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The multireflection grazing-incidence X-ray diffraction method is used to test

surface stresses at depths of several micrometres in the case of metal samples.

This work presents new ways of analysing experimental data obtained by this

method for Ni samples exhibiting significant elastic anisotropy of crystals. Three

different methods of determining biaxial stresses and lattice parameter were

compared. In the first approach, the calculations were performed using the

linear least-squares method, and then two simplified procedures based on simple

linear regression (weighted and non-weighted) were applied. It was found that

all the tested methods give similar results, i.e. almost equal values of the

determined stresses and lattice parameters and the uncertainties of their

determination. The advantage of analyses based on simple linear regression is

their simplicity and straightforward interpretation, enabling easy verification of

the influence of the crystallographic texture and the presence of shear stresses,

as well as graphical determination of the stress-free lattice parameter.

1. Introduction

The well known methodology of stress determination in

polycrystalline materials is based on diffraction measurements

of lattice strains. Different techniques have been developed

over almost one hundred years of using this method, but the

most widespread and simplest one is based on X-ray

measurement of the sin2 plot, in which simple linear

regression is used (Hauk, 1997; Noyan & Cohen, 1987). This

method allows the determination of not only the components

of the stress tensor but also the stress-free lattice parameter

(assuming stress normal to the surface equal to zero).

The idea of stress analysis using diffraction is based on the

measurement of crystallographic lattice strains caused by

residual stresses of different types. The first- and second-order

stresses cause mean elastic lattice strains for groups of poly-

crystalline grains. This effect can be seen as a shift of the

diffraction peaks. In order to determine stresses, first the

diffraction peaks are measured at different orientations of the

scattering vector with respect to the sample (Fig. 1). The

peaks’ positions are found by fitting theoretical functions (e.g.

the pseudo-Voigt profile; Thompson et al., 1987) to the

experimental data. Then, using Bragg’s relation the mean

lattice strain can be determined as the relative change of

interplanar spacing, i.e.
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h"ð�; Þifhklg ¼ � cot �0
fhklg h�ifhklg � �

0
fhklg

� �
or

h"ð�; Þifhklg ¼
hdifhklg � d0

fhklg

d0
fhklg

;
ð1Þ

where h . . . i{hkl} denotes a mean value defined for the volume

of the crystallites that take part in diffraction, and hdi{hkl} and

d0
fhklg are the mean interplanar spacings for the {hkl} crystal-

lographic planes determined in the studied sample and in a

stress-free crystallite, respectively. The corresponding shift of

the diffraction peak is equal to 2ðh�ifhklg � �
0
fhklgÞ, where 2� is

the diffraction angle defined as the angle between the incident

and the diffracted X-ray beam.

In general, the relation between the strains h"(�,  )i{hkl}

measured using the hkl reflection in the direction of the

diffraction vector �K (defined by the � and  angles in Fig. 1)

and stress tensor �ij defined in the sample reference frame is

given by the equation (Hauk, 1997; Noyan & Cohen, 1987)

h" �;  ð Þifhklg ¼ Fij hkl; �;  ; fð Þ�ij; ð2Þ

where Fij are the X-ray stress factors (XSFs) depending not

only on the hkl reflection but also on crystallographic texture,

f represents the orientation distribution function (ODF) and

the sum is calculated for six independent components of the

stress tensor (Barral et al., 1987; Van Houtte & De Buyser,

1993; Hauk, 1997; van Leeuwen et al., 1999; Genzel, 1999;

Leoni et al., 2001; Welzel & Mittemeijer, 2003; Welzel et al.,

2005).

When using diffraction methods, the lattice strains are not

measured directly but in fact the interplanar spacings

hd(�,  )i{hkl} are determined from the diffraction peak posi-

tions, measured for different orientations of the scattering

vector. Therefore, the above equation can be rewritten in the

following form [cf. equations (1) and (2)]:

