have |x| < |x ′ | ⇒ |||x||| < |||x ′ |||, where |x| < |x ′ | means that |x i | ≤ |x ′ i | for all i ∈ 1, d , and that there exists j ∈ 1, d such that |x j | < |x ′ j |, • orthant-strictly monotonic if, for all x, x ′ in R d , we have |x| < |x ′ | and x • x ′ ≥ 0 ⇒ |||x||| < |||x ′ ||| .
We will use the following, easy to prove, properties: any strictly monotonic norm is orthantstrictly monotonic; any orthant-strictly monotonic norm is orthant-monotonic. All the ℓ p -norms • p on the space R d , for p ∈ [1, ∞[, are strictly monotonic, hence orthant-strictly monotonic. By contrast, the ℓ ∞ -norm • ∞ is not orthant-strictly monotonic.

To the difference with orthant-monotonicity (equivalence between Item 1 and Item 2 of Proposition 4), the notion of orthant-strictly monotonicity is not necessarily preserved when taking the dual norm: indeed, the ℓ 1 -norm • 1 is orthant-strictly monotonic, whereas its dual norm, the ℓ ∞ -norm • ∞ is orthant-monotonic, but not orthant-strictly monotonic. Now, we provide characterizations of orthant-strictly monotonic norms. 

The family {R

K } K⊂ 1,d of subspaces of R d is strictly Birkhoff orthogonal, in the sense that R K ⊥ > |||•||| R -K , for all K ⊂ 1, d , as in (12).
3. The norm |||•||| is strictly increasing with the coordinate subspaces, in the sense that 4 , for any x ∈ R d and any J K ⊂ 1, d , we have

x J = x K ⇒ |||x J ||| < |||x K |||.

For any vector

u ∈ R d \{0}, there exists a vector v ∈ R d \{0} such that supp(v) = supp(u), that u • v ≥ 0, and that v is |||•|||-dual to u, that is, u, v = |||u||| × |||v||| ⋆ . Proof. • We prove that Item 1 implies Item 2. Let K ⊂ 1, d . Let u ∈ R K and v ∈ R -K \{0}, that is, u = u K and v = v -K = 0.
We want to show that |||u + v||| > |||u|||, by the definition (12) of strict Birkhoff orthogonality.

On the one hand, by definition of the module of a vector, we easily see that

|x| = |x K | + |x -K |, for any vector x ∈ R d . Thus, we have |u+v| = |(u + v) K |+|(u + v) -K | = |u K +v K |+|u -K +v -K | = |u K + 0| + |0 + v -K | = |u K | + |v -K | > |u K | = |u| since |v -K | > 0 as v = v -K = 0, and since u = u K .
On the other hand, we easily get that (u + v)

• u = (u + v) K • u K + (u + v) -K • u -K = u K • u K + v -K • u -K = u K • u K , because u -K = 0 and v K = 0. Therefore, we get that (u + v) • u = u K • u K ≥ 0.
From |u + v| > |u| and (u + v) • u ≥ 0, we deduce that |||u + v||| > |||u||| by Definition 5 as the norm |||•||| is orthant-strictly monotonic. Thus, ( 12) is satisfied, hence Item 2 holds true.

• We prove that Item 2 implies Item 3.

Let x ∈ R d and J K ⊂ 1, d be and such that x J = x K . We will show that |||x J ||| < |||x K |||.

As J K ⊂ 1, d and x J = x K , there exists w ∈ R -J , w = 0, such that x K = x J + w. Now, as the family {R K } K⊂ 1,d is strictly Birkhoff orthogonal by assumption (Item 2), we have

R J ⊥ > |||•||| R -J . As a consequence, we obtain that |||x K ||| = |||x J + w||| > |||x J |||. • We prove that Item 3 implies Item 4.
Let u ∈ R d \{0} be given and let us put K = supp(u) = ∅. As the norm |||•||| is orthantstrictly monotonic, it is orthant-monotonic; hence, by Item 6 in Proposition 4, there exists a vector

v ∈ R d \{0} such that supp(v) ⊂ supp(u), that u • v ≥ 0 and that v is |||•|||-dual to u, as in (7b), that is, u, v = |||u||| × |||v||| ⋆ . Thus J = supp(v) ⊂ K = supp(u)
. We now show that J K is impossible, hence that J = K, thus proving that Item 4 holds true with the above vector v.

Writing that • We prove that Item 4 implies Item 1. Let x, x ′ in R d be such that |x| < |x ′ | and x • x ′ ≥ 0. We are going to prove that |||x||| < |||x ′ |||.

u, v = |||u||| × |||v||| ⋆ (using that u = u K and v = v K = v J ), we obtain |||u||| × |||v||| ⋆ = u, v = u K , v = u K , v K = u K , v J = u J , v J = u J , v . As a consequence, {u K , u J } ⊂ arg max |||x|||≤|||u||| x, v , by definition (3) of |||v||| ⋆ , because |||u||| = |||u K ||| ≥ |||u J |||,
We suppose that x = 0 (otherwise the proof is trivial). By Item 4, there exists a vector w ∈ R d such that supp(w) = supp(x), x • w ≥ 0 and that x, w = |||x||| × |||w||| ⋆ . As supp(w) = supp(x) with x = 0, we have w = 0, so that we can always suppose that |||w||| ⋆ = 1 (after renormalization), giving |||x||| = x, w .

First, we are going to establish that i

∈ supp(x) ⇒ x ′ i w i ≥ x i w i . From |x ′ | > |x|, we deduce that |x ′ | 2 ≥ |x ′ | • |x|, and, as x ′ • x ≥ 0, we obtain that |x ′ | 2 ≥ x ′ • x = |x ′ | • |x| ≥ 0. Hence, we deduce (x ′ • x) • (x ′ • w) = |x ′ | 2 • (x • w) ≥ (x ′ • x) • (x • w) , as x • w ≥ 0. Moving to components, we get that, for all i ∈ 1, d , x ′ i x i x ′ i w i ≥ x ′ i x i x i w i , so that, on the one hand x ′ i x i > 0 ⇒ x ′ i w i ≥ x i w i . On the other hand, as |x ′ | > |x| and x • x ′ ≥ 0, we easily get that x ′ i x i > 0 ⇐⇒ i ∈ supp(x). Therefore, we deduce that i ∈ supp(x) ⇒ x ′ i x i > 0 ⇒ x ′ i w i ≥ x i w i .
Second, we show that |||x||| ≤ |||x ′ |||. Indeed, we have:

|||x ′ ||| = sup |||w ′ |||⋆≤1 x ′ , w ′ (by (3) as |||•||| = (|||•||| ⋆ ) ⋆ ) ≥ x ′ , w (as |||w||| ⋆ = 1) = i∈supp(w) x ′ i w i = i∈supp(x)
x ′ i w i (as supp(w) = supp(x))

≥ i∈supp(x) x i w i (as i ∈ supp(x) ⇒ x ′ i w i ≥ x i w i ) = x, w
= |||x||| (by the property |||x||| = x, w of the vector w.)

Third, we show that |||x||| < |||x ′ |||. There are two cases.

In the first case, there exists j ∈ supp(x) such that 0

< |x j | < |x ′ j |. As a consequence, on the one hand, 0 < |w j ||x j | < |w j ||x ′ j |, since w j = 0 because j ∈ supp(x) = supp(w).
On the other hand, x ′ j x j > 0 implies x ′ j w j ≥ x j w j , as seen above, and x j w j ≥ 0 because x • w ≥ 0. Thus, we get that x ′ j w j ≥ x j w j ≥ 0. As 0 < |x j | < |x ′ j |, we deduce that x ′ j w j > x j w j . Returning to the last inequality in the sequence of equalities and inequalities above, we observe that it is now strict, and we conclude that |||x ′ ||| > |||x|||.

