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Abstract

The so-called ℓ0 pseudonorm on the Euclidean space Rd counts the number of
nonzero components of a vector. We say that a sequence of norms is strictly increasingly
graded (with respect to the ℓ0 pseudonorm) if it is nondecreasing and that the sequence
of norms of a vector x becomes stationary exactly at the index ℓ0(x). In this paper,
with any (source) norm, we associate sequences of generalized top-k and k-support
norms, and we also introduce the new class of orthant-strictly monotonic norms (that
encompasses the ℓp norms, but for the extreme ones). Then, we show that an orthant-
strictly monotonic source norm generates a sequence of generalized top-k norms which
is strictly increasingly graded. With this, we provide a systematic way to generate
sequences of norms with which the level sets of the ℓ0 pseudonorm are expressed by
means of the difference of two norms. Our results rely on the study of orthant-strictly
monotonic norms.

Key words: ℓ0 pseudonorm, orthant-strictly monotonic norm, generalized top-k norm,
generalized k-support norm, strictly graded sequence of norms.

AMS classification: 15A60, 46N10

1 Introduction

The counting function, also called cardinality function or ℓ0 pseudonorm, counts the number
of nonzero components of a vector in Rd. The ℓ0 pseudonorm shares three out of the four
axioms of a norm — nonnegativity, positivity except for x = 0, subadditivity — but the
ℓ0 pseudonorm is 0-homogeneous (hence the axiom of 1-homogeneity does not hold true).
The ℓ0 pseudonorm is used in sparse optimization, either as criterion or in the constraints,
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to obtain solutions with few nonzero entries. The ℓ0 pseudonorm is nonconvex, but it has
been established that its level sets can be expressed by means of the difference between two
convex functions, more precisely two norms, taken from the nondecreasing sequence of so-
called top-k norms (see [21] and references therein). In this paper, we generalize this kind of
result to a large class of sequences of norms by introducing three concepts and by relating
them to the ℓ0 pseudonorm.

First, we define sequences of generalized top-k and k-support norms, associated with any
(source) norm on Rd. This extends already known concepts of top-k and k-support norms
[2, 17]. Second, we introduce a new class of orthant-strictly monotonic norms on Rd. We rely
on the notion of orthant-monotonic norm1 introduced and studied in [11, 12] with further
developments in [14]. With such an orthant-strictly monotonic norm, when one component
of a vector moves away from zero, the norm of the vector strictly grows. Thus, an orthant-
strictly monotonic norm is sensitive to the support of a vector, like the ℓ0 pseudonorm.
We study this class of norms, using the notions of dual vector pair for a norm [11, 12, 14]
(refered to as polar alignment in [10]), and of Birkhoff orthogonality [6], and strict Birkhoff
orthogonality [20]. Third, we define sequences of norms that are strictly increasingly graded
(with respect to the ℓ0 pseudonorm): the sequence of norms of a vector x is nondecreasing
and becomes stationary exactly at the index ℓ0(x). Thus equipped, we show why and how
these three concepts prove especially relevant for the ℓ0 pseudonorm.

This paper has some parts in common with the paper [8]. Indeed, the paper [8] built upon
[7, 9] to prove hidden convexity of any nondecreasing function of the ℓ0 pseudonorm, using
conjugacies based on a class of norms that were not considered in [7, 9], the orthant-strictly
monotonic norms. This is why, we needed specific results on orthant-strictly monotonic
norms, and provided them2 in [8, Appendix 2]. However, the current paper deals with
different issues. Indeed, we focus here on a thorough characterization of orthant and orthant-
strictly monotonic norms, and on the properties of derived sequences of norms. The only
connection with the ℓ0 pseudonorm is in the notion of (strictly) increasingly graded norms
and how this allows to express the level sets of the ℓ0 pseudonorm by means of the difference
between two norms. This last question was not treated in [8].

The paper is organized as follows. In Sect. 2 we introduce a new class of orthant-strictly
monotonic norms on Rd, for which we provide different characterizations. In Sect. 3, we
define sequences of generalized top-k and k-support norms, generated from a source norm,
and we study their properties, be they general or under orthant-monotonicity. Finally, in
Sect. 4 we introduce the notion of sequences of norms that are (strictly) increasingly graded
with respect to the ℓ0 pseudonorm. We show that an orthant-strictly monotonic source norm
generates a sequence of generalized top-k norms which is strictly increasingly graded with
respect to the ℓ0 pseudonorm. We also study the sequence of generalized k-support norms.
In conclusion, we hint at possible applications in sparse optimization.

1It is proved in [11, Lemma 2.12] that a norm is orthant-monotonic if and only if it is monotonic in every
orthant, hence the name.

2More precisely, [8, Proposition 12] corresponds to Item 7 in Proposition 4, [8, Proposition 13] corresponds
to Item 3 and Item 4 in Proposition 6, [8, Proposition 15] corresponds to the second Item in Proposition 18.
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2 Orthant-monotonic and orthant-strictly monotonic

norms

In §2.1, we recall well-known definitions for norms. In §2.2, we provide new characterizations
of orthant-monotonic norms. Then, in §2.3, we introduce the new notion of orthant-strictly
monotonic norm, and we provide characterizations, as well as properties, that will prove
especially relevant for the ℓ0 pseudonorm.

2.1 Background on norms

We work on the Euclidean space Rd (where d is a nonzero integer), equipped with the scalar
product 〈·, ·〉 (but not necessarily with the Euclidean norm). Thus, all norms define the
same (Borel) topology. We use the notation Jj, kK = {j, j + 1, . . . , k − 1, k} for any pair of
integers such that j ≤ k. For any vector x ∈ Rd, we define its support by

supp(x) =
{
j ∈ J1, dK

∣∣xj 6= 0
}
⊂ J1, dK . (1)

For any norm |||·||| on Rd, we denote the unit sphere and the unit ball of the norm |||·||| by

S =
{
x ∈ Rd

∣∣ |||x||| = 1
}
, (2a)

B =
{
x ∈ Rd

∣∣ |||x||| ≤ 1
}
. (2b)

Dual norms

We recall that the following expression

|||y|||⋆ = sup
|||x|||≤1

〈x, y〉 , ∀y ∈ Rd (3)

defines a norm on Rd, called the dual norm |||·|||⋆ [1, Definition 6.7]. In the sequel, we will

occasionally consider the ℓp-norms ‖·‖p on the space Rd, defined by ‖x‖p =
(∑d

i=1 |xi|
p
) 1

p

for p ∈ [1,∞[, and by ‖x‖∞ = supi∈J1,dK |xi|. It is well-known that the dual norm of the
norm ‖·‖p is the ℓq-norm ‖·‖q, where q is such that 1/p + 1/q = 1 (with the extreme cases
q = ∞ when p = 1, and q = 1 when p = ∞).

We denote the unit sphere and the unit ball of the dual norm |||·|||⋆ by

S⋆ =
{
y ∈ Rd

∣∣ |||y|||⋆ = 1
}
, (4a)

B⋆ =
{
y ∈ Rd

∣∣ |||y|||⋆ ≤ 1
}
. (4b)

For any subset X ⊂ Rd, σX : Rd → [−∞,+∞] denotes the support function of the subset X :

σX(y) = sup
x∈X

〈x, y〉 , ∀y ∈ Rd . (5)
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It is easily established that

|||·||| = σB⋆
= σS⋆ and |||·|||⋆ = σB = σS , (6a)

where B⋆, the unit ball of the dual norm, is the polar set B⊙ of the unit ball B:

B⋆ = B⊙ =
{
y ∈ Rd

∣∣ 〈x, y〉 ≤ 1 , ∀x ∈ B
}
. (6b)

Since the set B is closed, convex and contains 0, we have [1, Theorem 5.103]

B⊙⊙ =
(
B⊙

)⊙
= B , (6c)

hence the bidual norm |||·|||⋆⋆ =
(
|||·|||⋆

)
⋆
is the original norm:

|||·|||⋆⋆ =
(
|||·|||⋆

)
⋆
= |||·||| . (6d)

|||·|||-duality

By construction of the dual norm in (3), we have the inequality

〈x, y〉 ≤ |||x||| × |||y|||⋆ , ∀(x, y) ∈ Rd × Rd . (7a)

One says that y ∈ Rd is |||·|||-dual to x ∈ Rd, denoted by y ‖|||·||| x, if equality holds in
Inequality (7a), that is,

y ‖|||·||| x ⇐⇒ 〈x, y〉 = |||x||| × |||y|||⋆ . (7b)

The terminology |||·|||-dual comes from [14, page 2] (see also the vocable of dual vector pair
in [11, Equation (1.11)] and of dual vectors in [12, p. 283], whereas it is refered as polar
alignment in [10]).

We illustrate the |||·|||-duality in the case of the ℓp-norms ‖·‖p, for p ∈ [1,∞]. The notation

x ◦ x′ = (x1x
′
1, . . . , xdx

′
d) is for the Hadamard (entrywise) product, for any x, x′ in Rd. For

any x ∈ Rd, we denote by sign(x) ∈ {−1, 0, 1}d the vector of Rd with components the signs
sign(xi) ∈ {−1, 0, 1} of the entries xi, for i ∈ J1, dK. Let x ∈ Rd\{0} be a given vector (the
case x = 0 is trivial). We easily obtain that a vector y is

• ℓ2-dual to x iff (if and only if) there exists λ ∈ R+ such that y = λx;

• ℓp-dual to x for p ∈]1,∞[ iff there exists λ ∈ R+ such that y = λsign(x)◦
(
|xi|

p/q
)
i∈J1,dK

,

where q is such that 1/p+ 1/q = 1;

• ℓ1-dual to x iff the vectors y and ‖y‖∞ sign(x) coincide on supp(x), the support of the
vector x as defined in (1);

• ℓ∞-dual to x iff yj = 0 for all j ∈ argmaxi∈J1,dK |xi|, and y ◦ x ≥ 0.
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Restriction norms

For any subset K ⊂ J1, dK, we denote by RK the set of functions from K to R — which can
be identified with R|K|, where |K| denotes the cardinality of K ⊂ J1, dK) — and we introduce
the subspace of Rd made of vectors whose components vanish outside of K by3

RK = RK × {0}−K =
{
x ∈ Rd

∣∣ xj = 0 , ∀j 6∈ K
}
⊂ Rd , (8)

where R∅ = {0}. We denote by πK : Rd → RK the orthogonal projection mapping and,
for any vector x ∈ Rd, by xK = πK(x) ∈ RK the vector which coincides with x, except for
the components outside of K that are zero. It is easily seen that the orthogonal projection
mapping πK is self-dual (equal to its dual operator), giving

〈xK , yK〉 = 〈xK , y〉 =
〈
πK(x), y

〉
=

〈
x, πK(y)

〉
= 〈x, yK〉 , ∀x ∈ Rd , ∀y ∈ Rd . (9)

Definition 1 For any norm |||·||| on Rd and any subset K ⊂ J1, dK, we define three norms
on the subspace RK of Rd, as defined in (8), as follows.

