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Learning slosh dynamics by means of data

B. Moya' - D. Gonzalez' . I. Alfaro' . F. Chinesta? . E. Cueto’

Abstract

In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order
model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics settings. This
model is extracted from data by exploring several strategies. First, a linear one, based on the employ of Proper Orthogonal
Decomposition techniques is analyzed. Second, a strategy based on the employ of Locally Linear Embedding is studied.
Finally, Topological Data Analysis is employed to the same end. All the three distinct possibilities rely on a numerical
integration scheme to advance the dynamics in time. This thermodynamically consistent integrator is developed on the basis
of the General Equation for Non-Equilibrium Reversible—Irreversible Coupling, GENERIC [M. Grmela and H.C Oettinger
(1997). Phys. Rev. E. 56 (6): 6620-6632], framework so as to guarantee the satisfaction of first principles (particularly, the
laws of thermodynamics). We show how the resulting method employs a few degrees of freedom, while it allows for a realistic
reconstruction of the fluid dynamics of sloshing processes under severe real-time constraints. The proposed method is shown

to run faster than real time in a standard laptop.

Keywords Data-driven fluid simulation - Model order reduction - GENERIC formalism - Real-time simulation

1 Introduction

The interest for fast and realistic fluid simulation—notewo-
rthy, free-surface phenomena [13]—is due to the wide range
of applications that could derive from their results. Some
examples could be the improvement of graphics for computer
games, surgery simulation or virtual prototyping, to name
but a few. Computer graphics is one of the areas seeking to
reproduce complex behaviors, traditionally studied through
the Navier Stokes equations, in order to provide convincing
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representations of different case studies that range from flow
divergence to splatter [2,27].

Nonetheless, real-time simulation of free surface fluid
flows is still an open research field. The main issue which
we address here lies in the commitment between accuracy
and computation time. Simulations of this kind are compu-
tationally demanding, and thus difficult to perform in such
conditions to produce credible results. In addition, a physi-
cally consistent model from which we could extract valuable
information would be highly desirable. The simulation-based
control of robots manipulating liquids, for instance, is of
utmost societal importance and still presents important diffi-
culties [38—40]. Therefore, there is room for new techniques
to be developed able to fulfill these prerequisites.

Recently, there is an increasing interest in data-driven sim-
ulation so as to find appealing alternatives to this problem,
common to both solid and fluid mechanics [5,10,11,14,16,
17,21,24,31]. This approach is particularly interesting in the
field of robotics, where data coming from computer vision is
to be analyzed so as to provide the necessary control feedback
through simulations in the loop. Machine and deep learning
methodologies are some of the means employed to unveil
data structures in order to develop predictive algorithms.
They provide not only a realistic representation of the fluid,
but also the properties of the physical state as outcome.
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Ladicky [23] presented a GPU implementation consisting
of a forest regressor [4], trained with a large set of videos
to extract pairs of snapshots, able to predict the state of
each particle in the following time step, characterized by
the so-called feature vector of state variables. This algorithm
allows to not be limited by the size of the time step, con-
sidered the bottleneck of the simulation. Closely related,
Byungsoo [20] explored reduced representations of smoke
and different types of liquids by means of deep learning. They
constructed non-linear functions through the use of convolu-
tional networks from the velocity fields so that the reduced
subspace was better adapted to the movement compared with
the results obtained by lineal methods.

In a related setting, there has been a growing interest
on the development of techniques based on the Koopman
operator and the related Dynamic Mode Decomposition
(DMD) method [18,22,32]. DMD computes a set of space-
time modes—in opposition to classical proper orthogonal
decomposition (POD) techniques, that compute only spa-
tial modes—based on snapshots of the velocity field that are
in fact the eigenmodes and eigenvalues of a linear approx-
imation to the nonlinear governing operator of the fluid
dynamics [1,33].

Following a similar rationale, the work of Kevrekidis
and coworkers on equation free modeling,kevrekidis2010
equation also starts from data and constructs an approxi-
mation of the slow manifold on which the system lives. All
of these methods asume that the dynamics of the problem is
governed by an equation whose precise form is hard to find
or, simply, we are not interested in.

The present work resembles somehow the strategy devel-
oped by Millan and Arroyo [26]. In that case, emphasis
was put in the non-linear dimensionality reduction aspects
of the technique. As will be done here, Millan and Arroyo
developed an integration scheme in generalized (reduced)
coordinates. A fundamental difference of the present work,
as will become clear readily, is that the integration scheme
will be learnt from data and—contrarily to the work of Millan
and Arroyo—is valid for Hamiltonian as well as for non-
conservative or out of equilibrium mechanics.