In the second case, i ∈ supp(x) ⇒ 0

< |x i | = |x ′ i |. As |x| < |x ′ |, we deduce that there exists j ∈ supp(x ′ )\supp(x) such that 0 = |x j | < |x ′ j |.
We define a new vector x by xj = 1/2x ′ j = 0 and xi = x i for i = j. Putting I = supp(x), we have x = x I + 1/2x ′ j e j = xI + x{j} , where e j denotes the j-canonical vector of R d . On the one hand, from the first case we obtain that This ends the proof.

As an example, we illustrate Item 4 of Proposition 6 with the ℓ 1 (orthant-strictly monotonic) and ℓ ∞ (not orthant-strictly monotonic) norms.

• For any vector u ∈ R d , we have seen (right after the proof of Proposition 6) that the vector v = sign(u) is such that supp(v) = supp(u), that u • v ≥ 0, and is • 1 -dual to the vector u. This is another proof that the norm ℓ 1 is orthant-strictly monotonic.

• By contrast, if the vector v = 0 is • ∞ -dual to the vector u = (1, 1/2, 0, . . . , 0), then an easy computation shows that, necessarily, v = (v 1 , 0, 0, . . . , 0) with v 1 > 0. As a consequence, this gives {1} = supp(v) supp(u) = {1, 2}. This suffices to prove that the norm ℓ ∞ is not orthant-strictly monotonic.

We end this §2.3 with additional properties related to exposed and extreme points of the unit ball B of an orthant-strictly monotonic norm |||•|||. We recall that an element x of a convex set C is called an exposed point of C if there exists a support hyperplane H to the convex set C at x such that H ∩ C = {x}. We show in the next proposition that orthantstrictly monotonicity implies that the intersection of the unit sphere S with the subspaces R {i} in [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF], for i ∈ 1, d , is made of exposed points of the unit ball B. Proof. Assume that the norm |||•||| is orthant-strictly monotonic and fix i ∈ 1, d . Then, using item 2 of Proposition 6, we have that |||e i + j∈ 1,d \{i} λ j e j ||| > |||e i |||, for all λ j j∈ 1,d \{i} where not all λ j 's are 0 and where e j = e j /|||e j ||| for all j ∈ 1, d . This means that the renormalized canonical basis is strongly orthonormal relative to e i in the sense of Birkhoff. Using [18, Theorem 2.6], we obtain that e i is an exposed point of the unit ball B. This ends the proof.

We recall that an extreme point x of a convex set C cannot be written as 

x = λx ′ +(1-λ)x ′′ with x ′ ∈ C, x ′′ ∈ C, x ′ = x, x ′′ = x and λ ∈]0, 1[. The normed space R d , |||•||| is said to be strictly convex if the unit ball B (of the norm |||•|||) is rotund, that is, if

Generalized top-k and k-support norms

Let |||•||| be a norm on R d , that we call the source norm. In §3.1, we introduce generalized topk and k-support norms constructed from the source norm, and we provide various examples. In §3.2, we establish properties valid for any source norm, whereas, in §3.3, we establish properties valid when the source norm is orthant-monotonic, making thus the connection with the previous Sect. 2. 

Definition and examples

(k) = sup |K|≤k |||x K ||| , ∀x ∈ R d . ( 14 
)
We call generalized k-support norm the dual norm of the generalized top-k norm, denoted by 6 

|||•||| ⋆sn (k) : |||•||| ⋆sn (k) = |||•||| tn (k) ⋆ . ( 15 
)
It is easily verified that |||•||| tn (k) indeed is a norm, for all k ∈ 1, d . We provide examples of generalized top-k and k-support norms in the case of permutation invariant monotonic source norms and of ℓ p source norms. Table 1 provides a summary. 5 The notation sup |K|≤k is a shorthand for sup K⊂ 1,d ,|K|≤k . 6 We use the symbol ⋆ in the superscript to indicate that the generalized k-support norm |||•||| ⋆sn (k) is a dual norm. To stress the point, we use the letter x for a primal vector, like in |||x||| tn (k) , and the letter y for a dual vector, like in |||y||| ⋆sn (k) .

The case of permutation invariant monotonic source norms. Letting x ∈ R d and ν be a permutation of 1, or the 2-k-symmetric gauge norm [START_REF] Mirsky | Symmetric Gauge Functions and Unitarily Invariant Norms[END_REF] or the Ky Fan vector norm [START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF]. Indeed, in all these cases, the norm of a vector x is obtained with a subvector of size k having the k largest components in module, because the assumptions of Lemma 10 are satisfied. More generally, when the norm associated with the ℓ p -norm is the (q,k)-support norm, that we denote y sn q,k . The formula x sn ∞,k = max{ x 1 /k, x ∞ } can be found in [5, Exercise IV.1.18, p. 90].

d such that |x ν(1) | ≥ |x ν(2) | ≥ • • • ≥ |x ν(d) |, we note x ↓ = |x ν(1) |,
|||•||| is the ℓ p -norm • p , for p ∈ [1, ∞],

General properties

We establish properties of generalized top-k and k-support norms, valid for any source norm, that will be useful to prove our results in Sect. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. 

source norm |||•||| |||•||| tn (k) |||•||| ⋆sn (k) • p top-(p,k) norm (q,k)-support norm x tn p,k y sn q,k = k j=1 |x ν(j) | p 1/p 1/p + 1/q = 1 • 1 top-(1,k) norm (∞,k)-support norm x tn 1,k = k l=1 |x ν(l) | y sn ∞,k = max{ y 1 /k, y ∞ } • 2 top-(2,k) norm (2,k)-support norm x tn 2,k = k l=1 |x ν(l) | 2 y sn 2,k no analytic expression (computation in [2, Prop. 2.1]) • ∞ top-(∞,k) norm (1,k)-support norm ℓ ∞ -norm ℓ 1 -norm x tn ∞,k = |x ν(1) | = x ∞ y sn 1,k = y 1
= • p for p ∈ [1, ∞]; ν is a permutation of 1, d such that |x ν(1) | ≥ |x ν(2) | ≥ • • • ≥ |x ν(d) |

Properties of generalized top-k norms

We denote the unit ball of the generalized top-k norm |||•||| tn (k) in Definition 9 by

B tn (k) = x ∈ R d |||x||| tn (k) ≤ 1 , ∀k ∈ 1, d . (16) 
Proposition 11 Definition 9) has the expression

• For k ∈ 1, d , the generalized top-k norm |||•||| tn (k) (in
|||x||| tn (k) = sup |K|≤k σ π K (S⋆) (x) , ∀x ∈ R d , ( 17 
)
where S ⋆ is the unit sphere of the dual norm |||•||| ⋆ as in (4a).

• We have the inequality

|||x||| ≤ |||x||| tn (d) , ∀x ∈ R d . (18) 
• The sequence |||•||| tn (j) j∈ 1,d of generalized top-k norms in ( 14) is nondecreasing, in the sense that the following inequalities hold true

|||x||| tn (1) ≤ • • • ≤ |||x||| tn (j) ≤ |||x||| tn (j+1) ≤ • • • ≤ |||x||| tn (d) , ∀x ∈ R d . (19) 
• The sequence B tn (j) j∈ 1,d of units balls of the generalized top-k norms in ( 16) is nonincreasing, in the sense that the following inclusions hold true: and we get [START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF].