• The K-restriction norm |||·|||K is the norm on RK defined by

|||x|||K = |||x||| , ∀x ∈ RK . (10)

• The (⋆,K)-norm |||·|||⋆,K is the norm
(
|||·|||⋆

)
K
, given by the restriction to the sub-

space RK of the dual norm |||·|||⋆ (first dual, as recalled in definition (3) of a dual
norm, then restriction),

• The (K, ⋆)-norm |||·|||K,⋆ is the norm
(
|||·|||K

)
⋆
, given by the dual norm (on the sub-

space RK) of the K-restriction norm |||·|||K to the subspace RK (first restriction, then
dual).

It has been established (see [14, Proposition 2.2]) that, for any nonempty subset K ⊂
J1, dK, one has the inequality |||·|||K,⋆ ≤ |||·|||⋆,K . We will discuss the equality case in Proposi-
tion 4.

2.2 New characterizations of orthant-monotonic norms

We recall the definitions of monotonic and of orthant-monotonic norms before introducing, in
the next §2.3, the new notion of orthant-strictly monotonic norms. For any x = (x1, . . . , xd) ∈
Rd, we denote |x| = (|x1|, . . . , |xd|) ∈ Rd.

Definition 2 A norm |||·||| on the space Rd is called

3Here, following notation from game theory, we have denoted by −K the complementary subset of K in
J1, dK: K ∪ (−K) = J1, dK and K ∩ (−K) = ∅.
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• monotonic [3] if, for all x, x′ in Rd, we have |x| ≤ |x′| ⇒ |||x||| ≤ |||x′|||, where |x| ≤ |x′|
means |xi| ≤ |x

′

i| for all i ∈ J1, dK,

• orthant-monotonic [11, 12] if, for all x, x′ in Rd, we have
(
|x| ≤ |x′| and x◦x′ ≥ 0 ⇒

|||x||| ≤ |||x′|||
)
.

We will use the following, easy to prove, properties: any monotonic norm is orthant-
monotonic; if a norm is orthant-monotonic, so are its restriction norms in Definition 1 (as
norms on their respective subspaces). All the ℓp-norms ‖·‖p, for p ∈ [1,∞], are monotonic,
hence orthant-monotonic. The definition of an orthant-monotonic seminorm is straightfor-
ward, and it is easily proven that the supremum of a family of orthant-monotonic seminorms
is an orthant-monotonic seminorm.

We recall the definitions of Birkhoff orthogonality [6], and of strict Birkhoff orthogonal-
ity [20].

Definition 3 Let U and V be two subspaces of Rd. Let |||·||| be a norm on Rd.

• We say that the subspace U is Birkhoff orthogonal [6] to the subspace V, denoted by
U ⊥|||·||| V if |||u+ v||| ≥ |||u|||, for any u ∈ U and any v ∈ V, that is,

U ⊥|||·||| V ⇐⇒ |||u+ v||| ≥ |||u||| , ∀u ∈ U , ∀v ∈ V . (11)

• We say that the subspace U is strictly Birkhoff orthogonal [20] to the subspace V,
denoted by U ⊥>

|||·||| V if |||u+ v||| > |||u|||, for any u ∈ U and any v ∈ V\{0}, that is,

U ⊥>
|||·||| V ⇐⇒ |||u+ v||| > |||u||| , ∀u ∈ U , ∀v ∈ V\{0} . (12)

Now, we are ready to recall established characterizations of orthant-monotonic norms,
and to add new characterizations, namely Item 7 and Item 8 in the following Proposition 4.

Proposition 4 Let |||·||| be a norm on Rd. The following assertions are equivalent.

1. The norm |||·||| is orthant-monotonic.

2. The norm |||·|||⋆ is orthant-monotonic.

3. |||·|||K,⋆ = |||·|||⋆,K, for all K ⊂ J1, dK.

4. RK ⊥|||·||| R−K , for all K ⊂ J1, dK.

5. RK ⊥|||·||| R−K , for all K ⊂ J1, dK with |K| = d− 1.

6. For any vector u ∈ Rd\{0}, there exists a vector v ∈ Rd\{0} such that supp(v) ⊂
supp(u), that u ◦ v ≥ 0 and that v is |||·|||-dual to u as in (7b).
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7. The norm |||·||| is increasing with the coordinate subspaces, in the sense that, for any
x ∈ Rd and any J ⊂ K ⊂ J1, dK, we have |||xJ ||| ≤ |||xK |||.

8. πK(B) = RK ∩ B, for all K ⊂ J1, dK.

Proof. The equivalence between all statements but the two last ones can be found in [14,
Proposition 2.4].

It is easily established that Item 7 is equivalent to Item 4. Indeed, suppose that Item 7 holds
true. We consider x ∈ Rd and J ⊂ K ⊂ J1, dK. By setting u = xJ ∈ RJ and v = xK − xJ , we get
that v ∈ R−J . By Item 7, we have that |||u||| ≤ |||u+ v|||, hence that |||xJ ||| ≤ |||xK |||. The reverse
implication is proved in the same way.

We now show that Item 3 and Item 8 are equivalent. For this purpose, let |||·||| be a norm on Rd

and K ⊂ J1, dK, and let us admit for a while that

|||y|||⋆,K = σπK(B)(y) = σπK(S)(y) , ∀y ∈ RK , (13a)

|||y|||K,⋆ = σRK∩B(y) = σRK∩S(y) , ∀y ∈ RK . (13b)

Therefore, the equality |||·|||⋆,K = |||·|||K,⋆ is equivalent to σπK(B) = σRK∩B, when this last equality is
restricted to the subspace RK . Now, on the one hand, the subset πK(B) of RK is convex and closed
(in the subspace RK) as the image of the convex and compact set B by the linear mapping πK . On
the other hand, the subset RK ∩ B of RK is convex and closed (in the subspace RK). Therefore,
|||·|||⋆,K = |||·|||K,⋆ if and only if πK(B) = RK ∩ B. Thus, we have shown that Item 3 and Item 8 are
equivalent. It remains to prove (13a) and (13b).

• We prove (13a). For any y ∈ RK , we have

|||y|||⋆,K = |||y|||⋆ (using Definition 1)

= σB(y) (by (6a))

= sup
x∈B

〈x, y〉 (by definition (5) of the support function σB)

= sup
x∈B

〈x, πK(y)〉 (as y = πK(y) because y ∈ RK)

= sup
x∈B

〈πK(x), y〉 (by the self-duality property (9) of the projection mapping πK)

= sup
x′∈πK(B)

〈
x′, y

〉

= σπK(B)(y) . (by definition (5) of the support function σπK(B))

Thus, we have proved that |||y|||⋆,K = σπK(B)(y).
It remains to prove that σπK(B)(y) = σπK(S)(y). Now, as the unit ball B is equal to the convex

hull co(S) of the unit sphere S, we get that πK(B) = πK(co(S)). As πK is a linear mapping, we
easily obtain that πK(co(S)) = co(πK(S)). Since σco(πK(S)) = σπK(S) [4, Prop. 7.13], we conclude
that |||y|||⋆,K = σπK(B) = σco(πK(S)) = σπK(S) on RK , that is, equality (13a) holds true.

• We prove (13b).
By (6a), we have the equality |||·|||K,⋆ = σRK∩B on RK , asRK∩B is easily seen to be the unit ball

(in RK) of the restriction norm |||·|||K in (10). Therefore, we have proved that |||y|||K,⋆ = σRK∩B(y)
for any y ∈ RK .
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Now, we prove that σRK∩B(y) = σRK∩S(y) for any y ∈ RK . It is easy to check that the unit

sphere (in RK) of the restriction norm |||·|||K in (10) is RK ∩ S. Then, using the fact that the

convex hull (be it in RK or in Rd) of the unit sphere RK ∩ S is the unit ball RK ∩B, we have that

co(RK ∩ S) = RK ∩B. As σco(RK∩S) = σRK∩S [4, Prop. 7.13], we conclude that |||·|||K,⋆ = σRK∩B =

σco(RK∩S) = σRK∩S on RK , that is, equality (13b) holds true. 2

As an example, we illustrate Item 6 of Proposition 4 with the ℓ1 and ℓ∞ norms, which
both are orthant-monotonic. Let I ∈ Rd denote the vector whose components are all equal
to one. For any vector u ∈ Rd,

• the vector v = sign(u) is such that supp(v) = supp(u), that u ◦ v ≥ 0, and is ‖·‖1-dual
to the vector u; this last assertion is obvious for u = 0 and, when u 6= 0, we have that

〈u, v〉= 〈u, sign(u)〉 = 〈|u|, I〉 = ‖u‖1 = ‖u‖1 × 1 = ‖u‖1 ‖v‖∞ ,

• the vector v = sign(u) ◦ IU , where U = argmaxi∈J1,dK |ui|, is such that supp(v) ⊂
supp(u), that u ◦ v ≥ 0, and is ‖·‖∞-dual to the vector u, as we have

〈u, v〉 = 〈u, sign(u) ◦ IU〉 = 〈|u|U , IU〉 =
〈
‖u‖∞ IU , IU

〉
= ‖u‖∞ ‖IU‖1 = ‖u‖∞ ‖v‖1 .