In this work we focus on sloshing problems, whose
interest—particularly for the control of robots manipulat-
ing liquids—has already been mentioned. The method thus
developed is based on two important assumptions. First, we
work with data [3], but we are interested in maintaining as
much as possible of the well-known mathematical descrip-
tion of the physical laws governing the problem. Indeed, we
are particularly interested in satisfying the basic principles of
thermodynamics—conservation of energy and positive pro-
duction of entropy—so as to render the method consistent
and also to obtain a sound numerical method with the right
stability properties, despite the presence of noise in the data.
Second, as in the equation-free modeling setting [19], we

assume the existence of a slow manifold in which the fluid
evolves. The method will be thus able to find the geometrical
structure of this slow manifold based solely on data, while
providing with a numerical method for the approximate inte-
gration of the dynamics on this manifold. To this end, given
the inherent dissipative structure of most fluids, we resort
to a general enough description, which in this case will be
provided by the GENERIC framework [12,30]. GENERIC
constitutes a generalization of the Hamiltonian physics to
dissipative (non-equilibrium) systems. It is, therefore, the
most general structure to be fulfilled by our method so as
to satisfy the basic principles of thermodynamics. Notewor-
thy, finite difference discretization in time of GENERIC also
provides with the right structure of a numerical integration
scheme so as to satisfy these principles for long-time inte-
gration times [34].

The structure of the paper is as follows. Section 2 consists
of a discussion about the model order reduction of sloshing
phenomena. For this purpose, three model order reduction
techniques have been tested: POD, locally linear embedding
(LLE) [37] and topological data analysis (TDA) [42]. This
last approach is found to be the most robust, so that the final
method relies upon it. GENERIC is presented in Sect. 3 as
an integrator for sloshing dynamics in a thermodynamically
consistent framework. The outcome aims to become a pow-
erful CPU system able to work at real time rates. Section 4
will consist of a review of the numerical results obtained by
the implementation and test of the integration algorithm, to
end up with a discussion in Sect. 5 over its efficiency and
future improvements.

2 Finding the slow manifold

In a general setting, we are interested in systems whose evo-
lution in the time interval Z = (0, T'] will be governed by a
set of variables z; = z(t) : Z — S,z € C1(0, T, i.e.,

. dz
z2(x, 1) = i fz(x, 1),

where x represents the physical coordinates of the considered
point. Given the expected complexity of f, and also with an
eye towards the future use of the method here developed in
the control of robots, we are interested in reverse engineering
this governing equation by means of data. We are therefore
not interested in obtaining a closed-form expression of f,
but to be able to integrate it in time with reasonable accuracy
and, above all, under severe real-time constraints.

As mentioned in the introduction, many previous works
hypothesize the existence of a slow manifold to which the
dynamics of the system tends [19,22]. The objective of this
work, therefore, will be first to unveil the geometrical struc-



Fig.1 Hypothesis abut the
existence of a slow manifold M
on which the fluid lives. The
small dots represent the
experimental data (snapshots) in
a high-dimensional space R”.
These (possibly noisy, see the
zoomed detail) data are assumed
to describe a manifold whose
geometry is sought. An arbitrary
trajectory of the system in the
phase space is represented in
red. Given the
high-dimensionality of the
sought manifold, a
dimensionality reduction will
also be applied so as to project
the data to an embedding space
in RY, with d < D. Then, the
system dynamics will be
integrated in this embedding
space and mapped back to the
physical space in R”

ture of this manifold, see Fig. 1, and then, to be able to
integrate the equations of motion on it.

Arroyo and coworkers also accepted the existence of a
slow configuration manifold for finite strain hyperelasto-
dynamics and developed a method for the integration of
the equations of motion, described by a minimal set of
degrees of freedom [26]. It is well-known that in this case
(a purely Hamiltonian case) positions and momenta describe
the cotangent bundle of the configuration manifold, 7*M,
and therefore the existence of this manifold is guaranteed [7].

In the case of (viscous) fluids, we are not in a Hamilto-
nian framework, given the dissipative character of viscous
phenomena. Therefore, the problem will involve, on one
hand, the need for a rigorous choice of the set of variables
z describing the configuration manifold. On the other, given
their infinite-dimensional character—note the dependence of
z(x, t) on x—it will be necessary to discretize it by employ-
ing a minimal number of degrees of freedom. In the work
of Arroyo this was done by employing non-linear dimen-
sionality reduction techniques to finite element results for a
collection of problems [26].