hdð�; Þifhklg ¼ Fij hkl; �;  ; fð Þ�ijd
0
hkl þ d0

hkl: ð3Þ

Finally, equation (3) is used to determine the components �ij

of the stress tensor and the stress-free spacing d0
hkl (if it is

unknown), which are adjusted in the least-squares procedure

in order to fit the calculated hd(�,  )i{hkl} values to the

experimental ones. The procedure is based on minimizing the

merit function called �2, which is defined as

�2
¼

1

N �M

XN

n¼1

hdð�n;  nÞi
exp
fhklg � hdð�n;  nÞi

cal
fhklg

�n

" #2

; ð4Þ

where hdð�n;  nÞi
exp
fhklg and hdð�n;  nÞi

cal
fhklg are, respectively, the

experimental and calculated lattice parameters, �n =

�½hdð�n;  nÞi
exp
fhklg� is the measurement uncertainty (i.e. standard

deviation) of hdð�n;  nÞi
exp
fhklg for the nth measurement, and N

and M are the number of measured points and fitting para-

meters, respectively. If the uncertainties �n are known, the

value of �2 is a measure of the goodness of fit, i.e. �2 = 1 means

that a ‘good fit’, corresponding to experimental uncertainty,

was obtained (Press et al., 1992).

In the case of quasi-isotropic (non-textured) polycrystalline

materials, Fijðhkl; �;  ; f Þ can be expressed through two

independent X-ray elastic constants (XECs) shkl
1 and shkl

2

(Hauk, 1997; Noyan & Cohen, 1987):

F11 hkl; �;  ; fð Þ ¼ 1
2 s

hkl

2 cos2 � sin2  þ shkl
1 ;

F22 hkl; �;  ; fð Þ ¼ 1
2 s

hkl

2 sin2 � sin2  þ shkl
1 ;

F33 hkl;  ; fð Þ ¼ 1
2 s

hkl

2 cos2  þ shkl
1 ;

F12 hkl; �;  ; fð Þ ¼ 1
2 s

hkl

2 sin 2� sin2  ;

F13 hkl; �;  ; fð Þ ¼ 1
2 s

hkl

2 cos � sin 2 ;

F23 hkl; �;  ; fð Þ ¼ 1
2 s

hkl

2 sin� sin 2 :

ð5Þ

The values of the XSFs or XECs can be evaluated experi-

mentally by applying known external loads to the sample and

measuring the lattice strains for different orientations of the

scattering vector. Alternatively, the XSFs or XECs can be

calculated from single-crystal elastic constants (SECs) using a

chosen model of crystallite interaction (Dölle, 1979; Dölle &

Cohen, 1980; Barral et al., 1987; Brakman, 1987; Baczmański et

al., 1993, 2003; Matthies et al., 1994; Welzel et al., 2005). The

Voigt (1928) and Reuss (1929) methods for calculation of the

XECs or XSFs are based on the hypothesis of strain or stress

homogeneity in the considered volume, respectively, and this

assumption can be applied to quasi-isotropic and textured

polycrystalline materials. However, in order to account for the

interaction between grains in the calculations, it is necessary to

use, for example, the Eshelby–Kröner method (Kröner, 1961),

in which the grains are approximated by ellipsoidal inclusions

(Eshelby, 1957) embedded in a homogeneous medium. In

addition, to take into account the direction-dependent inter-

action between grains, two approaches can be used. The first

was given by Vook & Witt (1965) and developed by van

Leeuwen et al. (1999) and Welzel & Mittemeijer (2003) for

columnar grains in the surface layer. In this approach, grains

having dimensions equal to the thickness of the film exhibit

the same in-plane strain (a Voigt-type behaviour), whereas

they can deform freely in the direction perpendicular to the

surface (a Reuss-type behaviour). The second approach,

called the free-surface model, was proposed by Baczmanski et

al. (2008) for grains placed close to the sample surface. Simi-

larly as in the Vook–Witt model, it was assumed that grains

can freely deform in the direction normal to the surface

(Reuss-type behaviour), while the in-plane interaction is

Figure 1
Orientation of the scattering vector �K with respect to the sample system
X, and definition of the  and � angles.



approximated by the self-consistent model (Eshelby–Kröner-

type behaviour). It should be highlighted that the latter

approximation describes the interaction occurring between

the grains in the gauge volume penetrated by X-rays near the

surface.