2.3 Orthant-strictly monotonic norms

After these recalls, we introduce two new notions, that are the strict versions of monotonic
and orthant-monotonic norms. Then, we provide characterizations that will prove especially
relevant for the ℓ0 pseudonorm.

Definition 5 A norm |||·||| on the space Rd is called

• strictly monotonic if, for all x, x′ in Rd, we have |x| < |x′| ⇒ |||x||| < |||x′|||, where
|x| < |x′| means that |xi| ≤ |x

′

i| for all i ∈ J1, dK, and that there exists j ∈ J1, dK such
that |xj | < |x

′

j|,

• orthant-strictly monotonic if, for all x, x′ in Rd, we have
(
|x| < |x′| and x ◦ x′ ≥

0 ⇒ |||x||| < |||x′|||
)
.

We will use the following, easy to prove, properties: any strictly monotonic norm is orthant-
strictly monotonic; any orthant-strictly monotonic norm is orthant-monotonic.

All the ℓp-norms ‖·‖p on the space Rd, for p ∈ [1,∞[, are strictly monotonic, hence
orthant-strictly monotonic. By contrast, the ℓ∞-norm ‖·‖∞ is not orthant-strictly monotonic.

To the difference with orthant-monotonicity (equivalence between Item 1 and Item 2 of
Proposition 4), the notion of orthant-strictly monotonicity is not necessarily preserved when
taking the dual norm: indeed, the ℓ1-norm ‖·‖1 is orthant-strictly monotonic, whereas its
dual norm, the ℓ∞-norm ‖·‖∞ is orthant-monotonic, but not orthant-strictly monotonic.

Now, we provide characterizations of orthant-strictly monotonic norms.
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Proposition 6 Let |||·||| be a norm on Rd. The following assertions are equivalent.

1. The norm |||·||| is orthant-strictly monotonic.

2. The family {RK}K⊂J1,dK of subspaces of R
d is strictly Birkhoff orthogonal, in the sense

that RK ⊥>
|||·||| R−K , for all K ⊂ J1, dK, as in (12).

3. The norm |||·||| is strictly increasing with the coordinate subspaces, in the sense that4,
for any x ∈ Rd and any J ( K ⊂ J1, dK, we have xJ 6= xK ⇒ |||xJ ||| < |||xK |||.

4. For any vector u ∈ Rd\{0}, there exists a vector v ∈ Rd\{0} such that supp(v) =
supp(u), that u ◦ v ≥ 0, and that v is |||·|||-dual to u, that is, 〈u, v〉 = |||u||| × |||v|||⋆.

Proof.

• We prove that Item 1 implies Item 2.
Let K ⊂ J1, dK. Let u ∈ RK and v ∈ R−K\{0}, that is, u = uK and v = v−K 6= 0. We want to

show that |||u+ v||| > |||u|||, by the definition (12) of strict Birkhoff orthogonality.
On the one hand, by definition of the module of a vector, we easily see that |x| = |xK |+ |x−K |,

for any vector x ∈ Rd. Thus, we have |u+v| = |(u+ v)K |+|(u + v)−K | = |uK+vK |+|u−K+v−K | =
|uK +0|+ |0+v−K | = |uK |+ |v−K | > |uK | = |u| since |v−K | > 0 as v = v−K 6= 0, and since u = uK .
On the other hand, we easily get that (u+ v) ◦ u =

(
(u+ v)K ◦ uK

)
+

(
(u+ v)−K ◦ u−K

)
=(

uK ◦ uK
)
+
(
v−K ◦ u−K

)
=

(
uK ◦ uK

)
, because u−K = 0 and vK = 0. Therefore, we get that

(u+ v) ◦ u =
(
uK ◦ uK

)
≥ 0.

From |u+ v| > |u| and (u+ v) ◦ u ≥ 0, we deduce that |||u+ v||| > |||u||| by Definition 5 as the
norm |||·||| is orthant-strictly monotonic. Thus, (12) is satisfied, hence Item 2 holds true.

• We prove that Item 2 implies Item 3.
Let x ∈ Rd and J ( K ⊂ J1, dK be and such that xJ 6= xK . We will show that |||xJ ||| < |||xK |||.
As J ( K ⊂ J1, dK and xJ 6= xK , there exists w ∈ R−J , w 6= 0, such that xK = xJ + w.

Now, as the family {RK}K⊂J1,dK is strictly Birkhoff orthogonal by assumption (Item 2), we have

RJ ⊥>
|||·||| R−J . As a consequence, we obtain that |||xK ||| = |||xJ + w||| > |||xJ |||.

• We prove that Item 3 implies Item 4.
Let u ∈ Rd\{0} be given and let us put K = supp(u) 6= ∅. As the norm |||·||| is orthant-

strictly monotonic, it is orthant-monotonic; hence, by Item 6 in Proposition 4, there exists a vector
v ∈ Rd\{0} such that supp(v) ⊂ supp(u), that u ◦ v ≥ 0 and that v is |||·|||-dual to u, as in (7b),
that is, 〈u, v〉 = |||u||| × |||v|||⋆. Thus J = supp(v) ⊂ K = supp(u). We now show that J ( K is
impossible, hence that J = K, thus proving that Item 4 holds true with the above vector v.

Writing that 〈u, v〉 = |||u||| × |||v|||⋆ (using that u = uK and v = vK = vJ), we obtain

|||u||| × |||v|||⋆ = 〈u, v〉 = 〈uK , v〉 = 〈uK , vK〉 = 〈uK , vJ〉 = 〈uJ , vJ〉 = 〈uJ , v〉 .

As a consequence, {uK , uJ} ⊂ argmax|||x|||≤|||u||| 〈x, v〉, by definition (3) of |||v|||⋆, because |||u||| =
|||uK ||| ≥ |||uJ |||, by Item 7 in Proposition 4 since J ⊂ K and the norm |||·||| is orthant-monotonic.
But any solution in argmax|||x|||≤|||u||| 〈x, v〉 belongs to the frontier of the ball of radius |||u|||, hence

4By J ( K, we mean that J ⊂ K and J 6= K.
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has exactly norm |||u|||. Thus, we deduce that |||u||| = |||uK ||| = |||uJ |||. If we had J = supp(v) ( K =
supp(u), we would have uJ 6= uK , hence |||uK ||| > |||uJ ||| by Item 3; this would be in contradiction
with |||uK ||| = |||uJ |||. Therefore, J = supp(v) = K = supp(u).

• We prove that Item 4 implies Item 1.
Let x, x′ in Rd be such that |x| < |x′| and x ◦ x′ ≥ 0. We are going to prove that |||x||| < |||x′|||.
We suppose that x 6= 0 (otherwise the proof is trivial). By Item 4, there exists a vector w ∈ Rd

such that supp(w) = supp(x), x ◦ w ≥ 0 and that 〈x, w〉 = |||x||| × |||w|||⋆. As supp(w) = supp(x)
with x 6= 0, we have w 6= 0, so that we can always suppose that |||w|||⋆ = 1 (after renormalization),
giving |||x||| = 〈x, w〉.

First, we are going to establish that i ∈ supp(x) ⇒ x′iwi ≥ xiwi. From |x′| > |x|, we deduce
that |x′|2 ≥ |x′| ◦ |x|, and, as x′ ◦ x ≥ 0, we obtain that |x′|2 ≥ x′ ◦ x = |x′| ◦ |x| ≥ 0. Hence,
we deduce

(x′ ◦ x) ◦ (x′ ◦ w) = |x′|2 ◦ (x ◦ w) ≥ (x′ ◦ x) ◦ (x ◦ w) ,

as x ◦ w ≥ 0. Moving to components, we get that, for all i ∈ J1, dK, x′ixix
′
iwi ≥ x′ixixiwi, so that,

on the one hand
x′ixi > 0 ⇒ x′iwi ≥ xiwi .

On the other hand, as |x′| > |x| and x ◦ x′ ≥ 0, we easily get that x′ixi > 0 ⇐⇒ i ∈ supp(x).
Therefore, we deduce that i ∈ supp(x) ⇒ x′ixi > 0 ⇒ x′iwi ≥ xiwi.

Second, we show that |||x||| ≤ |||x′|||. Indeed, we have:

|||x′||| = sup
|||w′|||⋆≤1

〈
x′, w′

〉
(by (3) as |||·||| = (|||·|||⋆)⋆)

≥
〈
x′, w

〉
(as |||w|||⋆ = 1)

=
∑

i∈supp(w)

x′iwi

=
∑

i∈supp(x)

x′iwi (as supp(w) = supp(x))

≥
∑

i∈supp(x)

xiwi (as i ∈ supp(x) ⇒ x′iwi ≥ xiwi)

= 〈x, w〉

= |||x||| (by the property |||x||| = 〈x, w〉 of the vector w.)

Third, we show that |||x||| < |||x′|||. There are two cases.
In the first case, there exists j ∈ supp(x) such that 0 < |xj | < |x′j |. As a consequence, on the

one hand, 0 < |wj ||xj | < |wj ||x
′
j |, since wj 6= 0 because j ∈ supp(x) = supp(w). On the other

hand, x′jxj > 0 implies x′jwj ≥ xjwj , as seen above, and xjwj ≥ 0 because x ◦ w ≥ 0. Thus, we
get that x′jwj ≥ xjwj ≥ 0. As 0 < |xj | < |x′j|, we deduce that x′jwj > xjwj. Returning to the last
inequality in the sequence of equalities and inequalities above, we observe that it is now strict, and
we conclude that |||x′||| > |||x|||.