B tn (d) ⊂ • • • ⊂ B tn (j+1) ⊂ B tn (j) ⊂ • • • ⊂ B tn (1) . (20) 
• From the very definition ( 14) of the generalized top-d norm |||•||| tn (d) , we get

|||x||| tn (d) = sup |K|≤d |||x K ||| ≥ |||x 1,d ||| = |||x||| , ∀x ∈ R d , hence (18) 
.

• The inequalities [START_REF] Rockafellar | Convex Analysis[END_REF] between norms easily derive from the very definition ( 14) of the generalized top-k norms |||•||| tn (k) . • The inclusions [START_REF] Sain | Strictly convex space : Strong orthogonality and conjugate diameters[END_REF] between unit balls directly follow from the inequalities [START_REF] Rockafellar | Convex Analysis[END_REF] between norms. This ends the proof.

Properties of generalized k-support norms

We denote the unit ball of the generalized k-support norm |||•||| ⋆sn (k) in Definition 9 by

B ⋆sn (k) = y ∈ R d |||y||| ⋆sn (k) ≤ 1 , ∀k ∈ 1, d . (21) 
Proposition 12

• For k ∈ 1, d , the generalized k-support norm |||•||| ⋆sn (k) in Definition 9 has unit ball B ⋆sn (k) = co |K|≤k π K (S ⋆ ) , (22) 
where co(S) denotes the closed convex hull of a subset S ⊂ R d .

• We have the inequality

|||y||| ⋆sn (d) ≤ |||y||| ⋆ , ∀y ∈ R d . (23) 
• The sequence |||•||| ⋆sn (j) j∈ 1,d of generalized k-support norms in [START_REF] Mcdonald | New perspectives on k-support and cluster norms[END_REF] is nonincreasing, in the sense that the following inequalities hold true

|||y||| ⋆sn (d) ≤ • • • ≤ |||y||| ⋆sn (j+1) ≤ |||y||| ⋆sn (j) ≤ • • • ≤ |||y||| ⋆sn (1) , ∀y ∈ R d . (24) 
• The sequence B ⋆sn

(j) j∈ 1,d
of units balls of the generalized k-support norms in (21) is nondecreasing, in the sense that the following inclusions hold true:

B ⋆sn (1) ⊂ • • • ⊂ B ⋆sn (j) ⊂ B ⋆sn (j+1) ⊂ • • • ⊂ B ⋆sn (d) . (25) 
Proof. • For any x ∈ R d , we have

|||x||| tn (k) = sup |K|≤k σ π K (S⋆) (x) (by (17)) = σ |K|≤k π K (S⋆) (x)
(as the support function turns a union of sets into a supremum)

= σ co |K|≤k π K (S⋆) (x) (by [4, Prop. 7.13])
and we obtain (22) thanks to (6a).

• From the inequality (18) between norms, we deduce the inequality (23) between dual norms, by the definition (3) of a dual norm.

• The inequalities in (24) easily derive from the inclusions (25).

• The inclusions (25) directly follow from the inclusions [START_REF] Sain | Strictly convex space : Strong orthogonality and conjugate diameters[END_REF] and from (6b) as

B ⋆sn (k) = B tn (k)
⊙ , the polar set of B tn (k) . This ends the proof.

Properties under orthant-monotonicity

We establish properties of generalized top-k and k-support norms, valid when the source norm is orthant-monotonic, that will be useful to prove our results in Sect. 4.

Proposition 13

1. Let k ∈ 1, d . If the source norm |||•||| is orthant-monotonic, then
• the generalized top-k norm has the expression

|||x||| tn (k) = sup |K|≤k σ R K ∩S⋆ (x) , ∀x ∈ R d , ( 26 
)
where S ⋆ is the unit sphere of the dual norm |||•||| ⋆ as in (4a),

• the unit ball of the k-support norm is given by 

B ⋆sn (k) = co |K|≤k (R K ∩ S ⋆ ) . (27 
σ R K ∩S⋆ (x K ) (by (13b) applied to |||•||| ⋆ with x K ∈ R K ) = sup |K|≤k σ R K ∩S⋆ (x)
by the self-duality property (9) of the projection mapping π K , and by definition (8) of the subspace R K .

• We prove (27). Indeed, by (26), we have that 14), thanks to the property claimed right after the Definition 2: the supremum of a family of orthant-monotonic seminorms is an orthant-monotonic seminorm. Thus, we have established that the generalized top-k norm in ( 14) is orthant-monotonic. We deduce that its dual norm, the generalized 15), is orthant-monotonic. Indeed, the dual norm of an orthantmonotonic norm |||•||| is orthant-monotonic, as proved in [START_REF] Gries | Characterization of certain classes of norms[END_REF]Theorem 2.23] (equivalence between Item 1 and Item 2 in Proposition 4). This ends the proof. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] The ℓ 0 pseudonorm, orthant-monotonicity and generalized top-k and k-support norms

|||•||| tn (k) = sup |K|≤k σ R K ∩S⋆ . As sup |K|≤k σ R K ∩S⋆ = σ |K|≤k (R K ∩S⋆) , we have just established that |||•||| tn (k) = σ ∪ |K|≤k (R K ∩S⋆) .
k-support norm |||•||| ⋆sn (k) in (
In §4.1, we introduce basic notation regarding the ℓ 0 pseudonorm. In §4.2, we introduce the notions of (strictly) increasingly or decreasingly graded sequences of norms, and we display conditions for generalized top-k norms or generalized k-support norms to be graded sequences.

Level sets of the ℓ 0 pseudonorm

The so-called ℓ 0 pseudonorm is the function ℓ 0 : R d → 0, d defined, for any x ∈ R d , by

ℓ 0 (x) = |supp(x)| = number of nonzero components of x . ( 29 
)
The ℓ 0 pseudonorm shares three out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subadditivity. The axiom of 1-homogeneity does not hold true; by contrast, the ℓ 0 pseudonorm is 0-homogeneous:

ℓ 0 (ρx) = ℓ 0 (x) , ∀ρ ∈ R\{0} , ∀x ∈ R d . ( 30 
)
We introduce the level sets

ℓ ≤k 0 = x ∈ R d ℓ 0 (x) ≤ k , ∀k ∈ 0, d . (31) 
The level sets of the ℓ 0 pseudonorm in (31) are easily related to the subspaces R K of R d , as defined in [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF], by

ℓ ≤k 0 = x ∈ R d ℓ 0 (x) ≤ k = |K|≤k R K , ∀k ∈ 0, d , (32) 
where the notation |K|≤k is a shorthand for K⊂ 1,d ,|K|≤k .

If the source norm |||•||| is orthant-monotonic, the expression (27) of the unit ball of the k-support norm can be written with the level sets of the ℓ 0 pseudonorm as

B ⋆sn (k) = co |K|≤k (R K ∩ S ⋆ ) = co ℓ ≤k 0 ∩ S ⋆ . ( 33 
)
This formula is reminiscent of (and generalizes) [2, Equation ( 2 Proof. First, let us observe that the level set ℓ ≤k 0 in (31) is closed because the pseudonorm ℓ 0 is lower semi continuous. Then, we get

ℓ ≤k 0 ∩ S ⋆ = B ⋆sn (k) ∩ S ⋆ , ∀k ∈ 0, d , (34 
ℓ ≤k 0 ∩ S ⋆ = co ℓ ≤k 0 ∩ S ⋆ ∩ S ⋆
(by Corollary 16 because ℓ ≤k 0 ∩ S ⋆ ⊂ S ⋆ and is closed, and because the unit ball Proof. We first prove that A = co(A) ∩ S when A ⊂ S. Since A ⊂ co(A) and A ⊂ S, we immediately get that A ⊂ co(A) ∩ S. To prove the reverse inclusion, we first start by proving that co(A) ∩ S ⊂ extr co(A) , the set of extreme points of co(A).