In what follows we discuss the approach followed herein.
We begin by the description of the pseudo-experimental cam-
paign. We then introduce different possible approaches to
characterize the fields of variables z.

2.1 Obtention of pseudo-experimental results

Our proof of concept is a viscous fluid in a container of
dimeter » = 10 cm and height 2~ = 7 cm, which has been
subjected to sloshing forces, see Fig. 2. In order to conduct
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the reduction of the dynamics, the Navier—Stokes equations
governing the fluid motion have been first discretized by
applying a Smooth Particle Hydrodynamics approach [9].
Particle discretization has been largely applied to analysis
since particle-based methods offer good approximations to
deal with complex fluids due to its efficient adaptability to
complicated geometries.

It is well-known that, for a Newtonian fluid, the adequate
set of state variables that characterize a fluid particle is com-
posed by its position, velocity and internal energy [8], so
that

S={z=@j,v,,Ej,j=1,2,....M) € R xR x R)M},
(1)

where M represents the number of particles in the SPH dis-
cretization. The fluid of our case of study is discretized by
2898 particles.

These pseudo-experimental results constitute a huge
amount of data. Reconstructing the dynamics of the flow in
such a high-dimensional space would need for a tremendous
amount of memory and CPU time. As sketched in Fig. 1, our
aim is to reduce the dimensionality of the space in which the
dynamics are to be integrated. Thus, given a matrix composed
by the set of n snapshots grouped by columns,

=Z e RP"

that describe the time history of the sloshing movement in
D =7 x M dimensions, representing the state of each par-
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Fig.2 Geometry of the liquid container

ticle at each time step ¢ € [¢1, ..., ], we aim to embed the
slow manifold of the system in dimension d so thatd < D.
Since in this particular case we have seven relevant variables
to describe the state of each particle, the dimension D of
each snapshot vector of the SPH approximation to the prob-
lem is therefore 2898 x 7 = 20,286, justifying the need for
a re-parametrization so as to embed the dynamics in a lower
dimensional manifold. The selection of this new parametriza-
tion will be further discussed in the next sections, where
different methods will be discussed.

The experimental campaign is composed by four simu-
lations of sloshing dynamics at incrementally higher initial
velocities vgp = {0.05,0.15, 0.1, 0.2} m/s. The set of snap-
shots obtained by a commercial simulation software has been
calculated for a time increment of Ar = 0.00016s. In total,
we have obtained 10625 snapshots for each simulation. Con-
versely, we do not need the full set of snapshots. The set will
be pruned by selecting equally spaced snapshots to keep the
minimum required to capture the dynamics. With regard to
the reduction method imposed, more or less snapshots will
be required.

It must be noticed that the time integration of the dynam-
ics will be preformed in the slow manifold, after a judicious
parametrization by embedding it in a low-dimensional space.
Therefore, a mapping is required to connect the slow mani-
fold and its embedding in the low-dimensional space. To this
end, several strategies have been analyzed that are discussed
next.

2.2 A POD approach

Proper orthogonal decomposition [25], has been largely
applied to dynamical problems to find an optimal orthog-
onal projection of the system in which a good approximation
of the dynamics can be defined. The motivation of its appli-
cation over our sloshing problem yields in the fact that we
consider that our problem is likely to present coherent struc-
tures, which means that we can find statistical relationships
between variables.

Method of snapshots. In our case, since we have performed
a large discretization of the fluid, the dimensionality of the
problem is much greater than the available collection of snap-
shots. As a result, the data matrix over which we perform
POD is narrow but large. If we did an ordinary analysis, the
computation of the correlation matrix Q = ZZT e RP*P
would be computationally demanding. In such cases, the use
of the method of snapshots is more convenient. The corre-
lation matrix would be calculated as Q = Z'Z e R
instead, to carry out the eigenvalue decomposition

ijZ}\,ivj, j=1,...,n,

being A; the set of eigenvalues and v; € R" the eigenvec-
tors of the analysis. These eigenvectors are the right singular
vectors of the singular value decomposition. Therefore, they
are equivalent to the corresponding POD modes, which can
be simply obtained by the following transformation

uj=—=272Zv; j=1,...,n.