In the second case, i ∈ supp(x) ⇒ 0 < |xi| = |x′i|. As |x| < |x′|, we deduce that there exists
j ∈ supp(x′)\supp(x) such that 0 = |xj | < |x′j |. We define a new vector x̃ by x̃j = 1/2x′j 6= 0
and x̃i = xi for i 6= j. Putting I = supp(x), we have x̃ = xI + 1/2x′jej = x̃I + x̃{j}, where

ej denotes the j-canonical vector of Rd. On the one hand, from the first case we obtain that
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|||x̃||| < |||x′|||. On the other hand, we have |||x||| ≤ |||x̃|||; indeed, by Proposition 4, Item 4 implies that
the norm |||·||| is orthant-monotonic, hence that |||x̃||| = |||x̃I + x̃{j}||| ≥ |||x̃I ||| = |||x|||. We conclude
that |||x||| ≤ |||x̃||| < |||x′|||.

This ends the proof. 2

As an example, we illustrate Item 4 of Proposition 6 with the ℓ1 (orthant-strictly mono-
tonic) and ℓ∞ (not orthant-strictly monotonic) norms.

• For any vector u ∈ Rd, we have seen (right after the proof of Proposition 6) that the
vector v = sign(u) is such that supp(v) = supp(u), that u ◦ v ≥ 0, and is ‖·‖1-dual to
the vector u. This is another proof that the norm ℓ1 is orthant-strictly monotonic.

• By contrast, if the vector v 6= 0 is ‖·‖∞-dual to the vector u = (1, 1/2, 0, . . . , 0), then
an easy computation shows that, necessarily, v = (v1, 0, 0, . . . , 0) with v1 > 0. As a
consequence, this gives {1} = supp(v) ( supp(u) = {1, 2}. This suffices to prove that
the norm ℓ∞ is not orthant-strictly monotonic.

We end this §2.3 with additional properties related to exposed and extreme points of the
unit ball B of an orthant-strictly monotonic norm |||·|||. We recall that an element x of a
convex set C is called an exposed point of C if there exists a support hyperplane H to the
convex set C at x such that H ∩ C = {x}. We show in the next proposition that orthant-
strictly monotonicity implies that the intersection of the unit sphere S with the subspaces
R{i} in (8), for i ∈ J1, dK, is made of exposed points of the unit ball B.

Proposition 7 If the norm |||·||| is orthant-strictly monotonic, then the elements of the
renormalized canonical basis of Rd, that is the ei/|||ei||| for i ∈ J1, dK, are exposed points
of the unit ball B.

Proof. Assume that the norm |||·||| is orthant-strictly monotonic and fix i ∈ J1, dK. Then, using

item 2 of Proposition 6, we have that |||ei +
∑

j∈J1,dK\{i} λjej ||| > |||ei|||, for all
{
λj

}
j∈J1,dK\{i}

where

not all λj ’s are 0 and where ej = ej/|||ej ||| for all j ∈ J1, dK. This means that the renormalized

canonical basis is strongly orthonormal relative to ei in the sense of Birkhoff. Using [18, Theorem

2.6], we obtain that ei is an exposed point of the unit ball B. This ends the proof. 2

We recall that an extreme point x of a convex set C cannot be written as x = λx′+(1−λ)x′′

with x′ ∈ C, x′′ ∈ C, x′ 6= x, x′′ 6= x and λ ∈]0, 1[. The normed space
(
Rd, |||·|||

)
is said to be

strictly convex if the unit ball B (of the norm |||·|||) is rotund, that is, if all points of the unit
sphere S are extreme points of the unit ball B. The normed space

(
Rd, ‖·‖p

)
, equipped with

the ℓp-norm ‖·‖p (for p ∈ [1,∞]), is strictly convex if and only if p ∈]1,∞[.

Proposition 8 If the norm |||·||| is orthant-monotonic and if the normed space
(
Rd, |||·|||

)
is

strictly convex, then the norm |||·||| is orthant-strictly monotonic.
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Proof. In [20, Theorem 2.2], we find the following result: if the family {RK}K⊂J1,dK of subspaces

of Rd is Birkhoff orthogonal for a norm |||·|||, and if the unit ball for that norm is rotund, then the
family {RK}K⊂J1,dK is strictly Birkhoff orthogonal.

Now for the proof. If the norm |||·||| is orthant-monotonic, then the family {RK}K⊂J1,dK of

subspaces of Rd is Birkhoff orthogonal by Item 4 in Proposition 4. As the unit ball for that norm is

rotund, we deduce that the family {RK}K⊂J1,dK is strictly Birkhoff orthogonal. As Item 2 implies

Item 1 in Proposition 6, we conclude that the norm |||·||| is orthant-strictly monotonic. 2

3 Generalized top-k and k-support norms

Let |||·||| be a norm on Rd, that we call the source norm. In §3.1, we introduce generalized top-
k and k-support norms constructed from the source norm, and we provide various examples.
In §3.2, we establish properties valid for any source norm, whereas, in §3.3, we establish
properties valid when the source norm is orthant-monotonic, making thus the connection
with the previous Sect. 2.

3.1 Definition and examples

We introduce generalized top-k and k-support norms that are constructed from the source
norm |||·|||.

Definition 9 For k ∈ J1, dK, we call generalized top-k norm (associated with the source
norm |||·|||) the norm defined by5

|||x|||tn(k) = sup
|K|≤k

|||xK ||| , ∀x ∈ Rd . (14)

We call generalized k-support norm the dual norm of the generalized top-k norm, denoted
by6 |||·|||⋆sn(k) :

|||·|||⋆sn(k) =
(
|||·|||tn(k)

)
⋆
. (15)

It is easily verified that |||·|||tn(k) indeed is a norm, for all k ∈ J1, dK.
We provide examples of generalized top-k and k-support norms in the case of permutation

invariant monotonic source norms and of ℓp source norms. Table 1 provides a summary.

5The notation sup|K|≤k is a shorthand for supK⊂J1,dK,|K|≤k.
6We use the symbol ⋆ in the superscript to indicate that the generalized k-support norm |||·|||⋆sn(k) is a dual

norm. To stress the point, we use the letter x for a primal vector, like in |||x|||tn(k), and the letter y for a dual

vector, like in |||y|||⋆sn(k) .
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The case of permutation invariant monotonic source norms. Letting x ∈ Rd and
ν be a permutation of J1, dK such that |xν(1)| ≥ |xν(2)| ≥ · · · ≥ |xν(d)|, we note x↓ =(
|xν(1)|, |xν(2)|, . . . , |xν(d)|

)
. The proof of the following Lemma is easy.

Lemma 10 Let |||·||| be a norm on Rd. Then, if the norm |||·||| is permutation invariant and
monotonic, we have that |||x|||tn(k) = |||x↓

{1,...,k}|||, where x↓
{1,...,k} ∈ Rd is given by (x↓){1,...,k}, for

all x ∈ Rd.

The case of ℓp source norms. We start with generalized top-k norms as in (14) (see
the second column of Table 1). When the norm |||·||| is the Euclidean norm ‖·‖2 of Rd, the
generalized top-k norm is known under different names: the top-(k, 2) norm in [21, p. 8],
or the 2-k-symmetric gauge norm [16] or the Ky Fan vector norm [17]. Indeed, in all these
cases, the norm of a vector x is obtained with a subvector of size k having the k largest
components in module, because the assumptions of Lemma 10 are satisfied. More generally,
when the norm |||·||| is the ℓp-norm ‖·‖p, for p ∈ [1,∞], the assumptions of Lemma 10 are
also satisfied, as ℓp-norms are permutation invariant and monotonic. Therefore, we obtain

that the corresponding generalized top-k norm
(
‖·‖p

)tn
(k)

has the expression
(
‖·‖p

)tn
(k)
(x) =

sup|K|≤k ‖xK‖p =
∥∥∥x↓

{1,...,k}

∥∥∥
p
, for all x ∈ Rd. Thus, we have obtained that the generalized

top-k norm associated with the ℓp-norm is the norm
∥∥∥(·)↓{1,...,k}

∥∥∥
p
: we call it7 top-(p,k) norm

and we denote it by ‖·‖tnp,k. Notice that ‖·‖tn∞,k = ‖·‖∞ for all k ∈ J1, dK.

Now, we turn to generalized k-support norms as in (15) (see the third column of Table 1).
When the norm |||·||| is the Euclidean norm ‖·‖2 of R

d, the generalized k-support norm is the
so-called k-support norm [2]. More generally, in [15, Definition 21], the authors define the k-
support p-norm or (p,k)-support norm for p ∈ [1,∞]. They show, in [15, Corollary 22], that

the dual norm
((

‖·‖p
)tn
(k)

)
⋆
of the above top-(k, p) norm is the (q, k)-support norm, where

1/p+ 1/q = 1. Thus, what we call the generalized k-support norm
(
‖·‖p

)⋆sn
(k)

=
((

‖·‖p
)tn
(k)

)
⋆

associated with the ℓp-norm is the (q,k)-support norm, that we denote ‖y‖snq,k. The formula
‖x‖sn∞,k = max{‖x‖1 /k, ‖x‖∞} can be found in [5, Exercise IV.1.18, p. 90].

3.2 General properties

We establish properties of generalized top-k and k-support norms, valid for any source norm,
that will be useful to prove our results in Sect. 4.