B ⋆ is rotund) = co |K|≤k (R K ∩ S ⋆ ) ∩ S ⋆ (as ℓ ≤k 0 = |K|≤k R K by (32)) = B ⋆sn (k) ∩ S ⋆ as co |K|≤k (R K ∩ S ⋆ ) = B ⋆sn ( 
The proof is by contradiction. Suppose indeed that there exists x ∈ co(A) ∩ S and x ∈ extr co(A) . Then, by definition of an extreme point, we could find y ∈ co(A) and z ∈ co(A), distinct from x, and such that x = λy + (1λ)z for some λ ∈]0, 1[. Notice that necessarily y = z (because, else, we would have x = y = z which would contradict y = x and z = x). By assumption A ⊂ S, we deduce that co(A) ⊂ co( S) ⊂ co(S) = B = x ∈ R d |||x||| ≤ 1 , the unit ball, and therefore that |||y||| ≤ 1 and |||z||| ≤ 1. If y or z were not in S -that is, if either |||y||| < 1 or |||z||| < 1 -then we would obtain that |||x||| ≤ λ|||y||| + (1λ)|||z||| < 1 since λ ∈]0, 1[; we would thus arrive at a contradiction since x could not be in the sphere S and thus not in S. Thus, both y and z must be in S, and we have a contradiction. Indeed, by assumption that S is a subset of extr(S), no x ∈ S can be obtained as a convex combination of y ∈ S\{x} and z ∈ S\{x}, with y = z.

Hence, we have proved by contradiction that co(A) ∩ S ⊂ extr co(A) . We can conclude using the fact that extr co(A) ⊂ A, because the convex closure operation cannot generate new extreme points, as proved in [START_REF] Hiriart-Urruty | Optimisation et analyse convexe[END_REF]Exercice 6.4]. Now, we consider the case where the subset A of S is closed. Using the first part of the proof we have that A = co(A) ∩ S. Now, A is closed by assumption and bounded since A ⊂ S ⊂ S. Thus, A is a compact subset of R d and, in a finite dimensional space, we get that co(A) is compact [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 17.2], thus closed. We conclude that A = co(A) ∩ S = co(A) ∩ S = co(A) ∩ S, where the last equality comes from [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Prop. 3.46]. This ends the proof.

If the unit ball B is rotund, we then have that S = extr(B), and we can apply Lemma 15 with S = S to obtain the following corollary.

Corollary 16 Let |||•||| be a norm on R d . Suppose that the unit ball of the norm |||•||| is rotund. If A is a subset of the unit sphere S, then A = co(A) ∩ S. If A is a closed subset of S, then A = co(A) ∩ S.

Graded sequences of norms

In [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF], we introduced the notions of (strictly) decreasingly graded sequences of norms. In §4.2.1, we define (strictly) increasingly graded sequences of norms. In §4.2.2, we display conditions for generalized top-k norms to be (strictly) increasingly graded sequences. In §4.2.3, we display conditions for generalized k-support norms to be (strictly) decreasingly graded sequences. In §4.2.4, we express the level sets of the ℓ 0 pseudonorm in (31) by means of the difference between two norms.

Definitions of graded sequences of norms

In a sense, a graded sequence of norms is a monotone sequence that detects the number of nonzero components of a vector in R d when the sequence becomes stationary.

Definition 17

We say that a sequence {|||•||| k } k∈ 1,d of norms on R d is increasingly graded (resp. strictly increasingly graded) w.r.t. (with respect to) the ℓ 0 pseudonorm if, for any x ∈ R d , one of the three following equivalent statements holds true.

1. We have the implication (resp. equivalence), for any l ∈ 1, d ,

ℓ 0 (x) = l =⇒ |||x||| 1 ≤ • • • ≤ |||x||| l-1 ≤ |||x||| l = • • • = |||x||| d , (35a) 
( resp. ℓ 0 (x) = l ⇐⇒ |||x||| 1 ≤ • • • ≤ |||x||| l-1 < |||x||| l = • • • = |||x||| d . ) (35b)
2. The sequence k ∈ 1, d → |||x||| k is nondecreasing and we have the implication (resp. equivalence), for any l ∈ 1, d ,

ℓ 0 (x) ≤ l =⇒ |||x||| l = |||x||| d , (35c) 
( resp. ℓ 0 (x) ≤ l ⇐⇒ |||x||| l = |||x||| d ⇐⇒ |||x||| l ≤ |||x||| d . ) (35d)
3. The sequence k ∈ 1, d → |||x||| k is nondecreasing and we have the inequality (resp. equality)

ℓ 0 (x) ≥ min k ∈ 1, d |||x||| k = |||x||| d , (35e) 
( resp. ℓ 0 (x) = min k ∈ 1, d |||x||| k = |||x||| d . ) (35f) 
These definitions of (strictly) increasingly graded mimic the ones of (strictly) decreasingly graded in [9, Definition 1] (replace ≤ in (35a) by ≥, replace ≤ and < in (35b) by ≥ and >, replace nondecreasing by nonincreasing in the two last items). The property of orthant-strict monotonicity for norms, as introduced in Definition 5, proves especially relevant for the ℓ 0 pseudonorm and sequences of generalized top-k norms, as the following Propositions 18 and 20 reveal.

Sufficient conditions for increasingly graded sequence of generalized top-k norms

We show that, when the source norm is orthant-(strictly) monotonic, the sequence of induced generalized top-k norms is (strictly) increasingly graded.

Proposition 18 [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF] is increasingly graded with respect to the ℓ 0 pseudonorm, that is,

• If the norm |||•||| is orthant-monotonic, then the nondecreasing sequence |||•||| tn (j) j∈ 1,d of generalized top-k norms in
ℓ 0 (x) ≤ l ⇒ |||x||| tn (l) = |||x||| tn (d) , ∀x ∈ R d , ∀l ∈ 0, d . • If the norm |||•||| is orthant-strictly monotonic, then the nondecreasing sequence |||•||| tn (j) j∈ 1,d
of generalized top-k norms in [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF] is strictly increasingly graded with respect to the ℓ 0 pseudonorm, that is, 14) is nondecreasing by the inequalities [START_REF] Rockafellar | Convex Analysis[END_REF], it suffices to show (35c) -that is, ℓ 0 (x) ≤ l ⇒ |||x||| tn (d) = |||x||| tn (l) -to prove that the sequence is increasingly graded with respect to the ℓ 0 pseudonorm.