v

Large eigenvalues represent the main hidden variables of
the system, and the smallest are related to perturbations. We
aim to choose the minimum dimension capable of repre-
senting the dynamics accurately. We need a reduced-basis
coordinate system able to capture most of the energy of the
system. We will select a number d of orthogonal modes able
to represent a prescribed amount of the energy of the sys-
tem. Conversely, due to the high non-linearity of the system,
we observe that a number of modes higher than that value
may be needed to ensure that we have an accurate integra-
tion scheme. This set of d vectors conforms the projection
matrix D, that works bidirectionally to offer a lineal mapping
between the physical space Z and the reduced basis Z,

Z=D

03]

@

The problem with a POD-based approach is that it pro-
vides with the best linear dimensionality reduction for the set
of snapshots. In this case, the dynamics of the liquid will be
non-linear and a big number of terms in the basis is expected,
thus rendering the method less efficient.

2.3 Alocally linear embedding approach

Some phenomena are poorly described by linear methods
since, due to the high non-linearity of their behavior, the
intrinsic relationships are also non-linear and hard to be
described by linear correlations. Thus, new manifold learn-
ing methodologies have emerged to face these shortcomings.
Locally Linear Embedding, known as LLE [37], considers



that each point of the cloud will be interpolated by its K near-
estneighbors with regard to their pairwise euclidean distance.
Local linearity will be assumed to exist in these patches of
the manifold. We take into consideration the premise that
the number of neighbors should be greater than the esti-
mated intrinsic dimensionality d of the slow manifold at the
time to select these parameters. In contrast, due to the com-
plex description of our case of study, we may need a higher
dimensionality d to capture the main features of the whole
dynamics.

In order to obtain an embedding of the system onto a
lower dimensional space, we proceed in three steps. First,
we find the K-nearest neighbors of each point. Then, we
compute the reconstruction of each point from its neighbors.
For this purpose, we calculate the weights that enable the
interpolation through the minimization of the approximation
error, measured by the cost function represented by

2
n

K
eW)=>"|zi =Y Wizj| . 3)
j=1

i=1

restricted by two constraints. Firstly, each data point is recon-
structed only by its neighbors, enforcing W;; = 0if z; isnota
neighbor. Secondly, weights must sum to one: Y iWij=1
Finally, an eigenvalue problem will provide the non-linear
projection of the system analyzed.

Itis important to note that in LLE, the number of neighbors
K is user-defined and constant for every data point. This is a
reasonable assumption if the sampling is dense and a small
number of neighbors is chosen. However, it does not take
into account the true topology of the data or how intricate the
manifold is at different regions. Indeed, as an assumption, the
linearity condition imposed at each patch is also considered
to hold in the embedded manifold. Therefore, the weights
remain constant at any subspace of dimension d < D. In
other words, they are invariant to transformations such as
translation, rotation and scaling, enabling a linear mapping
between the low dimensional space and the high dimensional
system. Then, the only unknown are the new coordinates
E = {§;},i = 1,..., M of the points in the embedded
space, which are calculated by the cost function related to
the embedded space,

2
n

K
PE) =) |&— ) Wik - )
j=1

i=1

This results in a D x D eigenvalue problem, whose d-
bottom non-zero eigenvectors represent a set of optimal
coordinates in which the manifold is embedded. Given the
local linearity constraint, if we introduced a new point in the
slow manifold, it could be locally linear interpolated by a set

of neighbors in the subspace and, with the calculated coeffi-
cients and the set of neighbors, reconstruct it in the complete
space.

2.4 ATDA approach

Data science has recently be attracted by the sought of
topological underlying structures in data to analyze its com-
plexity. One of the milestones achieved by these techniques
is its use for manifold learning purposes. Data has a shape,
which can be interpreted as the slow manifold where it is
embedded. One of main strengths of Topological Data Anal-
ysis (TDA) is that it makes data less sensitive to noise or
outliers by discerning the intrinsic features of the set of data.
Due to the reduction capacity of this technique, TDA can be
used to visualize high dimensional data or as a preprocessing
method for supervised manifold learning methodologies in
order to find the smooth manifold of the object of study.

TDA makes an intensive use of persistent homology [28,
42], which consists in the sought of topological features of
data. Information can be extracted from a point cloud just
by analyzing its clustering history. The study is performed
through the selection of a connectivity parameter, which will
determine the shape of data. The internal elements we refer to
are known as simplices. For a given connectivity parameter
R, two points are pairwise connected if they are far apart at
most R. As a consequence, they will conform a 1-simplex,
or edge. To define a simplex of higher dimensionality, the
M -points that would conform it must be closer than R to
every other point. The join of various simplices results in a
simplicial complex.