After simple transformation of equation (3) and using

equation (5) for quasi-isotropic material, the interplanar

spacings can be expressed by the macrostresses �ij and the

stress-free interplanar spacing d0
fhklg:

hdð�; Þifhklg ¼
�

1
2 shkl

2

�
�11 � �33

� �
cos2 �

þ �12 sin 2�þ �22 � �33

�
sin2 �

� �
sin2

þ shkl
1 �11 þ �22 þ �33ð Þ þ 1

2 shkl
2 �33

þ 1
2 shkl

2 �13 cos�þ �23 sin�ð Þ sin 2 
�

d0
hkl þ d0

hkl: ð6Þ

When one hkl reflection is used in the experiment, equation

(6) leads to the well known sin2 law, in which the measured

interplanar spacings are plotted versus sin2 , for constant �
angle (Hauk, 1997). In the case of zero values of shear stresses,

the plot of hd(�,  )i{hkl} versus sin2 is linear and the normal

stresses �11, �22 and �33 can be determined from a simple

linear regression (i.e. by fitting a straight line to the experi-

mental data), if d0
hkl is known. Alternatively, in the case of

X-ray diffraction, when forces normal to the surface can be

neglected owing to the shallow information depth (i.e. �33 = 0),

the values of �11, �22 and d0
hkl can be found. This is the prin-

ciple of the simplest methodology for stress measurement,

which is widely used in the community and fully supported by

the available commercial software. However, many specific

methodologies for stress measurement have been proposed,

and they require simple and clear interpretations. One such

method is multireflection grazing-incidence X-ray diffraction

(MGIXD), developed by Marciszko et al. (2013, 2016) and

used for the determination of stress variation under the

sample surface. In this work a new simple method for inter-

pretation of MGIXD measurements is proposed and tested.

The main advantage of this method is its simplicity and the

possibility of clear results presentation.

2. Stress measurements using the
MGIXD method

2.1. Experimental principles

The MGIXD geometry (Skrzypek

et al., 2001) is based on the idea of the

low-incident-beam-angle diffraction

method (Van Acker et al., 1994). It has

been developed in order to study the

depth profile of residual stresses in

near-surface layers of a polycrystalline

material. The used geometry is char-

acterized by a small and constant

incident angle �, in omega acquisition

mode (Welzel et al., 2005), and by

different orientations of the scattering

vector (variable 2�{hkl} angle for a constant wavelength; see

Fig. 2) given by the equation

 hkl ¼ �fhklg � �; ð7Þ

where 2�{hkl} are the diffraction angles corresponding to those

reflections hkl for which diffraction peaks are measured

(Skrzypek et al., 2001; Marciszko et al., 2012, 2013, 2016).

If the incident angle � is low and constant during the

measurement, the penetration depth of the X-rays depends

mostly on the long path of the incident beam in the studied

material (a� b in Fig. 2) and it does not depend significantly

on the 2�{hkl} angle. Therefore the information/penetration

depth for a given incident angle � can be calculated from the

formula

� ¼
	

sin �
þ

	

sinð�fhklg � �Þ

� 	�1

’
sin �

	
; ð8Þ

where 	 is the linear attenuation coefficient for X-ray radia-

tion.

The stress is determined for a constant penetration depth

(constant incident angle �) by measuring interplanar spacings

for different hkl reflections corresponding to different  hkl

angles (Fig. 1). Subsequently, the incident angle can be

changed in order to perform measurement for another pene-

tration depth. The advised experimental configuration for this

experiment is the parallel-beam geometry, minimizing possible

error connected with positioning of the sample, which can

significantly affect the value of determined stress. For more

details see Marciszko et al. (2015, 2016).

To determine the components of the stress tensor and

strain-free lattice parameter, equation (3) should be modified

in order to relate the lattice strains to the constant reference

value (a0 lattice parameter) instead of the reflection-

dependent d0
hkl spacings. Therefore the equivalent lattice

parameters ha(�,  )i{hkl} are calculated and together with the

a0 lattice parameter are introduced into equation (3) (Hauk,

1997; Genzel, 1999; Skrzypek et al., 2001; Welzel & Mitte-

meijer, 2003; Welzel et al., 2005; Marciszko et al., 2015):

hað�; Þifhklg ¼ Fij hkl; �;  ; fð Þ�ija0 þ a0; ð9Þ

where for the cubic crystal structure

Figure 2
Geometry of the MGIXD method. The incident angle � is fixed during measurement, while the
orientation of the scattering vector is characterized by the  hkl angle (between the scattering vector
�K and the normal to the sample X3). The path of the X-rays in the material is shown (path length l =
a + b, where a � b).



hað�; Þifhklg ¼ hdð�; Þifhklgðh
2
þ k2
þ l2
Þ

1=2
ð9aÞ

and � can be chosen arbitrarily, while  depends on the

diffraction angle for the given reflection hkl.

Until now the analysis of the experimental data was based

on the linear least-squares method, in which the �ija0 and a0

linear parameters of equation (9) are adjusted in order to fit

the calculated ha(�,  )i{hkl} values to the experimental ones.