ℓ 0 (x) ≤ l ⇐⇒ |||x||| tn (l) = |||x||| tn (d) , ∀x ∈ R d , ∀l ∈ 0, d .
For this purpose, we consider x ∈ R d , we put L = supp(x) and we suppose that ℓ 0 (x) = |L| ≤ l. , it is easily seen that it suffices to show that

ℓ 0 (x) = l ⇒ |||x||| tn (1) < • • • < |||x||| tn (l-1) < |||x||| tn (l) = |||x||| tn (l+1) = • • • = |||x||| tn (d) , ∀x ∈ R d . ( 36 
)
We consider x ∈ R d . We put L = supp(x) and we suppose that ℓ 0 (x) = |L| = l. As the norm |||•||| is orthant-strictly monotonic, it is orthant-monotonic, so that the equalities |||x||| tn = sup by definition ( 14) of the generalized top-k + 1 norm (in fact the last inequality is easily shown to be an equality as x L = x). Thus, for any k ∈ 0, l -1 , we have established that |||x||| tn (k) < |||x||| tn (k+1) . This ends the proof.

|K ′ |≤k,K ′ ⊂L |||x K ′ ||| (by setting K ′ = K ∩ L) = sup |K|≤k,K⊂L |||y K ||| ⋆ (the same but with K instead of K ′ ) = sup |K|≤k,K L |||x K ||| (because |K| ≤ k ≤ l -1 < l = |L| implies that K = L) < sup
We show that, when the source norm is orthant-strictly monotonic, it is equivalent either that the sequence of induced generalized top-k norms be strictly increasingly graded. or that the dual norm |||•||| ⋆ be orthant-strictly monotonic.

Proposition 19

The following statements are equivalent. Proof.

• Suppose that Item 1 is satisfied and let us show that Item 2 holds true. For this, it suffices to prove that the norm |||•||| is orthant-strictly monotonic. To prove that the norm |||•||| is orthantstrictly monotonic, we will show that Item 3 in Proposition 6 holds true for |||•|||. For this purpose, we consider x ∈ R d and J K ⊂ 1, d such that x J = x K . By definition of the ℓ 0 pseudonorm in (29), we have j = ℓ 0 (x J ) < k = ℓ 0 (x K ).

On the one hand, as the dual norm |||•||| ⋆ is orthant-strictly monotonic, it is orthant-monotonic, so that the norm |||•||| is also orthant-monotonic, as proved in [START_REF] Gries | Characterization of certain classes of norms[END_REF]Theorem 2.23] 

≤ • • • ≤ |||x J ||| tn (j-1) < |||x J ||| tn (j) = • • • = |||x J ||| tn (d) = |||x J |||, because j = ℓ 0 (x J )
, and, on the other hand, |||x||| tn is strictly increasingly graded with respect to the ℓ 0 pseudonorm. Hence, Item 1 holds true. This ends the proof.

(1) ≤ • • • ≤ |||x K ||| tn (k-1) < |||x K ||| tn (k) = • • • = |||x K ||| tn (d) = |||x K |||, because k = ℓ 0 (x K ). Since j < k, we deduce that |||x J ||| = |||x J ||| tn (j) = |||x J ||| tn (k-1) ≤ |||x K ||| tn (k-1) < |||x K ||| tn (k) = |||x K ||| ,

Sufficient conditions for decreasingly graded sequence of generalized ksupport norms

There is an asymetry in that the property of orthant-strict monotonicity for norms does not proves especially relevant for the ℓ 0 pseudonorm and sequences of k-support norms. Indeed, consider the source norm |||•||| = • 1 , that is, the ℓ 1 norm which is orthant-strict monotonic. By Table 1 (third column), we know that the k-support norms are the norms

|||•||| ⋆sn (k) = • sn ∞,k = max{ • 1 /k, • ∞ }, for k ∈ 1, d . Now, the nonincreasing sequence |||•||| ⋆sn (j) j∈ 1,d
of norms is not strictly decreasingly graded with respect to the ℓ 0 pseudonorm when d ≥ 2. Indeed, for any ε ∈]0, 1[, the vector y

= ε/(d -1), . . . , ε/(d -1), 1 is such that ℓ 0 (y) = d and |||y||| ⋆sn (1) > |||y||| ⋆sn (2) = • • • = |||y||| ⋆sn (d) because |||y||| ⋆sn (k) = max y 1 /k, y ∞ = max (ε + 1)/k, 1 , for k ∈ 1, d , so that ε + 1 = |||y||| ⋆sn (1) > |||y||| ⋆sn (2) = • • • = |||y||| ⋆sn (d) = 1.
However, we establish the following result.

Proposition 20 [START_REF] Mcdonald | New perspectives on k-support and cluster norms[END_REF] is strictly decreasingly graded with respect to the ℓ 0 pseudonorm, that is, 24), we conclude that it is strictly decreasingly graded with respect to the ℓ 0 pseudonorm (see the comments after Definition 17). This ends the proof.

ℓ 0 (y) ≤ l ⇐⇒ |||y||| ⋆sn (l) = |||y||| ⋆sn (d) , ∀y ∈ R d , ∀l ∈ 0, d . (38) 
) ⇔ y = 0 or y |||y||| ⋆ ∈ ℓ ≤k 0 ∩ S ⋆ (as y |||y|||⋆ ∈ S ⋆ ) ⇔ y = 0 or y |||y||| ⋆ ∈ |K|≤k (R K ∩ S ⋆ ) (as ℓ ≤k 0 = |K|≤k R K by (32)) ⇒ y = 0 or y |||y||| ⋆ ∈ co |K|≤k (R K ∩ S ⋆ ) (as S ⊂ co(S) for any subset S of R d ) ⇒ y = 0 or y |||y||| ⋆ ∈ B ⋆sn (k) (as co |K|≤k (R K ∩ S ⋆ ) = B ⋆sn ( 

Expressing the ℓ 0 pseudonorm by means of the difference between two norms

Propositions 18 and 20 open the way for so-called "difference of convex" (DC) optimization methods [START_REF] Tono | Efficient DC algorithm for constrained sparse optimization[END_REF] to achieve sparsity. Indeed, if the source norm |||•||| is orthant-strictly monotonic, the level sets of the ℓ 0 pseudonorm in (31) can be expressed by means of the difference between two norms (one being a generalized top-k norm), as follows,

ℓ ≤k 0 = x ∈ R d |||x||| = |||x||| tn (k) = x ∈ R d |||x||| ≤ |||x||| tn (k) , ∀k ∈ 0, d , (39a) 
and the ℓ 0 pseudonorm has the expression (see (35f))

ℓ 0 (x) = min k ∈ 1, d |||x||| tn (k) = |||x||| , ∀x ∈ R d . (39b) 
As the ℓ p -norm • p and its dual norm are orthant-strictly monotonic for p ∈]1, ∞[, the formulas above hold true with the top-(p,k) norm |||•||| tn (k) = • tn p,k (see second column of Table 1).

If the source norm |||•||| is orthant-monotonic and the normed space R d , |||•||| ⋆ is strictly convex, the level sets of the ℓ 0 pseudonorm in (31) can be expressed by means of the difference between two norms (one being a generalized k-support norm), as follows,

ℓ ≤k 0 = y ∈ R d |||y||| ⋆sn (k) = |||y||| ⋆ = y ∈ R d |||y||| ⋆sn (k) ≤ |||y||| ⋆ , ∀k ∈ 0, d , (40a) 
and the ℓ 0 pseudonorm has the expression (see (35f))

ℓ 0 (y) = min k ∈ 1, d |||y||| ⋆sn (k) = |||y||| ⋆ , ∀y ∈ R d . ( 40b 
)
As the ℓ p -norm • p is orthant-monotonic and the normed space R d , • q is strictly convex, when p ∈]1, ∞[ and 1/p + 1/q = 1, the formulas above hold true with the (q,k)-support norm |||•||| ⋆sn (k) = y sn q,k for q ∈]1, ∞[ (see Table 1).