The final goal of the analysis is to construct a simplicial
complex able to characterize and represent accurately the
structure data. The optimal parameter R is selected from the
persistence diagrams. Persistence diagrams are a representa-
tion of the time history of the elements. They show barcodes,
that show when the simplicial complex appears and disap-
pears along time. Short barcodes show structures that are
interpreted as noise, while long bars show the predominant
structures of data. Therefore, R will ensure that the result
avoids noise and represents the natural underlying shape of
the point cloud. For a graphical explanation of TDA, see
Fig. 3.

The reader will notice how, by employing big (and high-
dimensional) data, the time taken by TDA methods to
compute neighborhoods grows exponentially. To overcome
this difficulty, we have employed the method of landmarks
[6]. Basically, this method samples the data set so as to obtain
a topology entirely equivalent but at a portion of the compu-
tational cost.

Once we have selected the optimal connectivity parame-
ter R that reflects the true shape of the data set, the obtained
simplicial complex storages the relationships among data



Fig. 3 A sketch of the concept of persistence homology. By making
R grow from 0, simplices (edges, triangles, tetrahedra) appear (respec-
tively, when two, three or four circles/spheres intersect) or disappear
(when a hole collapses). Persistence diagrams collect the values of R
for which these simplices appear or disappear. For the represented value
of R, node 2 is isolated from the rest of data points, while nodes 3 and 5,
for instance, are connected—their 1d persistence diagram takes a value
different from zero—. On the contrary, the triangle 1-3-4 is closed for
this R value, thus meaning that it must disappear from the 1d persistence
diagram—a hole has collapsed—.Those simplices with higher persis-
tence intervals represent the overall shape of the data set (they persist
for wider R intervals), while brief intervals are usually associated to
noise in the data

points, which represent the neighborhood of each one. In
contrast with Locally Linear Embedding, the analyst does
not enforce each datum to be related to a specified and
fixed number of neighbors K, but to have relationships only
with the persistent neighboring points—those data points
whose neighborhood is obtained on the manifold and not
the Euclidean space—. On the other hand, TDA does not
provide (as LLE does) with an interpolation scheme within
the just obtained manifold structure of the data. Here, we
will employ Kriging [43]. Of course, it is always possible to
employ the weights provided by LLE with a variable number
of neighbors, but Kriging has demonstrated in our experience
to provide slightly more accurate results.

From this point, we proceed like in an LLE problem, but
with a variable number of neighbors for each data point,
N (i). We calculate the embedded coordinates &; of each
point by minimizing the functional

n N(i) z

PE) =) |&— ) WiE|
j=1

i=

where W;;. represent the weights provided by a Kriging

scheme constructed on the A/ (i) neighbors z; € R”.

It is worth noting that, as in LLE techniques, we hypothe-
size that the Kriging scheme is valid on the physical as well
as in the embedded spaces, so that it provides with the nec-
essary smooth mapping between the embedded coordinates

and the physical ones:

Z:AcCcR! — RP
N (@)

Er— Y Wiz,
=0

where A C R? is the convex hull of the neighbors of point &.

3 Integration in the slow manifold

So far, we have described how to obtain, from data, the slow
manifold in which the system evolves and how to embed it in
a low-dimensional space so as to speedup the process. How-
ever, a final ingredient is still missing: how to integrate the
dynamics of the system on the embedded manifold. In [26] a
scheme is developed by taking advantage of the Hamiltonian
nature of hyperelasticity. Here, on the contrary, we develop
a completely general method that, based on the data, unveils
the underlying governing equations, while providing a very
efficient scheme for its integration in time.

To that end we will employ the so-called General Equa-
tion for Non-Equilibrium Reversible—Irreversible Coupling,
GENERIC, formalism [29,30], which can be advantageously
employed to characterize any non-equilibrium thermody-
namical behavior by means of data from the essential and
measurable state variables of the system [10].

GENERIC constitutes a generalization of the Hamiltonian
formalism of physics to non-equilibrium thermodynamic set-
tings. Therefore, it is seen as the most general framework in
which we can embed our system so as to satisfy basic prin-
ciples such as conservation of energy and strictly positive
dissipation of entropy. Data will be employed to unveil the
different terms in its expression. As will be noticed, each con-
stituent of the GENERIC formalism is assumed to have its
own manifold structure which is to be found by the method-
ology introduced in the following section.