With this aim, the merit function given by equation (4), in

which interplanar spacings hd(�,  )i{hkl} are replaced by the

equivalent lattice parameters ha(�,  )i{hkl}, is minimized:

�2
¼

1

N �M

XN

n¼1

hað�n;  nÞi
exp
fhklg � hað�n;  nÞi

cal
fhklg

�n

" #2

; ð10Þ

where �n = �½hað�n;  nÞi
exp
fhklg�, M = 3 is the number of fitted

parameters and N is the number of measured points.

As a result, the a0 stress-free lattice parameters as well as

the stress components �ij can be determined. We emphasize

that equation (9a) is written for cubic crystals, while analogous

formulas for orthorhombic or hexagonal crystals contain also

a c/a parameter which in principle is unknown. This leads to

more complex iterative data treatment which was proposed

elsewhere (e.g. Marciszko et al., 2016).

The advantage of the linear least-squares method applied in

the present work [based on equation (9)] is that the obtained

solution is unique and corresponds to the maximum likelihood

of the obtained result. According to the Gauss–Markov

theorem, the estimators of the determined parameters are

unbiased and exhibit the lowest variance (known as the best

linear unbiased estimator). The uncertainties of the deter-

mined fitting parameters can be calculated using the rule of

error propagation, if the uncertainties of the measured lattice

parameters �½hað�n;  nÞi
exp
fhklg� are known. However, the

uncertainties of the measured peak positions [and conse-

quently of ha(�,  )i{hkl}] are not easy to determine, and they

are usually larger than those obtained directly from the

diffraction peak adjustment (especially for low 2�{hkl} angle

reflections). Therefore, it is more reasonable to calculate the

statistical uncertainties of the adjusted parameters, resulting

from the values of residuals [i.e. differences between measured

and fitted ha(�,  )i{hkl} values] with the assumption that a

good fit was reached (Hauk, 1997). The problem of experi-

mental uncertainties will be discussed in the next sections. For

details concerning the linear least-squares calculations and

uncertainty analysis used in this work, see the singular value

decomposition procedure described by Press et al. (1992).

The results of the analysis are presented as an ha(�,  )i{hkl}

versus sin2 plot (cf. Fig. 5 below), similarly as in the standard

method in which the measurements are performed for one hkl

reflection. However, the plot obtained for different hkl

reflections is not linear versus sin2 owing to anisotropy of the

SECs, which leads to different values of XECs for different hkl

reflections. Furthermore, crystallographic texture influences

Fij(hkl, �,  , f) and can cause additional nonlinearities of the

ha(�,  )i{hkl} versus sin2 plot.

2.2. Concepts of experimental data analysis

In this work three ways of determining the biaxial stress and

a0 parameter are presented. The first procedure is the most

general one and can be used for samples with any type of

crystallographic texture, while the two new methods proposed

in the present paper are far more simple but in principle they

can be applied in the case of fibre texture or for quasi-isotropic

(i.e. non-textured) materials, on the assumption that the shear

stresses can be neglected. It will be shown that the latter

methods also give reasonable results if the texture is weak.

2.2.1. Weighted linear least-squares method. In the first

approach, calculations are performed using the weighted

linear least-squares (WLLS) method based on equation (9). In

this case the fitting parameters �11a0 and �22a0 as well as the

value of a0 are adjusted (on the assumption that �33 = 0), and

then the biaxial stress components �11 and �22 are computed

together with their uncertainties. In principle this analysis can

be applied in the case of nonzero shear stresses, but in this

work it is assumed that these stresses are neglectable. The

values of Fij(hkl, �,  , f) used in equation (9) are calculated

from SECs using the ODF as the weighting function, if crys-

tallographic texture is significant (Baczmański et al., 2003,

2008).