Conclusion

In sparse optimization problems, one looks for solution that have few nonzero components, that is, sparsity is exactly measured by the ℓ 0 pseudonorm. However, the mathematical expression of the ℓ 0 pseudonorm, taking integer values, makes it difficult to handle it in optimization problems. To overcome this difficulty, one can try to replace the embarrassing ℓ 0 pseudonorm by nicer terms, like norms. In this paper, we contribute to this program by bringing up three new concepts for norms, and show how they prove especially relevant for the ℓ 0 pseudonorm. First, we have introduced a new class of orthant-strictly monotonic norms, inspired from orthant-monotonic norms. With such a norm, when one component of a vector moves away from zero, the norm of the vector strictly grows. Thus, an orthant-strictly monotonic norm is sensitive to the support of a vector, like the ℓ 0 pseudonorm. We have provided different characterizations of orthant-strictly monotonic norms (and added a new characterization of orthant-monotonic norms). Second, we have extended already known concepts of top-k and k-support norms to sequences of generalized top-k and k-support norms, generated from any source norm (and not only from the ℓ p norms), and have studied their properties. Third, we have introduced the notion of sequences of norms that are strictly increasingly graded with respect to the ℓ 0 pseudonorm. A graded sequence detects the number of nonzero components of a vector when the sequence becomes stationary.

With these three notions, we have proved that, when the source norm is orthant-strictly monotonic, the sequence of induced generalized top-k norms is strictly increasingly graded. We have also shown that, when the source norm is orthant-monotonic and that the normed space R d is strictly convex when equipped with the dual norm, the sequence of induced generalized k-support norms is strictly decreasingly graded.

These results -summarized in Table 2 -open the way for so-called "difference of convex" (DC) optimization methods to achieve sparsity. Indeed, the level sets of the ℓ 0 pseudonorm can be expressed by means of the difference between norms, taken from an increasingly or decreasingly graded sequence of norms. And we provide a way to generate such sequences from a class of source norms that encompasses the ℓ p norms (but for the extreme ones).

To complete the possible applications, we add that, in another paper [START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF], we show that, with orthant-strictly monotonic norms, we can define conjugacies for which the ℓ 0 pseudonorm is equal to its biconjugate. 

1 p

 1 |||x|||≤1 x, y , ∀y ∈ R d (3) defines a norm on R d , called the dual norm |||•||| ⋆ [1, Definition 6.7]. In the sequel, we will occasionally consider the ℓ p -norms • p on the space R d , defined by x p = d i=1 |x i | p for p ∈ [1, ∞[, and by x ∞ = sup i∈ 1,d |x i |.

  given by the restriction to the subspace R K of the dual norm |||•||| ⋆ (first dual, as recalled in definition (3) of a dual norm, then restriction), • The (K, ⋆)-norm |||•||| K,⋆ is the norm |||•||| K ⋆ , given by the dual norm (on the subspace R K ) of the K-restriction norm |||•||| K to the subspace R K (first restriction, then dual).

  [START_REF] Bhatia | Matrix Analysis[END_REF] of the support function σB ) = sup x∈B x, π K (y) (as y = π K (y) because y ∈ R K ) = sup x∈B π K (x), y(by the self-duality property (9) of the projection mapping π K )

Proposition 6

 6 Let |||•||| be a norm on R d . The following assertions are equivalent. 1. The norm |||•||| is orthant-strictly monotonic.

  by Item 7 in Proposition 4 since J ⊂ K and the norm |||•||| is orthant-monotonic. But any solution in arg max |||x|||≤|||u||| x, v belongs to the frontier of the ball of radius |||u|||, hence has exactly norm |||u|||. Thus, we deduce that |||u||| = |||u K ||| = |||u J |||. If we had J = supp(v) K = supp(u), we would have u J = u K , hence |||u K ||| > |||u J ||| by Item 3; this would be in contradiction with |||u K ||| = |||u J |||. Therefore, J = supp(v) = K = supp(u).

  |||x||| < |||x ′ |||. On the other hand, we have |||x||| ≤ |||x|||; indeed, by Proposition 4, Item 4 implies that the norm |||•||| is orthant-monotonic, hence that |||x||| = |||x I + x{j} ||| ≥ |||x I ||| = |||x|||. We conclude that |||x||| ≤ |||x||| < |||x ′ |||.

Proposition 7

 7 If the norm |||•||| is orthant-strictly monotonic, then the elements of the renormalized canonical basis of R d , that is the e i /|||e i ||| for i ∈ 1, d , are exposed points of the unit ball B.

Definition 9

 9 We introduce generalized top-k and k-support norms that are constructed from the source norm |||•|||. For k ∈ 1, d , we call generalized top-k norm (associated with the source norm |||•|||) the norm defined by 5 |||x||| tn

  the assumptions of Lemma 10 are also satisfied, as ℓ p -norms are permutation invariant and monotonic. Therefore, we obtain that the corresponding generalized top-k norm • p tn (k) has the expression • p tn (k) (x) = sup |K|≤k x K p = x ↓ {1,...,k} p , for all x ∈ R d . Thus, we have obtained that the generalized top-k norm associated with the ℓ p -norm is the norm (•) ↓ {1,...,k} p : we call it 7 top-(p,k) norm and we denote it by • tn p,k . Notice that • tn ∞,k = • ∞ for all k ∈ 1, d . Now, we turn to generalized k-support norms as in (15) (see the third column of Table 1). When the norm |||•||| is the Euclidean norm • 2 of R d , the generalized k-support norm is the so-called k-support norm [2]. More generally, in [15, Definition 21], the authors define the ksupport p-norm or (p,k)-support norm for p ∈ [1, ∞]. They show, in [15, Corollary 22], that the dual norm • p tn (k) ⋆ of the above top-(k, p) norm is the (q, k)-support norm, where 1/p + 1/q = 1. Thus, what we call the generalized k-support norm • p ⋆sn

•

  For any x ∈ R d , we have |||x||| tn (k) = sup |K|≤k |||x K ||| by definition (14) of the generalized top-k norm |||•||| tn K (y) (by the self-duality property (9) of the projection mapping π K ) = sup |K|≤k sup y ′ ∈π K (S⋆) x, y ′ = sup |K|≤k σ π K (S⋆) (x) (by definition (5) of the support function σ π K (S⋆) )

) where ℓ ≤k 0

 0 is the level set in (31) of the ℓ 0 pseudonorm in (29), where S ⋆ in (4a) is the unit sphere of the dual norm |||•||| ⋆ , and where B ⋆sn (k) in (21) is the unit ball of the generalized k-support norm |||•||| ⋆sn (k) .

  k) by (27) because the source norm |||•||| is orthant-monotonic. This ends the proof. The result of Proposition 14 applies to the ℓ p -norm • p for p ∈]1, ∞[. Lemma 15 Let |||•||| be a norm on R d . Let S be a subset of extr(B) ⊂ S, the set of extreme points of B. If A is a subset of S, then A = co(A) ∩ S. If A is a closed subset of S, then A = co(A) ∩ S.