3.1 Anintroduction to GENERIC

The GENERIC formalism [12] is a coarse-grained ther-
modynamic description of non-equilibrium systems which
characterizes their state from the analysis of the evolution
of energy and entropy. It is a powerful tool for treating sys-
tems of practical interest since it guarantees the no violation
of thermodynamic laws while representing the model with
fewer degrees of freedom. The generalization offered by
this formalism comes from only considering the so-called
slow variables, which will persist in the stationary state, and
thus characterize with stronger influence the evolution of the
dynamics. This formalism obeys the first and second laws



of thermodynamics due to the fulfillment of Noether’s the-
orem, i.e., it preserves the symmetries of the system. The
expression of this formalism is the following:

dz 0E aS
—=L—+M—, 5)
dt 0z 0z
where E represents the energy of the system and S its entropy.
It can be appreciated that this expression encloses two dif-
ferentiated parts to represent any thermodynamic system. L
is the so-called Poisson matrix and M the friction matrix,
which are related to the conservative and dissipative parts
of the system respectively. In order to guarantee the conser-
vation of energy and non-decreasing entropy conditions, the
next two constraints, called degeneracy condition, must be
accomplished:

N M oE

L— =0, — =0. 6)
0z 0z

In order to fulfill these prerequisites, L must be skew-
symmetric, while M must be symmetric, positive semi-
definite. As a result, the conservation of energy and entropy
generation are guaranteed. Given the measurements of the
state of the system S at different discrete time steps, Z, we
could obtain also in discrete form the elements L, M, V E and
VS by performing a regression process over the discretized
expression of Eq. (5),

Z —Zz
nHAt % = L@n41)DE@n+1) + M(2,41)DS(zn 1) (7)

The aim of our work is to obtain the values of DE and
DS, discretized energy and entropy gradients, and L and M if
they were also unknown—rvery often they have a pre-defined
structure—. As a final goal, we aim to construct the con-
stitutive manifold of the sloshing dynamics. This concept,
introduced by [15], proposes a strictly numerical approx-
imation to work on the manifold of the latent parameters
that govern the dynamics instead of relying on constitutive
equations to extract results. By constructing the constitutive
manifold of {L, M, DE, DS} we are developing the basis of
the integration scheme for the sloshing problem. Considering
the finiteness of the variables at discrete time steps, gradients
operators can be approximated as:

DE = Az, DS = Bz,
as usual in the finite element community.

In order to determine the numerical value of each
GENERIC constituent, we accomplish a regression over dis-
crete time intervals J C Z,

”’* = {Lv Mv Av B} = argminﬂ ||z(ﬂ') - zmeaS”v (8)

subjected to the constraints

L-Bz=0,
M- Az =0,

that ensure, respectively, conservation of energy and non-
negative entropy evolution.

This methodology has already successfully constructed
the constitutive manifold of dynamics in a variety of
cases [10].

3.2 GENERIC form of the sloshing problem

The selection of the variables that determine the state of
the particles, and hence will define the dynamics of the
phenomenon, is not a trivial question and has been deeply dis-
cussed in previous works such as [8,34-36]. An appropriate
selection is required to ensure the thermodynamic definition
of the system. In other words, the energy E (z) must be written
as a function of the selected variables. If that is not possible,
we lack a real GENERIC structure. In addition, two more
constrains need to be added to this selection. First, variables
must be accesible, i.e., observable. Secondly, they have to be
independent—even if linearly-dependent variables will not
affect the results, see [§]—. Following the description of a
fluid through its continuum governing equations, the system
is fully described by the position of the particles r;, velocity
v; and internal energy E; of each particle i. Thus, the state
of one particle is thus fully described by seven degrees of
freedom,

r;
Zi= | Vi y

E;
for each particle i = 1, ..., M in the SPH model or, equiv-

alently, for any experimental measurement.

From this description, we can deduce the manifold struc-
ture of L and M as functions of z. The dynamics we try to
study also include a non-conservative behavior that governs
the movement of the fluid.

Once the ingredients of the GENERIC expression for the
problem at hand is available, Eq. (7) allows us to obtain a
powerful time integrator whose numerical properties have
been extensively studied in previous works, see [34-36].

4 Numerical results

In this section we will expose the results obtained from the
implementation of the just introduced algorithm under the
three different approaches already mentioned. Regarding the
results extracted from the application of each methodology,
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Fig. 4 Cloud of nodes of the liquid at rest. There are 2898 particles
in the model. Particle number 1, for which some results are analyzed
hereafter, is highlighted in red

we will analyze their efficacy in order to reach the finest
degree of accuracy possible without neglecting the real-time
constraint to culminate the development of the integration
scheme that is, ultimately, the main milestone of this paper.