As mentioned above, an important issue when determining

the stresses is the uncertainty analysis and the appropriate

definition of weights 1=�2
n in the calculation of the merit

function given by equation (10). Our previous experiments

performed with the sample under external loading (Marciszko

et al., 2015, 2016) as well as for powder samples show that the

uncertainties of peak positions given by the fitting procedure

(with a pseudo-Voigt function) are underestimated in

comparison with residuals given by the least-squares fitting,

especially in the case of low 2�{hkl} angle reflections. This is

caused by instrumental errors, the influence of microstresses,

stress heterogeneity and many unknown factors which are

difficult to estimate. Because in MGIXD low 2�{hkl} angle

reflections are necessary in order to increase the range of

sin2 , a method of data analysis that takes into account the

different weights of the measured points was proposed and

tested, in order to estimate the statistical uncertainties of the

determined stresses and a0 lattice parameter. In calculations, a

constant uncertainty �(2�{hkl}) = 0.01� for the determined peak

positions 2�{hkl} was assumed, and the corresponding uncer-

tainties of ha(�,  )i{hkl} were calculated from the equation

�½hað�; Þiexp
fhklg� ¼ h2

þ k2
þ l2

� �1=2
cot �fhklg�2�fhklg

: ð11Þ

Note that, owing to the cot�{hkl} multiplier in equation (11),

the uncertainties �½hað�; Þiexp
fhklg� are much lower for higher

2�{hkl} angles. Because the inverse of squared uncertainties

plays the role of a weight in the merit function [equation (10)],

the values of ha(�,  )i{hkl} measured with higher 2�{hkl} angles

have a much greater impact on the finally determined stresses

and a0 lattice parameter, as compared with those measured

with lower 2�{hkl} angles. As already mentioned, the results of

this method of data analysis are presented as ha(�,  )i{hkl}



versus sin2 plots, which are not linear and are difficult to

interpret in a straightforward manner.

The statistical uncertainties, calculated in this work with the

singular value decomposition procedure described by Press et

al. (1992), do not depend on the arbitrarily chosen value of

�(2�{hkl}) and only the relations between uncertainties [given

by equation (11)] are important. On the other hand our

previous tests showed that the assumed value �(2�{hkl}) = 0.01�

gives reasonable values of the merit function �2, and the

resulting relation with �½hað�; Þiexp
fhklg� given by equation (11)

approximately mimics the length of the error bar compared

with the residuals (Marciszko et al., 2015, 2016). In addition,

this assumption was tested previously by Hauk (1997). Note

also that if the �(2�{hkl}) value is assumed arbitrarily the merit

function �2 given by equation (10) can be calculated, but it

cannot be treated as the goodness-of-fit indicator. However,

the �2 value still can be used to compare the quality of fitting,

e.g. for different models of XSFs (or XECs) used in stress

analysis.

2.2.2. Weighted and simple linear regression. In the second

approach a simple linear regression is proposed to determine

biaxial stresses and lattice parameter from experimental data

obtained using the MGIXD method. In the present paper, the

name ‘simple linear regression’ is reserved for the linear least-

squares procedure in which a straight line is fitted to experi-

mental points. The proposed method can be applied with the

assumption of a quasi-isotropic material or fibre type of

texture. The shear stresses are not considered in this analysis;

if they are significant they will cause nonlinearities of the

ha(�,  )i{hkl} versus sin2 plots. Assuming a quasi-isotropic

material or fibre type of texture (axially symmetrical with

respect to the axis X3, defined in Fig. 1), we can write

F11ðhkl; � ¼ 0�;  ; f Þ ¼ F22ðhkl; � ¼ 90�;  ; f Þ ¼ Gðhkl;  Þ;

F22ðhkl; � ¼ 0�;  ; f Þ ¼ F11ðhkl; � ¼ 90�;  ; f Þ ¼ Hðhkl;  Þ;

ð12Þ

where G(hkl,  ) and H(hkl,  ) depend on the hkl reflection

and  angle but not on the � angle (for axial symmetry about

the X3 axis).

Neglecting insignificant shear stresses and taking into

account equation (12), we can write equation (9) for

measurements performed for two values of � angle, i.e. � ¼ 0�

and � ¼ 90�:

hað� ¼ 0�;  Þifhklg ¼ ½Gðhkl;  Þ�11 þHðhkl;  Þ�22�a0 þ a0;

hað� ¼ 90�;  Þifhklg ¼ ½Hðhkl;  Þ�11 þGðhkl;  Þ�22�a0 þ a0:

ð13Þ

The sum and difference of the above equations are equal to

hað� ¼ 0�;  Þifhklg þ hað� ¼ 90�;  Þifhklg

2

¼
Gðhkl;  Þ þHðhkl;  Þ

2
�11 þ �22ð Þa0 þ a0; ð14aÞ

hað� ¼ 0�;  Þifhklg � hað� ¼ 90�;  Þifhklg

¼ ½Gðhkl;  Þ �Hðhkl;  Þ� �11 � �22ð Þa0; ð14bÞ

or in the case of the quasi-isotropic sample

hað� ¼ 0�;  Þifhklg þ hað� ¼ 90�;  Þifhklg

2

¼ 1
4 s

hkl

2 sin2  þ shkl
1


 �
�11 þ �22ð Þa0 þ a0; ð15aÞ

hað� ¼ 0�;  Þifhklg � hað� ¼ 90�;  Þifhklg

¼ 1
2 s

hkl

2 sin2  

 �

�11 � �22ð Þa0: ð15bÞ

Both sets of equations (14) and (15) can be rewritten in the

linear form

y ¼ mxþ a0; y0 ¼ m0x0; ð16Þ

where y ¼ ½hað� ¼ 0�;  Þifhklg þ hað� ¼ 90�;  Þifhklg�=2, x ¼

½Gðhkl;  Þ þHðhkl;  Þ�=2 (or for a quasi-isotropic sample x ¼
1
4 shkl

2 sin2  þ shkl
1 ), m = (�11 + �22)a0, y0 ¼ hað� ¼ 0�;  Þifhklg �

hað� ¼ 90�;  Þifhklg, x0 = [G(hkl,  ) � H(hkl,  )] (or for a

quasi-isotropic sample x0 ¼ 1
2 shkl

2 sin2  ) and m0 = (�11 �

�22)a0.

Note that the above functions are linear versus the sum or

differences of XSFs (in the case of a quasi-isotropic sample

expressed by shkl
2 , shkl

1 and  [cf. equation (15)], while the

parameters of these functions (m, m0 and a0) are expressed by

the stress components and stress-free lattice parameter. It

should be emphasized that the presented ‘linearization’ of the

function used in stress analysis is in principle similar to the

ideas of Dölle & Hauk (1976) and Dölle (1979), proposed to

compensate the nonlinearity caused by shear stresses. In the

case of Dölle’s method, instead of ellipse fitting to the

hd(�,  )i{hkl} versus sin2 plots (split for � and � +180�

angles), two linear least-squares regressions were proposed for

the hdð�; Þifhklg þ hdð�þ 180�;  Þifhklg versus sin2 and

hdð�; Þifhklg � hdð�þ 180�;  Þifhklg versus sin2 linear func-

tions. As a result, the components of the stress tensor,

including shear stresses, could be determined. In the present

work, the effect of crystal elastic anisotropy in the multi-

reflection method is compensated for by calculating the sum or

the difference of lattice parameters measured at � = 0� and � +

90� angles. In this case the resulting functions are linear versus

the sum or difference of the appropriate XSF (or XEC) values

[cf. equations (14), (15) and (16)].

Applying this simple linear regression procedure, the

parameters of both equations (16) can be found. The value of

the stress-free lattice parameter a0 can be directly determined

from the first of equations (16) as the intercept of this function

with the y axis. The slopes of the first and the second plots

described by equation (16) determine, respectively, the sum of

the stresses m = (�11 + �22)a0 and the difference between

stresses m0 = (�11 � �22)a0, multiplied by a0. Therefore the

stresses can be easily calculated from the m and m0 para-

meters, i.e.

�11 ¼
mþm0

2a0

and �22 ¼
m�m0

2a0

: ð17Þ

The uncertainty of the a0 parameter is obtained directly from

linear regression, while the uncertainties of the stresses can be

calculated using the uncertainty propagation law.



Two versions of the simple linear regression method can be

applied in stress analysis. The first one, weighted simple linear

regression (WSLR), is based on the minimization of the same

merit function [equation (10)], which is done in two steps, i.e.

separately for each of equations (16). When the straight lines

are fitted to experimental points, explicit formulas for the m, a0

and m0 parameters and their statistical uncertainties can be

derived [see Appendix A, equations (18)–(20)]. Although the

new two-step WSLR procedure differs from the WLLS

calculations (where �11, �22 and a0 are adjusted simulta-

neously), the two methods should give similar results because

in both cases the same merit function �2 is minimized. In this

work, another formulation of the merit function was also

tested, in which equal weights were assigned to all measure-

ment points, so the knowledge of individual weights was not

necessary. In such a case, the solution can be easily obtained

by substituting wi = 1 in equations (18)–(20). The latter

approach, called ordinary simple linear regression (OSLR), is

simpler because the experimental uncertainties are not

needed in the calculation of the merit function. However, this

method is not recommended because the low 2�{hkl} angle

reflections have the same weights as those measured with large

scattering angles.