7We invert the indices in the naming convention of [21, p. 5, p. 8], where top-(k, 1) and top-(k, 2) were
used.
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source norm |||·||| |||·|||tn(k) |||·|||⋆sn(k)

‖·‖p top-(p,k) norm (q,k)-support norm

‖x‖tnp,k ‖y‖snq,k
=

(∑k
j=1|xν(j)|

p
)1/p

1/p+ 1/q = 1

‖·‖1 top-(1,k) norm (∞,k)-support norm

‖x‖tn1,k =
∑k

l=1|xν(l)| ‖y‖sn∞,k = max{‖y‖1 /k, ‖y‖∞}

‖·‖2 top-(2,k) norm (2,k)-support norm

‖x‖tn2,k =
√∑k

l=1|xν(l)|2 ‖y‖sn2,k no analytic expression

(computation in [2, Prop. 2.1])
‖·‖∞ top-(∞,k) norm (1,k)-support norm

ℓ∞-norm ℓ1-norm

‖x‖tn∞,k = |xν(1)| = ‖x‖∞ ‖y‖sn1,k = ‖y‖1

Table 1: Examples of generalized top-k and k-support norms generated by the ℓp source
norms |||·||| = ‖·‖p for p ∈ [1,∞]; ν is a permutation of J1, dK such that |xν(1)| ≥ |xν(2)| ≥
· · · ≥ |xν(d)|

Properties of generalized top-k norms

We denote the unit ball of the generalized top-k norm |||·|||tn(k) in Definition 9 by

Btn
(k) =

{
x ∈ Rd

∣∣ |||x|||tn(k) ≤ 1
}
, ∀k ∈ J1, dK . (16)

Proposition 11

• For k ∈ J1, dK, the generalized top-k norm |||·|||tn(k) (in Definition 9) has the expression

|||x|||tn(k) = sup
|K|≤k

σπK(S⋆)(x) , ∀x ∈ Rd , (17)

where S⋆ is the unit sphere of the dual norm |||·|||⋆ as in (4a).

• We have the inequality
|||x||| ≤ |||x|||tn(d) , ∀x ∈ Rd . (18)

• The sequence
{
|||·|||tn(j)

}
j∈J1,dK

of generalized top-k norms in (14) is nondecreasing, in the

sense that the following inequalities hold true

|||x|||tn(1) ≤ · · · ≤ |||x|||tn(j) ≤ |||x|||tn(j+1) ≤ · · · ≤ |||x|||tn(d) , ∀x ∈ Rd . (19)

• The sequence
{
Btn
(j)

}
j∈J1,dK

of units balls of the generalized top-k norms in (16) is non-

increasing, in the sense that the following inclusions hold true:

Btn
(d) ⊂ · · · ⊂ Btn

(j+1) ⊂ Btn
(j) ⊂ · · · ⊂ Btn

(1) . (20)
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Proof.

• For any x ∈ Rd, we have

|||x|||tn(k) = sup
|K|≤k

|||xK |||

by definition (14) of the generalized top-k norm |||·|||tn(k)

= sup
|K|≤k

σS⋆(xK) (by (6a))

= sup
|K|≤k

sup
y∈S⋆

〈xK , y〉 (by definition (5) of the support function σS⋆)

= sup
|K|≤k

sup
y∈S⋆

〈x, πK(y)〉 (by the self-duality property (9) of the projection mapping πK)

= sup
|K|≤k

sup
y′∈πK(S⋆)

〈
x, y′

〉

= sup
|K|≤k

σπK(S⋆)(x) (by definition (5) of the support function σπK(S⋆))

and we get (17).

• From the very definition (14) of the generalized top-d norm |||·|||tn(d), we get

|||x|||tn(d) = sup
|K|≤d

|||xK ||| ≥ |||xJ1,dK||| = |||x||| , ∀x ∈ Rd ,

hence (18).

• The inequalities (19) between norms easily derive from the very definition (14) of the generalized
top-k norms |||·|||tn(k).

• The inclusions (20) between unit balls directly follow from the inequalities (19) between norms.

This ends the proof. 2

Properties of generalized k-support norms

We denote the unit ball of the generalized k-support norm |||·|||⋆sn(k) in Definition 9 by

B⋆sn
(k) =

{
y ∈ Rd

∣∣ |||y|||⋆sn(k) ≤ 1
}
, ∀k ∈ J1, dK . (21)

Proposition 12

• For k ∈ J1, dK, the generalized k-support norm |||·|||⋆sn(k) in Definition 9 has unit ball

B⋆sn
(k) = co

( ⋃

|K|≤k

πK(S⋆)
)
, (22)

where co(S) denotes the closed convex hull of a subset S ⊂ Rd.
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• We have the inequality
|||y|||⋆sn(d) ≤ |||y|||⋆ , ∀y ∈ Rd . (23)

• The sequence
{
|||·|||⋆sn(j)

}
j∈J1,dK

of generalized k-support norms in (15) is nonincreasing,

in the sense that the following inequalities hold true

|||y|||⋆sn(d) ≤ · · · ≤ |||y|||⋆sn(j+1) ≤ |||y|||⋆sn(j) ≤ · · · ≤ |||y|||⋆sn(1) , ∀y ∈ Rd . (24)

• The sequence
{
B⋆sn
(j)

}
j∈J1,dK

of units balls of the generalized k-support norms in (21) is

nondecreasing, in the sense that the following inclusions hold true:

B⋆sn
(1) ⊂ · · · ⊂ B⋆sn

(j) ⊂ B⋆sn
(j+1) ⊂ · · · ⊂ B⋆sn

(d) . (25)

Proof.

• For any x ∈ Rd, we have

|||x|||tn(k) = sup
|K|≤k

σπK(S⋆)(x) (by (17))

= σ⋃
|K|≤k πK(S⋆)(x) (as the support function turns a union of sets into a supremum)

= σ
co
(⋃

|K|≤k πK(S⋆)
)(x) (by [4, Prop. 7.13])

and we obtain (22) thanks to (6a).

• From the inequality (18) between norms, we deduce the inequality (23) between dual norms, by
the definition (3) of a dual norm.

• The inequalities in (24) easily derive from the inclusions (25).

• The inclusions (25) directly follow from the inclusions (20) and from (6b) as B⋆sn
(k) =

(
Btn
(k)

)⊙
, the

polar set of Btn
(k).

This ends the proof. 2

3.3 Properties under orthant-monotonicity

We establish properties of generalized top-k and k-support norms, valid when the source
norm is orthant-monotonic, that will be useful to prove our results in Sect. 4.

Proposition 13

1. Let k ∈ J1, dK. If the source norm |||·||| is orthant-monotonic, then

• the generalized top-k norm has the expression

|||x|||tn(k) = sup
|K|≤k

σRK∩S⋆(x) , ∀x ∈ Rd , (26)

where S⋆ is the unit sphere of the dual norm |||·|||⋆ as in (4a),
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• the unit ball of the k-support norm is given by

B⋆sn
(k) = co

( ⋃

|K|≤k

(RK ∩ S⋆)
)
. (27)

2. The source norm |||·||| is orthant-monotonic if and only if |||·||| = |||·|||tn(d) if and only if

|||·|||⋆ = |||·|||⋆sn(d) .

3. If the source norm |||·||| is orthant-monotonic, then the generalized top-k norms and the
generalized k-support norms are orthant-monotonic.

Proof.

1. We suppose that the source norm |||·||| is orthant-monotonic. Let k ∈ J1, dK.

• We prove (26). For any x ∈ Rd, we have

|||x|||tn(k) = sup
|K|≤k

|||xK ||| (by definition (14) of the generalized top-k norm)

= sup
|K|≤k

|||xK |||⋆⋆ (as any norm is equal to its bidual norm by (6d))

= sup
|K|≤k

(|||·|||⋆)⋆,K(xK) (by Definition 1 of the the (⋆,K)-norm)

= sup
|K|≤k

(|||·|||⋆)K,⋆(xK)

by Item 3 in Proposition 4 because, as the norm |||·||| is orthant-monotonic, so is also the dual
norm |||·|||⋆ (equivalence between Item 1 and Item 2 in Proposition 4)

= sup
|K|≤k

σRK∩S⋆(xK) (by (13b) applied to |||·|||⋆ with xK ∈ RK)

= sup
|K|≤k

σRK∩S⋆(x)

by the self-duality property (9) of the projection mapping πK , and by definition (8) of the
subspace RK .

•We prove (27). Indeed, by (26), we have that |||·|||tn(k) = sup|K|≤k σRK∩S⋆ . As sup|K|≤k σRK∩S⋆

= σ⋃
|K|≤k(RK∩S⋆), we have just established that |||·|||tn(k) = σ∪|K|≤k(RK∩S⋆). On the other hand,

by (6a) we have that |||·|||tn(k) = σB⋆sn
(k)

since, by Definition 9, the k-support norm is the dual norm

of the top-k norm. Then, by [4, Prop. 7.13], we deduce that co
(
B⋆sn
(k)

)
= co

(⋃
|K|≤k(RK ∩ S⋆)

)
.

As the unit ball B⋆sn
(k) in (21) is closed and convex, we immediately obtain (27).

2. First, let us observe that, from the very definition (14) of the generalized top-d norm |||·|||tn(d),

and by (18), we have, for all x ∈ Rd:

|||x|||tn(d) = |||x||| ⇐⇒ sup
|K|≤d

|||xK ||| = |||x||| ⇐⇒ |||xK ||| ≤ |||x||| , ∀K ⊂ J1, dK . (28)
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Now, we turn to prove Item 2 as two reverse implications.

Suppose that the source norm |||·||| is orthant-monotonic, and let us prove that |||x|||tn(d) = |||x|||.

By Item 7 in Proposition 4, we get that |||xK ||| ≤ |||x|||, for all K ⊂ J1, dK, hence |||x|||tn(d) = |||x|||,

for all x ∈ Rd by the just proven equivalence (28).

Suppose that |||x|||tn(d) = |||x||| and let us prove that the source norm |||·||| is orthant-monotonic.

By (28), we have that |||xJ ||| ≤ |||x|||, for all x ∈ Rd and all J ⊂ J1, dK. This gives, in particular,
|||xK∩J ||| = |||(xK)J ||| ≤ |||xK |||; if J ⊂ K, we deduce that |||xJ ||| ≤ |||xK |||. Thus, Item 7 in
Proposition 4 holds true, and we obtain that the source norm |||·||| is orthant-monotonic.

We end the proof by taking the dual norms, as in (3), of both sides of the equality |||·||| = |||·|||tn(d),

yielding |||·|||⋆ = |||·|||⋆sn(d) by (15).