As mentioned earlier, the proof-of-concept problem that
we have considered is discretized by a total number of 2898
SPH particles. Their configuration at rest is shown in Fig. 4.

In the subsequent sections, we verify the developed
method by reconstructing one of the experiments (in particu-
lar, the one that corresponds to an initial velocity of 0.15 m/s).
The ability of the method to reconstruct one of the experi-
ments will provide important insight on the accuracy of the
scheme.

4.1 Verification of the POD approach

Proper orthogonal decomposition is the first approach to test.
In order to apply this linear strategy, we have started by select-
ing equally spaced snapshots at intervals of At = 0.02s.
Additionally, the structure of the GENERIC matrix L is
known [41],

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
Li=]-1 0 0 0 0 0 1],
0 -1 0 0 0 0 1
0 0 -1 0 0 0 1
0 0 0 -1 -1 -1 0

so that only the discrete matrix form of the gradients A and
B and the dissipative matrix M are to be identified.

From the pseudo-experimental results, it can be noticed
that the eigenvalues of their POD decomposition shows a
typical pattern. In it, see Fig. 5, it can readily be noticed how

—_
o
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>
N

-
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o

50 100 150 200 250 300
Mode number

Fig.5 Evolution of the eigenvalues of the pseudo-experimental results

the first modes present an abrupt decay of several orders of
magnitude. However, with 25 modes, only 62.81% of energy
of the system is captured. By increasing the number of modes
selected, we reach some 77.43% of energy captured with
50 modes, that is still not enough to build accurately the
slow manifold of the whole set. A further increase in the
number of modes renders the calculation too computationally
demanding to be performed.

When analyzing the eigenvalues of the problem we can
appreciate that, although there are some modes that stand
out, a great number of them are significant for representing
the dynamics accurately. As a consequence, a high number of
modes will be also required to capture the essential dynamics
of the sloshing movement. After comparing the results for a
range of modes, we conclude that 25 are enough to perform
a reasonable GENERIC calculation and generate a credible
representation of the fluid for each trajectory. Notwithstand-
ing the mentioned difficulties—not surprising, given the lin-
earity of POD method—the L, norm error in the reconstruc-
tion of the velocity field, see Fig. 6, is in the order of 1.5%.

It is worth mentioning that these difficulties of the POD
approach could not be attributed to the GENERIC integration
scheme—whose stability has been deeply studied and proved
in the literature, see for instance [34]—but to the big number
of POD modes necessary to obtain an accurate representa-
tion of the non-linear character of the pseudo-experimental
results.

4.2 Verification of the LLE approach

Through the application of LLE, a lower number of modes is
expected to capture the essential dynamics and obtain a con-
sistente form of the GENERIC gradients. More specifically,
we have applied satisfactorily the identification algorithm in
an embedding manifold of dimensionality 18 for a proper
reconstruction.

In this case, the L,-norm error in the reconstruction of the
velocity field significantly decreases with respect to the POD
approach. This error resulted to be on the order of 0,017%.
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Fig. 6 POD-based reconstruction of the trajectory of one particular
particle (evolution of coordinates x, y and z along time) vs. pseudo-
experimental results. Initial velocity 0.15m/s

The reconstruction of the displacement in time of a particular
particle (number 1) is shown in Fig. 7.

4.3 Verification of the TDA approach

Similar to the LLE approach, TDA requires enough infor-
mation to properly unveil the topological shape of data.
For this reason, we pruned the data every Ar = 0.00272s
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Fig. 7 LLE-based reconstruction of the trajectory of one particular
particle (evolution of coordinates x, y and z along time) versus pseudo-
experimental results. Initial velocity 0.15 m/s

(i.e., we took one snapshot out of every seventeen in the
SPH results). Each trajectory is successfully embedded in
a manifold of d = 3 dimensions for calculating the set of

{M(&,), A(§,), B(§,)} matrices.

Remark 1 The set of constituents of the GENERIC expres-
sion of the problem can not, in general, be obtained in the



physical space M C RP and then projected to the reduced-
order, embedded manifold. We risk to loose the properties
of these terms so as to ensure thermodynamic consistency.
Instead, they are obtained in the embedded space RY, after the
necessary embedding of the data. Therefore, the regression
introduced in Eq. (8) is actually accomplished as

”“* = {M, A’ B} = argmin”, ||E("L) - EmeasH’ (9)

where the precise form of L is assumed known, as already
mentioned.