•

  We suppose that the norm |||•||| is orthant-monotonic. As the sequence |||•||| tn (j) j∈ 1,d of generalized top-k norms in (

  (l) = |||x||| tn (l+1) = • • • = |||x||| tn (d) above hold true (as just established in the first part of the proof). Therefore, it only remains to prove that |||x||| tn (1) < • • • < |||x||| tn (l-1) < |||x||| tn (l) . There is nothing to show for l = 0. Now, for l ≥ 1 and for any k ∈ 0, l -1 , we have |||x||| tn (k) = sup |K|≤k |||x K ||| (by definition (14) of the generalized top-k norm) = sup |K|≤k |||x K∩L ||| (because x L = x by definition of the set L = supp(x))

  because the set L \ K is nonempty (having cardinality |L| -|K| = l -|K| ≥ k + 1 -|K| ≥ 1), and because, since the norm |||•||| is orthant-strictly monotonic, using Item 3 in Proposition 6, we obtain that |||x K ||| < |||x K∪{j} ||| as x K = x K∪{j} for at least one j ∈ L \ K since L = supp(x) ≤ sup |J|≤k+1,J⊂L |||x J ||| (as all the subsets K ′ = K ∪ {j} are such that K ′ ⊂ L and |K ′ | = k + 1)

1 .

 1 The dual norm |||•||| ⋆ is orthant-strictly monotonic and the sequence |||•||| tn (j) j∈ 1,d of generalized top-k norms in (14) is strictly increasingly graded with respect to the ℓ 0 pseudonorm. 2. Both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic.

Proof. A direct proof would use [ 9 ,∈ ℓ ≤k 0 (

 90 Proposition 6] with |||•||| ⋆ as source norm, and the property that |||•||| ⋆sn (j) coincides with the coordinate-k norm [9, Definition 3] induced by |||•||| ⋆ when the norm |||•||| is orthant-monotonic. We give a self-contained proof for the sake of completeness. • We suppose that the source norm |||•||| is orthant-monotonic. For any y ∈ R d and for any k ∈ 1, d , we have 8 y ∈ ℓ ≤k 0 ⇔ y = 0 or y |||y||| ⋆ by 0-homogeneity (30) of the ℓ 0 pseudonorm, and by definition (31) of ℓ ≤k 0

new characterizations, namely Item 7 and Item 8 in the following Proposition 4. Proposition 4 Let |||•||| be a norm on R d . The following assertions are equivalent. 1. The norm |||•||| is orthant-monotonic.

  

	> |||•||| V if |||u + v||| > |||u|||, for any u ∈ U and any v ∈ V\{0}, that is,
	U ⊥ > |||•||| V ⇐⇒ |||u + v||| > |||u||| , ∀u ∈ U , ∀v ∈ V\{0} .	(12)
	Now, we are ready to recall established characterizations of orthant-monotonic norms,
	and to add	

  all points of the unit sphere S are extreme points of the unit ball B. The normed space R d , • p , equipped with the ℓ p -norm • p (for p ∈ [1, ∞]), is strictly convex if and only if p ∈]1, ∞[. If the norm |||•||| is orthant-monotonic and if the normed space R d , |||•||| is strictly convex, then the norm |||•||| is orthant-strictly monotonic. . In [20, Theorem 2.2], we find the following result: if the family {R K } K⊂ 1,d of subspaces of R d is Birkhoff orthogonal for a norm |||•|||, and if the unit ball for that norm is rotund, then the family {R K } K⊂ 1,d is strictly Birkhoff orthogonal. Now for the proof. If the norm |||•||| is orthant-monotonic, then the family {R K } K⊂ 1,d of subspaces of R d is Birkhoff orthogonal by Item 4 in Proposition 4. As the unit ball for that norm is rotund, we deduce that the family {R K } K⊂ 1,d is strictly Birkhoff orthogonal. As Item 2 implies Item 1 in Proposition 6, we conclude that the norm |||•||| is orthant-strictly monotonic.

	Proposition 8 Proof

  |x ν(2) |, . . . , |x ν(d) | . The proof of the following Lemma is easy. Lemma 10 Let |||•||| be a norm on R d . Then, if the norm |||•||| is permutation invariant and monotonic, we have that |||x||| tn (k) = |||x ↓ {1,...,k} |||, where x ↓ {1,...,k} ∈ R d is given by (x ↓ ) {1,...,k} , for all x ∈ R d . The case of ℓ p source norms. We start with generalized top-k norms as in (14) (see the second column of Table 1). When the norm |||•||| is the Euclidean norm • 2 of R d , the generalized top-k norm is known under different names: the top-(k, 2) norm in [21, p. 8],

Table 1 :

 1 Examples of generalized top-k and k-support norms generated by the ℓ p source norms |||•|||

  We suppose that the source norm |||•||| is orthant-monotonic. Let k ∈ 1, d .

			)
	2. The source norm |||•||| is orthant-monotonic if and only if |||•||| = |||•||| tn (d) if and only if |||•||| ⋆ = |||•||| ⋆sn (d) .
	3. If the source norm |||•||| is orthant-monotonic, then the generalized top-k norms and the
	generalized k-support norms are orthant-monotonic.
	Proof.		
	1. |||x||| tn (k) = sup |K|≤k	|||x K |||	(by definition (14) of the generalized top-k norm)
	= sup	|||x K ||| ⋆⋆	(as any norm is equal to its bidual norm by (6d))
	|K|≤k		
	= sup		

• We prove (26). For any x ∈ R d , we have

|K|≤k (|||•||| ⋆ ) ⋆,K (x K ) (by Definition 1 of the the (⋆, K)-norm) = sup |K|≤k (|||•||| ⋆ ) K,⋆

(x K ) by Item 3 in Proposition 4 because, as the norm |||•||| is orthant-monotonic, so is also the dual norm |||•||| ⋆ (equivalence between Item 1 and Item 2 in Proposition 4) = sup |K|≤k

  On the other hand, by (6a) we have that |||•||| tn (k) = σ B ⋆sn (k) since, by Definition 9, the k-support norm is the dual norm of the top-k norm. Then, by [4, Prop. 7.13], we deduce that co B ⋆sn (k) = co |K|≤k (R K ∩ S ⋆ ) . Now, we turn to prove Item 2 as two reverse implications. Suppose that the source norm |||•||| is orthant-monotonic, and let us prove that |||x||| tn (d) = |||x|||. By Item 7 in Proposition 4, we get that |||x K ||| ≤ |||x|||, for all K ⊂ 1, d , hence |||x||| tn (d) = |||x|||, for all x ∈ R d by the just proven equivalence (28). = |||x||| and let us prove that the source norm |||•||| is orthant-monotonic. By (28), we have that |||x J ||| ≤ |||x|||, for all x ∈ R d and all J ⊂ 1, d . This gives, in particular, |||x K∩J ||| = |||(x K ) J ||| ≤ |||x K |||; if J ⊂ K, we deduce that |||x J ||| ≤ |||x K |||. Thus, Item 7 in Proposition 4 holds true, and we obtain that the source norm |||•||| is orthant-monotonic. We end the proof by taking the dual norms, as in (3), of both sides of the equality |||•||| = |||•||| tn (d) , yielding |||•||| ⋆ = |||•||| ⋆sn (d) by (15). 3. The generalized top-k norm in (14) is the supremum of the subfamily, when |K| ≤ k, of the seminorms |||π K (•)||| K . As already mentioned, the definition of orthant-monotonic norms can be extended to seminorms. With this extension, it is easily seen that the seminorms |||π K (•)||| K are orthant-monotonic as soon as the source norm |||•||| is orthant-monotonic. Therefore, if the source norm |||•||| is orthant-monotonic, so is the supremum in (

	Suppose that |||x||| tn (d)
	As the unit ball B ⋆sn (k) in (21) is closed and convex, we immediately obtain (27).
	2. First, let us observe that, from the very definition (14) of the generalized top-d norm |||•||| tn (d) ,
	and by (18), we have, for all x ∈ R d :
	|||x||| tn (d) = |||x||| ⇐⇒ sup

|K|≤d |||x K ||| = |||x||| ⇐⇒ |||x K ||| ≤ |||x||| , ∀K ⊂ 1, d .