3. The generalized top-k norm in (14) is the supremum of the subfamily, when |K| ≤ k, of the
seminorms |||πK(·)|||K . As already mentioned, the definition of orthant-monotonic norms can
be extended to seminorms. With this extension, it is easily seen that the seminorms |||πK(·)|||K
are orthant-monotonic as soon as the source norm |||·||| is orthant-monotonic. Therefore,
if the source norm |||·||| is orthant-monotonic, so is the supremum in (14), thanks to the
property claimed right after the Definition 2: the supremum of a family of orthant-monotonic
seminorms is an orthant-monotonic seminorm. Thus, we have established that the generalized
top-k norm in (14) is orthant-monotonic. We deduce that its dual norm, the generalized
k-support norm |||·|||⋆sn(k) in (15), is orthant-monotonic. Indeed, the dual norm of an orthant-
monotonic norm |||·||| is orthant-monotonic, as proved in [11, Theorem 2.23] (equivalence
between Item 1 and Item 2 in Proposition 4).

This ends the proof. 2

4 The ℓ0 pseudonorm, orthant-monotonicity and gen-

eralized top-k and k-support norms

In §4.1, we introduce basic notation regarding the ℓ0 pseudonorm. In §4.2, we introduce
the notions of (strictly) increasingly or decreasingly graded sequences of norms, and we
display conditions for generalized top-k norms or generalized k-support norms to be graded
sequences.

4.1 Level sets of the ℓ0 pseudonorm

The so-called ℓ0 pseudonorm is the function ℓ0 : R
d → J0, dK defined, for any x ∈ Rd, by

ℓ0(x) = |supp(x)| = number of nonzero components of x . (29)

The ℓ0 pseudonorm shares three out of the four axioms of a norm: nonnegativity, positivity
except for x = 0, subadditivity. The axiom of 1-homogeneity does not hold true; by contrast,
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the ℓ0 pseudonorm is 0-homogeneous:

ℓ0(ρx) = ℓ0(x) , ∀ρ ∈ R\{0} , ∀x ∈ Rd . (30)

We introduce the level sets

ℓ≤k
0 =

{
x ∈ Rd

∣∣ ℓ0(x) ≤ k
}
, ∀k ∈ J0, dK . (31)

The level sets of the ℓ0 pseudonorm in (31) are easily related to the subspaces RK of Rd, as
defined in (8), by

ℓ≤k
0 =

{
x ∈ Rd

∣∣ ℓ0(x) ≤ k
}
=

⋃

|K|≤k

RK , ∀k ∈ J0, dK , (32)

where the notation
⋃

|K|≤k is a shorthand for
⋃

K⊂J1,dK,|K|≤k.

If the source norm |||·||| is orthant-monotonic, the expression (27) of the unit ball of the
k-support norm can be written with the level sets of the ℓ0 pseudonorm as

B⋆sn
(k) = co

( ⋃

|K|≤k

(RK ∩ S⋆)
)
= co

(
ℓ≤k
0 ∩ S⋆

)
. (33)

This formula is reminiscent of (and generalizes) [2, Equation (2)], which was established for
the Euclidean source norm. With an additional assumption, we obtain a refinement. The
proof of the following Proposition 14 relies on Lemma 15 and its Corollary 16.

Proposition 14 If the source norm |||·||| is orthant-monotonic and if the normed space(
Rd, |||·|||⋆

)
is strictly convex, then we have

ℓ≤k
0 ∩ S⋆ = B⋆sn

(k) ∩ S⋆ , ∀k ∈ J0, dK , (34)

where ℓ≤k
0 is the level set in (31) of the ℓ0 pseudonorm in (29), where S⋆ in (4a) is the

unit sphere of the dual norm |||·|||⋆, and where B⋆sn
(k) in (21) is the unit ball of the generalized

k-support norm |||·|||⋆sn(k) .

Proof. First, let us observe that the level set ℓ≤k
0 in (31) is closed because the pseudonorm ℓ0

is lower semi continuous. Then, we get

ℓ≤k
0 ∩ S⋆ = co

(
ℓ≤k
0 ∩ S⋆

)
∩ S⋆

(by Corollary 16 because ℓ≤k
0 ∩ S⋆ ⊂ S⋆ and is closed, and because the unit ball B⋆ is rotund)

= co
( ⋃

|K|≤k

(RK ∩ S⋆)
)
∩ S⋆ (as ℓ≤k

0 =
⋃

|K|≤k RK by (32))

= B⋆sn
(k) ∩ S⋆

as co
(⋃

|K|≤k(RK ∩ S⋆)
)
= B⋆sn

(k) by (27) because the source norm |||·||| is orthant-monotonic.

This ends the proof. 2

The result of Proposition 14 applies to the ℓp-norm ‖·‖p for p ∈]1,∞[.

19



Lemma 15 Let |||·||| be a norm on Rd. Let S̃ be a subset of extr(B) ⊂ S, the set of extreme

points of B. If A is a subset of S̃, then A = co(A) ∩ S̃. If A is a closed subset of S̃, then

A = co(A) ∩ S̃.

Proof. We first prove that A = co(A) ∩ S̃ when A ⊂ S̃. Since A ⊂ co(A) and A ⊂ S̃, we
immediately get that A ⊂ co(A) ∩ S̃. To prove the reverse inclusion, we first start by proving that
co(A) ∩ S̃ ⊂ extr

(
co(A)

)
, the set of extreme points of co(A).

The proof is by contradiction. Suppose indeed that there exists x ∈ co(A) ∩ S̃ and x 6∈
extr

(
co(A)

)
. Then, by definition of an extreme point, we could find y ∈ co(A) and z ∈ co(A),

distinct from x, and such that x = λy + (1 − λ)z for some λ ∈]0, 1[. Notice that necessarily y 6= z
(because, else, we would have x = y = z which would contradict y 6= x and z 6= x). By assumption
A ⊂ S̃, we deduce that co(A) ⊂ co(S̃) ⊂ co(S) = B =

{
x ∈ Rd

∣∣ |||x||| ≤ 1
}
, the unit ball, and

therefore that |||y||| ≤ 1 and |||z||| ≤ 1. If y or z were not in S — that is, if either |||y||| < 1 or |||z||| < 1
— then we would obtain that |||x||| ≤ λ|||y||| + (1 − λ)|||z||| < 1 since λ ∈]0, 1[; we would thus arrive
at a contradiction since x could not be in the sphere S and thus not in S̃. Thus, both y and z must
be in S, and we have a contradiction. Indeed, by assumption that S̃ is a subset of extr(S), no x ∈ S̃

can be obtained as a convex combination of y ∈ S\{x} and z ∈ S\{x}, with y 6= z.
Hence, we have proved by contradiction that co(A) ∩ S̃ ⊂ extr

(
co(A)

)
. We can conclude using

the fact that extr
(
co(A)

)
⊂ A, because the convex closure operation cannot generate new extreme

points, as proved in [13, Exercice 6.4].

Now, we consider the case where the subset A of S̃ is closed. Using the first part of the proof
we have that A = co(A)∩ S̃. Now, A is closed by assumption and bounded since A ⊂ S̃ ⊂ S. Thus,
A is a compact subset of Rd and, in a finite dimensional space, we get that co(A) is compact [19,
Theorem 17.2], thus closed. We conclude that A = co(A) ∩ S̃ = co(A) ∩ S̃ = co(A) ∩ S̃, where the
last equality comes from [4, Prop. 3.46].

This ends the proof. 2

If the unit ball B is rotund, we then have that S = extr(B), and we can apply Lemma 15

with S̃ = S to obtain the following corollary.

Corollary 16 Let |||·||| be a norm on Rd. Suppose that the unit ball of the norm |||·||| is
rotund. If A is a subset of the unit sphere S, then A = co(A) ∩ S. If A is a closed subset of
S, then A = co(A) ∩ S.

4.2 Graded sequences of norms

In [9], we introduced the notions of (strictly) decreasingly graded sequences of norms.
In §4.2.1, we define (strictly) increasingly graded sequences of norms. In §4.2.2, we dis-
play conditions for generalized top-k norms to be (strictly) increasingly graded sequences.
In §4.2.3, we display conditions for generalized k-support norms to be (strictly) decreasingly
graded sequences. In §4.2.4, we express the level sets of the ℓ0 pseudonorm in (31) by means
of the difference between two norms.
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4.2.1 Definitions of graded sequences of norms

In a sense, a graded sequence of norms is a monotone sequence that detects the number of
nonzero components of a vector in Rd when the sequence becomes stationary.

Definition 17 We say that a sequence {|||·|||k}k∈J1,dK of norms on Rd is increasingly graded
(resp. strictly increasingly graded) w.r.t. (with respect to) the ℓ0 pseudonorm if, for any
x ∈ Rd, one of the three following equivalent statements holds true.

1. We have the implication (resp. equivalence), for any l ∈ J1, dK,

ℓ0(x) = l =⇒ |||x|||1 ≤ · · · ≤ |||x|||l−1 ≤ |||x|||l = · · · = |||x|||d , (35a)

( resp. ℓ0(x) = l ⇐⇒ |||x|||1 ≤ · · · ≤ |||x|||l−1 < |||x|||l = · · · = |||x|||d . ) (35b)

2. The sequence k ∈ J1, dK 7→ |||x|||k is nondecreasing and we have the implication (resp.
equivalence), for any l ∈ J1, dK,

ℓ0(x) ≤ l =⇒ |||x|||l = |||x|||d , (35c)

( resp. ℓ0(x) ≤ l ⇐⇒ |||x|||l = |||x|||d
(
⇐⇒ |||x|||l ≤ |||x|||d

)
. ) (35d)

3. The sequence k ∈ J1, dK 7→ |||x|||k is nondecreasing and we have the inequality (resp.
equality)

ℓ0(x) ≥ min
{
k ∈ J1, dK

∣∣ |||x|||k = |||x|||d
}
, (35e)

( resp. ℓ0(x) = min
{
k ∈ J1, dK

∣∣ |||x|||k = |||x|||d
}
. ) (35f)

These definitions of (strictly) increasingly graded mimic the ones of (strictly) decreasingly
graded in [9, Definition 1] (replace ≤ in (35a) by ≥, replace ≤ and < in (35b) by ≥ and >,
replace nondecreasing by nonincreasing in the two last items).