The L;-norm error in the reconstruction of the velocity
field for this problem was 0.00011%, substantially lower than
that of the POD and LLE approaches, see Fig. 8. This very
low error justifies the selection of the TDA-based approach
for a general case, whose details will be analyzed next.

4.4 Verification of the proposed integration scheme

Of course, the final goal of the just developed method is not to
reproduce one of the experimental results—something that
has been done just for verification of the approach—but to
be able to integrate an arbitrary trajectory in the manifold
described by the experimental results.

To test the efficacy of the integration scheme, we are going
to compare the results calculated by this method with pseudo-
experimental data from a trajectory other than the pseudo-
experimental data employed to describe the manifold. From
Eq. (7)—recall also Fig. 1—we obtain a scheme of the
form

Eni =&, + A1 [LEDAE,) + ME,)BE,)] &, (10)

where we have highlighted the dependence of every term
of the GENERIC description of the movement on &, if an
explicit scheme is chosen. Since no pseudo-experimental
results for &, will exist, in general, these values must be
interpolated on the manifold by leveraging its just found geo-
metrical structure.

We have performed the integration of a new trajectory
with initial velocity vp = 0.0175m/s, and compared the
results obtained by the GENERIC integrator and those that
we have obtained by SPH methods. A comparison of selected
snapshots is shown in Fig. 9. Note the visible similarity
between the results obtained by the proposed method and
those obtained by SPH.

In Fig. 10 we show the reconstruction of the displace-
ment of particle number 1. Of course, the error increases
with respect to the examples in the preceding sections, since
there is no experimental result that coincides with the sim-
ulated problem. The time evolution of the relative error in
the prediction of the height reached by the liquid is plotted in
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Fig. 8 TDA-based reconstruction of the trajectory of one particular
particle (evolution of coordinates x, y and z along time) vs. pseudo-
experimental results. Initial velocity 0.15m/s

Fig. 11. Itis worth noting that the error remains around 2% in
the vast majority of the time increments. Only in a small por-
tion of the increments the error rise to a value always under
7%. Of course, further refinement in the data sampling will
produce more accurate results.



Fig.9 Comparison between
snapshots obtained by the
proposed method (left column)
and their equivalent ground truth
obtained by SPH (right). Time
instants 28, 115 and 172 are
shown. Particle 1 is highlighted
in red so as to ease the
comparison among
pseudo-experimental and
learned results

The method runs faster than real time. For instance, a
simulation of 1.7s of physical time takes 1.640434s run-
ning Matlab on a 2015 MacBook Pro laptop equipped with
an Intel Core 17 processor. Of these, 0.901420s correspond
to the integration in time of the GENERIC expression. The
remaining time is related to the neighbor finding process in
the manifold of the results.

0.04 0.04

0,04 © 0.04

5 Discussion

What we have developed in this work is a practical way of
learning the behavior of a free surface fluid that allows to
overcome the need to integrate in time the Navier—Stokes
equations, whose difficulty is well known. The method begins
by writing down the equations of the fluid in the most general
framework that allows for a description of the dynamics of
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Fig. 10 Integration of the sloshing movement versus ground truth.
Initial velocity 0.175m/s. Figures represent, respectively from top to
bottom, the displacement of particle number 1 along x, y and z coordi-
nates

the fluid without losing information on the displacement and
velocity fields. This is the so-called GENERIC framework.
GENERIC has a number of appealing features. First, its
terms can be obtained numerically by regression of avail-
able experimental data. This approach guarantees the correct
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Fig. 11 Evolution in time of the error in the prediction of the water
heigth

satisfaction of the conservation of energy and dissipation
of entropy. Second, numerical discretization of GENERIC
by finite differences in time provides us with a powerful
and consistent integration scheme that has show to posses
remarkable numerical properties, as previously studied by
different authors.

The third ingredient of the method is nonlinear model
order reduction. Since GENERIC establishes a system of
equations por every particle in the models, and given the fact
that this number is usually very high, we have decided to
reduce the order of the model by employing TDA-informed
locally linear embeddings, thus greatly minimizing the num-
ber of degrees of freedom.

The combination of these ingredients has allowed us to
develop a method that is able to cope with severe real time
constraints, yet maintaining its desired thermodynamic con-
sistency. Results showed that the simulations ran slightly
faster than real time, with remarkable error levels always
under 10%. This level of error is considered enough for many
applications such as computer games, rendering, robot con-
trol, etc.
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