(28)

  We now show that |||x||| tn (d) = |||x||| tn (l) . Since x = x L , we have |||x||| = |||x L ||| = |||x L ||| L ≤ |||x||| tn (l) , by the very definition (14) of the generalized top-l norm |||•||| tn (l) . On the one hand, we have just obtained that |||x||| ≤ |||x||| tn (l) . On the other hand, we have that |||x||| tn (l) ≤ |||x||| tn (l+1) ≤ • • • ≤ |||x||| tn (d) = |||x||| by the inequalities (19) and the last equality comes from Item 2 in Proposition 13 since the norm |||•||| is orthant-monotonic. Hence, we deduce that |||x||| = |||x||| tn(d) = • • • = |||x||| tn (l) , so that |||x||| tn (k) is stationary for k ≥ l.• We suppose that the norm |||•||| is orthant-strictly monotonic. To prove that the equivalence (35b) holds true for the sequence |||•||| tn (j) j∈ 1,d

  (equivalence between Item 1 and Item 2 in Proposition 4). As a consequence, so are the norms in the sequence

	|||•||| tn (j) j∈ 1,d	by Item 3 in Proposition 13, and we get that |||x J ||| tn (k-1) ≤ |||x K ||| tn (k-1) , in particular,
	by the equivalence between Item 1 and Item 7 in Proposition 4. On the other hand, since, by assumption, the sequence |||•||| tn (j) j∈ 1,d	of generalized top-k
	norms is strictly increasingly graded with respect to the ℓ 0 pseudonorm, we have by (35b) that, on the one hand, |||x J ||| tn (1)

  Suppose that Item 2 is satisfied and let us show that Item 1 holds true. Since the norm |||•||| is orthant-strictly monotonic, it has been proved in Proposition 18 that the sequence |||•||| tn (j) j∈ 1,d

and therefore that |||x J ||| < |||x K |||. Thus, Item 3 in Proposition 6 holds true for |||•|||, so that the norm |||•||| is orthant-strictly monotonic. Hence, we have shown that Item 2 is satisfied.

•

  k) by (27) because the source norm |||•||| is orthant-monotonic) by (34) since the assumptions of Proposition 14 -namely, the source norm |||•||| is orthantmonotonic and the normed space R d , |||•||| ⋆ is strictly convex -are satisfied

	⇔ y = 0 or	y |||y||| ⋆	∈ B ⋆sn (k)	(as y |||y|||⋆ ∈ S ⋆ )
	⇔ y = 0 or |||	y |||y||| ⋆	|||	⋆sn (k)	≤ 1	(by definition (21) of the unit ball B ⋆sn (k) )
	⇔ |||y||| ⋆sn (k) ≤ |||y||| ⋆ = |||y||| ⋆sn (d)	(where the last equality comes from Item 2
							in Proposition 13 since the norm |||•||| is orthant-monotonic)
	⇔ |||y||| ⋆sn (k) = |||y||| ⋆sn (d) .	(as |||y||| ⋆sn (k) ≥ |||y||| ⋆sn (d) by (24))
	Therefore, we have obtained (38). As the sequence |||•||| ⋆sn (j) j∈ 1,d	of generalized k-support norms
	is nonincreasing by (					
	⇒ y = 0 or |||	y |||y||| ⋆	|||	⋆sn (k)	≤ 1	(by definition (21) of the unit ball B ⋆sn (k) )
	⇒ |||y||| ⋆sn (k) ≤ |||y||| ⋆ = |||y||| ⋆sn (d)
	y ∈ ℓ ≤k 0 ⇔ y = 0 or	y |||y||| ⋆	∈ ℓ ≤k 0
	(by 0-homogeneity (30) of the ℓ 0 pseudonorm, and by definition (31) of ℓ ≤k 0 ) ⇔ y = 0 or y ∈ ℓ ≤k 0 ∩ S ⋆ (as y |||y|||⋆ ∈ S ⋆ ) |||y||| ⋆ ⇔ y = 0 or y |||y||| ⋆ ∈ B ⋆sn (k) ∩ S ⋆

(where the last equality comes from Item 2 in Proposition 13 since the norm

|||•||| is orthant-monotonic) ⇒ |||y||| ⋆sn (k) = |||y||| ⋆sn (d) . (as |||y||| ⋆sn (k) ≥ |||y||| ⋆sn (d) by (24))

Therefore, we have obtained (37). As the sequence |||•||| ⋆sn

(j) j∈ 1,d of generalized k-support norms is

nonincreasing by (24), we conclude that it is decreasingly graded with respect to the ℓ 0 pseudonorm (see the comments after Definition 17).

• We suppose that the source norm |||•||| is orthant-monotonic and that the normed space R d , |||•||| ⋆ is strictly convex. For any y ∈ R d and for any k ∈ 1, d , we have 9

Table 2 :

 2 |||•||| tn (j) j∈ 1,d |||•||| ⋆sn (j) j∈ 1,d increasingly decreasingly graded strictly graded graded strictly graded |||•||| is orthant-monotonic |||•||| is orthant-strictly monotonic |||•||| ⋆ is orthant-monotonic (R d , |||•||| ⋆ ) is strictly convex Table of results. It reads by columns as follows: to obtain that |||•||| tn (j) j∈ 1,d is increasingly strictly graded (column 4), it suffices that |||•||| be orthant-strictly monotonic (the only checkmark in column 4); to obtain that |||•||| tn (j) j∈ 1,d is increasingly graded (columns 2 and 3), it suffices that either |||•||| be orthant-monotonic (the only checkmark in column 2) or |||•||| ⋆ be orthant-monotonic only checkmark in column 3); to obtain that |||•||| ⋆sn (j) j∈ 1,d is decreasingly strictly graded (columns 7 and 8), it suffices either that |||•||| be orthant-monotonic and that (R d , |||•||| ⋆ ) be strictly convex (two checkmarks in column 7) or that |||•||| ⋆ be orthant-monotonic and that (R d , |||•||| ⋆ ) be strictly convex (two checkmarks in column 8)

It is proved in[START_REF] Gries | Characterization of certain classes of norms[END_REF] Lemma 

[START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF].12] that a norm is orthant-monotonic if and only if it is monotonic in every orthant, hence the name. 2 More precisely, [8, Proposition 12] corresponds to Item 7 in Proposition 4, [8, Proposition 13] corresponds to Item 3 and Item 4 in Proposition 6, [8, Proposition 15] corresponds to the second Item in Proposition 18.

Here, following notation from game theory, we have denoted by -K the complementary subset of K in 1, d : K ∪ (-K) = 1, d and K ∩ (-K) = ∅.

By J K, we mean that J ⊂ K and J = K.

We invert the indices in the naming convention of[21, p. 5, p. 

[START_REF] Chancelier | Capra-convexity, convex factorization and variational formulations for the l 0 pseudonorm[END_REF], where top-(k, 1) and top-(k, 2) were used.

In what follows, by "or", we mean the so-called exclusive or (exclusive disjunction). Thus, every "or" should be understood as "or y = 0 and".

See Footnote 8.

Acknowledgements. We thank Jean-Baptiste Hiriart-Urruty for his comments on first versions of this work.