The property of orthant-strict monotonicity for norms, as introduced in Definition 5,
proves especially relevant for the ℓ0 pseudonorm and sequences of generalized top-k norms,
as the following Propositions 18 and 20 reveal.

4.2.2 Sufficient conditions for increasingly graded sequence of generalized top-k
norms

We show that, when the source norm is orthant-(strictly) monotonic, the sequence of induced
generalized top-k norms is (strictly) increasingly graded.

Proposition 18

• If the norm |||·||| is orthant-monotonic, then the nondecreasing sequence
{
|||·|||tn(j)

}
j∈J1,dK

of

generalized top-k norms in (14) is increasingly graded with respect to the ℓ0 pseudonorm,
that is,

ℓ0(x) ≤ l ⇒ |||x|||tn(l) = |||x|||tn(d) , ∀x ∈ Rd , ∀l ∈ J0, dK .
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• If the norm |||·||| is orthant-strictly monotonic, then the nondecreasing sequence
{
|||·|||tn(j)

}
j∈J1,dK

of generalized top-k norms in (14) is strictly increasingly graded with respect to the
ℓ0 pseudonorm, that is,

ℓ0(x) ≤ l ⇐⇒ |||x|||tn(l) = |||x|||tn(d) , ∀x ∈ Rd , ∀l ∈ J0, dK .

Proof.

•We suppose that the norm |||·||| is orthant-monotonic. As the sequence
{
|||·|||tn(j)

}
j∈J1,dK

of generalized

top-k norms in (14) is nondecreasing by the inequalities (19), it suffices to show (35c) — that is,
ℓ0(x) ≤ l ⇒ |||x|||tn(d) = |||x|||tn(l) — to prove that the sequence is increasingly graded with respect to
the ℓ0 pseudonorm.

For this purpose, we consider x ∈ Rd, we put L = supp(x) and we suppose that ℓ0(x) = |L| ≤ l.
We now show that |||x|||tn(d) = |||x|||tn(l). Since x = xL, we have |||x||| = |||xL||| = |||xL|||L ≤ |||x|||tn(l), by the

very definition (14) of the generalized top-l norm |||·|||tn(l). On the one hand, we have just obtained

that |||x||| ≤ |||x|||tn(l). On the other hand, we have that |||x|||tn(l) ≤ |||x|||tn(l+1) ≤ · · · ≤ |||x|||tn(d) = |||x||| by
the inequalities (19) and the last equality comes from Item 2 in Proposition 13 since the norm |||·|||
is orthant-monotonic. Hence, we deduce that |||x||| = |||x|||tn(d) = · · · = |||x|||tn(l), so that |||x|||tn(k) is
stationary for k ≥ l.

• We suppose that the norm |||·||| is orthant-strictly monotonic. To prove that the equivalence (35b)
holds true for the sequence

{
|||·|||tn(j)

}
j∈J1,dK

, it is easily seen that it suffices to show that

ℓ0(x) = l ⇒ |||x|||tn(1) < · · · < |||x|||tn(l−1) < |||x|||tn(l) = |||x|||tn(l+1) = · · · = |||x|||tn(d) , ∀x ∈ Rd . (36)

We consider x ∈ Rd. We put L = supp(x) and we suppose that ℓ0(x) = |L| = l. As the norm |||·|||
is orthant-strictly monotonic, it is orthant-monotonic, so that the equalities |||x|||tn(l) = |||x|||tn(l+1) =

· · · = |||x|||tn(d) above hold true (as just established in the first part of the proof). Therefore, it only

remains to prove that |||x|||tn(1) < · · · < |||x|||tn(l−1) < |||x|||tn(l).
There is nothing to show for l = 0. Now, for l ≥ 1 and for any k ∈ J0, l − 1K, we have

|||x|||tn(k) = sup
|K|≤k

|||xK ||| (by definition (14) of the generalized top-k norm)

= sup
|K|≤k

|||xK∩L||| (because xL = x by definition of the set L = supp(x))

= sup
|K ′|≤k,K ′⊂L

|||xK ′ ||| (by setting K ′ = K ∩ L)

= sup
|K|≤k,K⊂L

|||yK |||⋆ (the same but with K instead of K ′)

= sup
|K|≤k,K(L

|||xK ||| (because |K| ≤ k ≤ l − 1 < l = |L| implies that K 6= L)

< sup
|K|≤k,j∈L\K

K(L

|||xK∪{j}|||
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because the set L \K is nonempty (having cardinality |L| − |K| = l− |K| ≥ k+ 1− |K| ≥ 1), and
because, since the norm |||·||| is orthant-strictly monotonic, using Item 3 in Proposition 6, we obtain
that |||xK ||| < |||xK∪{j}||| as xK 6= xK∪{j} for at least one j ∈ L \K since L = supp(x)

≤ sup
|J |≤k+1,J⊂L

|||xJ |||

(as all the subsets K ′ = K ∪ {j} are such that K ′ ⊂ L and |K ′| = k + 1)

≤ |||x|||tn(k+1)

by definition (14) of the generalized top-k+1 norm (in fact the last inequality is easily shown to be
an equality as xL = x). Thus, for any k ∈ J0, l − 1K, we have established that |||x|||tn(k) < |||x|||tn(k+1).

This ends the proof. 2

We show that, when the source norm is orthant-strictly monotonic, it is equivalent either
that the sequence of induced generalized top-k norms be strictly increasingly graded. or that
the dual norm |||·|||⋆ be orthant-strictly monotonic.

Proposition 19 The following statements are equivalent.

1. The dual norm |||·|||⋆ is orthant-strictly monotonic and the sequence
{
|||·|||tn(j)

}
j∈J1,dK

of generalized top-k norms in (14) is strictly increasingly graded with respect to the
ℓ0 pseudonorm.

2. Both the norm |||·||| and the dual norm |||·|||⋆ are orthant-strictly monotonic.

Proof.

• Suppose that Item 1 is satisfied and let us show that Item 2 holds true. For this, it suffices to
prove that the norm |||·||| is orthant-strictly monotonic. To prove that the norm |||·||| is orthant-
strictly monotonic, we will show that Item 3 in Proposition 6 holds true for |||·|||. For this purpose,
we consider x ∈ Rd and J ( K ⊂ J1, dK such that xJ 6= xK . By definition of the ℓ0 pseudonorm
in (29), we have j = ℓ0(xJ) < k = ℓ0(xK).

On the one hand, as the dual norm |||·|||⋆ is orthant-strictly monotonic, it is orthant-monotonic,
so that the norm |||·||| is also orthant-monotonic, as proved in [11, Theorem 2.23] (equivalence
between Item 1 and Item 2 in Proposition 4). As a consequence, so are the norms in the sequence{
|||·|||tn(j)

}
j∈J1,dK

by Item 3 in Proposition 13, and we get that |||xJ |||
tn
(k−1) ≤ |||xK |||tn(k−1), in particular,

by the equivalence between Item 1 and Item 7 in Proposition 4.
On the other hand, since, by assumption, the sequence

{
|||·|||tn(j)

}
j∈J1,dK

of generalized top-k

norms is strictly increasingly graded with respect to the ℓ0 pseudonorm, we have by (35b) that, on
the one hand, |||xJ |||

tn
(1) ≤ · · · ≤ |||xJ |||

tn
(j−1) < |||xJ |||

tn
(j) = · · · = |||xJ |||

tn
(d) = |||xJ |||, because j = ℓ0(xJ),

and, on the other hand, |||x|||tn(1) ≤ · · · ≤ |||xK |||tn(k−1) < |||xK |||tn(k) = · · · = |||xK |||tn(d) = |||xK |||, because
k = ℓ0(xK). Since j < k, we deduce that

|||xJ ||| = |||xJ |||
tn
(j) = |||xJ |||

tn
(k−1) ≤ |||xK |||tn(k−1) < |||xK |||tn(k) = |||xK ||| ,

and therefore that |||xJ ||| < |||xK |||. Thus, Item 3 in Proposition 6 holds true for |||·|||, so that the
norm |||·||| is orthant-strictly monotonic. Hence, we have shown that Item 2 is satisfied.

23



• Suppose that Item 2 is satisfied and let us show that Item 1 holds true.
Since the norm |||·||| is orthant-strictly monotonic, it has been proved in Proposition 18 that the

sequence
{
|||·|||tn(j)

}
j∈J1,dK

is strictly increasingly graded with respect to the ℓ0 pseudonorm. Hence,

Item 1 holds true.

This ends the proof. 2

4.2.3 Sufficient conditions for decreasingly graded sequence of generalized k-
support norms

There is an asymetry in that the property of orthant-strict monotonicity for norms does
not proves especially relevant for the ℓ0 pseudonorm and sequences of k-support norms.
Indeed, consider the source norm |||·||| = ‖·‖1, that is, the ℓ1 norm which is orthant-strict
monotonic. By Table 1 (third column), we know that the k-support norms are the norms
|||·|||⋆sn(k) = ‖·‖sn∞,k = max{‖·‖1 /k, ‖·‖∞}, for k ∈ J1, dK. Now, the nonincreasing sequence{
|||·|||⋆sn(j)

}
j∈J1,dK

of norms is not strictly decreasingly graded with respect to the ℓ0 pseudonorm

when d ≥ 2. Indeed, for any ε ∈]0, 1[, the vector y =
(
ε/(d− 1), . . . , ε/(d− 1), 1

)
is such

that
ℓ0(y) = d and |||y|||⋆sn(1) > |||y|||⋆sn(2) = · · · = |||y|||⋆sn(d)

because |||y|||⋆sn(k) = max
{
‖y‖1 /k, ‖y‖∞

}
= max

{
(ε+ 1)/k, 1

}
, for k ∈ J1, dK, so that ε+ 1 =

|||y|||⋆sn(1) > |||y|||⋆sn(2) = · · · = |||y|||⋆sn(d) = 1. However, we establish the following result.

Proposition 20

• If the source norm |||·||| is orthant-monotonic, then the nonincreasing sequence
{
|||·|||⋆sn(j)

}
j∈J1,dK

of generalized k-support norms in (15) is decreasingly graded with respect to the ℓ0 pseudonorm,
that is,

ℓ0(y) ≤ l ⇒ |||y|||⋆sn(l) = |||y|||⋆sn(d) , ∀y ∈ Rd , ∀l ∈ J0, dK . (37)

• If the source norm |||·||| is orthant-monotonic, and if the normed space
(
Rd, |||·|||⋆

)
is

strictly convex, then the nonincreasing sequence
{
|||·|||⋆sn(j)

}
j∈J1,dK

of generalized k-support

norms in (15) is strictly decreasingly graded with respect to the ℓ0 pseudonorm, that is,

ℓ0(y) ≤ l ⇐⇒ |||y|||⋆sn(l) = |||y|||⋆sn(d) , ∀y ∈ Rd , ∀l ∈ J0, dK . (38)

Proof. A direct proof would use [9, Proposition 6] with |||·|||⋆ as source norm, and the prop-
erty that |||·|||⋆sn(j) coincides with the coordinate-k norm [9, Definition 3] induced by |||·|||⋆ when the
norm |||·||| is orthant-monotonic. We give a self-contained proof for the sake of completeness.

• We suppose that the source norm |||·||| is orthant-monotonic.
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For any y ∈ Rd and for any k ∈ J1, dK, we have8

y ∈ ℓ≤k
0 ⇔ y = 0 or

y

|||y|||⋆
∈ ℓ≤k

0

(by 0-homogeneity (30) of the ℓ0 pseudonorm, and by definition (31) of ℓ≤k
0 )

⇔ y = 0 or
y

|||y|||⋆
∈ ℓ≤k

0 ∩ S⋆ (as y
|||y|||⋆

∈ S⋆)

⇔ y = 0 or
y

|||y|||⋆
∈

⋃

|K|≤k

(RK ∩ S⋆) (as ℓ≤k
0 =

⋃
|K|≤k RK by (32))

⇒ y = 0 or
y

|||y|||⋆
∈ co

( ⋃

|K|≤k

(RK ∩ S⋆)
)

(as S ⊂ co(S) for any subset S of Rd)

⇒ y = 0 or
y

|||y|||⋆
∈ B⋆sn

(k)

(as co
(⋃

|K|≤k(RK ∩ S⋆)
)
= B⋆sn

(k) by (27) because the source norm |||·||| is orthant-monotonic)

⇒ y = 0 or |||
y

|||y|||⋆
|||
⋆sn

(k)

≤ 1 (by definition (21) of the unit ball B⋆sn
(k) )

⇒ |||y|||⋆sn(k) ≤ |||y|||⋆ = |||y|||⋆sn(d) (where the last equality comes from Item 2

in Proposition 13 since the norm |||·||| is orthant-monotonic)

⇒ |||y|||⋆sn(k) = |||y|||⋆sn(d) . (as |||y|||⋆sn(k) ≥ |||y|||⋆sn(d) by (24))

Therefore, we have obtained (37). As the sequence
{
|||·|||⋆sn(j)

}
j∈J1,dK

of generalized k-support norms is

nonincreasing by (24), we conclude that it is decreasingly graded with respect to the ℓ0 pseudonorm
(see the comments after Definition 17).

• We suppose that the source norm |||·||| is orthant-monotonic and that the normed space
(
Rd, |||·|||⋆

)

is strictly convex.
For any y ∈ Rd and for any k ∈ J1, dK, we have9

y ∈ ℓ≤k
0 ⇔ y = 0 or

y

|||y|||⋆
∈ ℓ≤k

0

(by 0-homogeneity (30) of the ℓ0 pseudonorm, and by definition (31) of ℓ≤k
0 )

⇔ y = 0 or
y

|||y|||⋆
∈ ℓ≤k

0 ∩ S⋆ (as y
|||y|||⋆

∈ S⋆)

⇔ y = 0 or
y

|||y|||⋆
∈ B⋆sn

(k) ∩ S⋆

8In what follows, by “or”, we mean the so-called exclusive or (exclusive disjunction). Thus, every “or”
should be understood as “or y 6= 0 and”.

9See Footnote 8.
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by (34) since the assumptions of Proposition 14 — namely, the source norm |||·||| is orthant-
monotonic and the normed space

(
Rd, |||·|||⋆

)
is strictly convex — are satisfied

⇔ y = 0 or
y

|||y|||⋆
∈ B⋆sn

(k) (as y
|||y|||⋆

∈ S⋆)

⇔ y = 0 or |||
y

|||y|||⋆
|||
⋆sn

(k)

≤ 1 (by definition (21) of the unit ball B⋆sn
(k) )

⇔ |||y|||⋆sn(k) ≤ |||y|||⋆ = |||y|||⋆sn(d) (where the last equality comes from Item 2

in Proposition 13 since the norm |||·||| is orthant-monotonic)

⇔ |||y|||⋆sn(k) = |||y|||⋆sn(d) . (as |||y|||⋆sn(k) ≥ |||y|||⋆sn(d) by (24))

Therefore, we have obtained (38). As the sequence
{
|||·|||⋆sn(j)

}
j∈J1,dK

of generalized k-support norms

is nonincreasing by (24), we conclude that it is strictly decreasingly graded with respect to the
ℓ0 pseudonorm (see the comments after Definition 17).

This ends the proof. 2

4.2.4 Expressing the ℓ0 pseudonorm by means of the difference between two

norms

Propositions 18 and 20 open the way for so-called “difference of convex” (DC) optimization
methods [21] to achieve sparsity.

Indeed, if the source norm |||·||| is orthant-strictly monotonic, the level sets of the ℓ0 pseudonorm
in (31) can be expressed by means of the difference between two norms (one being a gener-
alized top-k norm), as follows,

ℓ≤k
0 =

{
x ∈ Rd

∣∣ |||x||| = |||x|||tn(k)
}
=

{
x ∈ Rd

∣∣ |||x||| ≤ |||x|||tn(k)
}
, ∀k ∈ J0, dK , (39a)

and the ℓ0 pseudonorm has the expression (see (35f))

ℓ0(x) = min
{
k ∈ J1, dK

∣∣∣ |||x|||tn(k) = |||x|||
}
, ∀x ∈ Rd . (39b)

As the ℓp-norm ‖·‖p and its dual norm are orthant-strictly monotonic for p ∈]1,∞[, the

formulas above hold true with the top-(p,k) norm |||·|||tn(k) = ‖·‖tnp,k (see second column of
Table 1).

If the source norm |||·||| is orthant-monotonic and the normed space
(
Rd, |||·|||⋆

)
is strictly

convex, the level sets of the ℓ0 pseudonorm in (31) can be expressed by means of the difference
between two norms (one being a generalized k-support norm), as follows,

ℓ≤k
0 =

{
y ∈ Rd

∣∣ |||y|||⋆sn(k) = |||y|||⋆
}
=

{
y ∈ Rd

∣∣ |||y|||⋆sn(k) ≤ |||y|||⋆
}
, ∀k ∈ J0, dK , (40a)

and the ℓ0 pseudonorm has the expression (see (35f))

ℓ0(y) = min
{
k ∈ J1, dK

∣∣∣ |||y|||⋆sn(k) = |||y|||⋆
}
, ∀y ∈ Rd . (40b)

As the ℓp-norm ‖·‖p is orthant-monotonic and the normed space
(
Rd, ‖·‖q

)
is strictly convex,

when p ∈]1,∞[ and 1/p+1/q = 1, the formulas above hold true with the (q,k)-support norm
|||·|||⋆sn(k) = ‖y‖snq,k for q ∈]1,∞[ (see Table 1).
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5 Conclusion

In sparse optimization problems, one looks for solution that have few nonzero components,
that is, sparsity is exactly measured by the ℓ0 pseudonorm. However, the mathematical
expression of the ℓ0 pseudonorm, taking integer values, makes it difficult to handle it in
optimization problems. To overcome this difficulty, one can try to replace the embarrassing
ℓ0 pseudonorm by nicer terms, like norms. In this paper, we contribute to this program by
bringing up three new concepts for norms, and show how they prove especially relevant for
the ℓ0 pseudonorm.

First, we have introduced a new class of orthant-strictly monotonic norms, inspired from
orthant-monotonic norms. With such a norm, when one component of a vector moves away
from zero, the norm of the vector strictly grows. Thus, an orthant-strictly monotonic norm
is sensitive to the support of a vector, like the ℓ0 pseudonorm. We have provided different
characterizations of orthant-strictly monotonic norms (and added a new characterization of
orthant-monotonic norms). Second, we have extended already known concepts of top-k and
k-support norms to sequences of generalized top-k and k-support norms, generated from any
source norm (and not only from the ℓp norms), and have studied their properties. Third, we
have introduced the notion of sequences of norms that are strictly increasingly graded with
respect to the ℓ0 pseudonorm. A graded sequence detects the number of nonzero components
of a vector when the sequence becomes stationary.

With these three notions, we have proved that, when the source norm is orthant-strictly
monotonic, the sequence of induced generalized top-k norms is strictly increasingly graded.
We have also shown that, when the source norm is orthant-monotonic and that the normed
space Rd is strictly convex when equipped with the dual norm, the sequence of induced
generalized k-support norms is strictly decreasingly graded.

These results — summarized in Table 2 — open the way for so-called “difference of
convex” (DC) optimization methods to achieve sparsity. Indeed, the level sets of the
ℓ0 pseudonorm can be expressed by means of the difference between norms, taken from
an increasingly or decreasingly graded sequence of norms. And we provide a way to generate
such sequences from a class of source norms that encompasses the ℓp norms (but for the
extreme ones).

To complete the possible applications, we add that, in another paper [8], we show that,
with orthant-strictly monotonic norms, we can define conjugacies for which the ℓ0 pseudonorm
is equal to its biconjugate.
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versions of this work.
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