3. Sample characterization and experimental setup

The first sample studied in the present paper is the Ni-base

alloy with chemical composition given in Table 1, which has a

relatively high elastic anisotropy of crystallites (Zener factor:

2.76; cf. Table 2). The sample surface was ground manually in

one direction (under a load equal to 80 N and at a linear speed

of 88 mm s�1). Such surface treatment results in a rough

surface (Ra = 3.3 mm) consisting of ridges and furrows,

oriented along the direction of grinding.

The second sample is an Ni coating electrodeposited on a

Cu substrate (size equal to 15 � 14 � 1 mm). A pure nickel

plate anode was applied to the electrodeposition from an

electrolyte composed of 300 g l�1 NiSO4�6H2O and 60 g l�1

NiCl2�6H2O. The bath temperature was maintained at 318 	

2 K and pH at 4 	 0.5. The electrodeposition was carried out

with current density equal to 5 A dm�2. Before electro-

deposition the substrate sample was polished using SiC paper

Figure 3
Measured pole figures and ODFs for the ground Ni alloy (a) and electrodeposited Ni coating (b). The sections through Euler space with a step of 5� are
presented along the ’2 axis and in the ranges 0 
 ’1 
 360�, 0� 
 � 
 90� (Bunge, 1993).

Table 1
Chemical composition (wt%) of the Ni alloy (Inconel 690).

Ni Cr Fe Si Ti Mn C Cu P S

Balance 29.91 10.61 0.38 0.33 0.29 0.022 0.01 0.009 0.002

Table 2
Single-crystal elastic constants Cij (GPa) and Zener factor (A) for Ni
crystals (Simmons & Wang, 1971).

Material C11 C12 C13 C33 C44 C66 A

Ni 245 148 148 245 134 134 2.76



with successively increased grit. The final polishing was done

with 2500-grit paper. Then, the substrate was gently etched in

60% sulfuric acid. The average roughness of the deposited

layer was Ra = 0.45 mm.

To characterize crystallographic texture the {111}, {200},

{220} and {311} incomplete pole figures were measured using

Cu K� radiation on a PANalytical X’Pert MRD diffract-

ometer. In the case of the ground surface, the pole figures

show almost orthorhombic sample symmetry, and a few

significant maxima are seen on the determined ODF

[Fig. 3(a)]. The electrodeposited Ni coating has a low and

almost fibre-type texture [Fig. 3(b)].

The interplanar spacings used in the stress analysis were

measured with Cu K� X-ray radiation

using the MGIXD method for the

incident angle � = 5�, corresponding to

penetration depths � = 0.75 and 0.9 mm

for the Ni alloy and electrodeposited

Ni coating, respectively. The measure-

ments were performed for � = 0� and

� = 90� and for all available hkl

reflections corresponding to different

 angles using a parallel-beam config-

uration. The incident beam optics

comprised a Göbel mirror and Soller

slit (2.29�) with a fixed divergence slit

(1/2�), whereas the diffracted beam

optics comprised a parallel plate colli-

mator (0.18�) and Soller slit (2.29�).

4. Results

4.1. Weighted least-squares method
used for data analysis

In the first approach, the WLLS

fitting procedure was used and the

ha(�,  )i{hkl} lattice parameters, calcu-

lated from equation (9), were fitted to

the experimental values. The calcula-

tions were based on minimizing the

merit function �2 [equation (10)]. The Fij(hkl, �,  , f) values

used in stress analysis were calculated from the SECs given in

Table 2, assuming random grain orientations. The calculations

were then repeated taking into account the ODFs shown in

Table 3
The values of stresses and a0 parameter determined for two studied
samples with different assumptions (incident angle � = 5�), using the
WLLS method.

The �2 value corresponds to �(2�{hkl}) = 0.01�. Values in parentheses are the
uncertainties on the least-significant digits.

Interaction model

Sample
Assumption
for XSFs

Determined
quantities Reuss

Free
surface

Eshelby–
Kröner Voigt

Ground
Ni alloy

ODF shown
in Fig. 3(a)

�11 (MPa) 1042(51) 1145(33) 1269(35) 1433(119)
�22 (MPa) 209(52) 223(33) 284(36) 331(120)
a0 (Å) 3.5776(4) 3.5774(3) 3.5768(3) 3.5762(8)
�2 21 8 7 62

Quasi-
isotropic

�11 (MPa) 1056(49) 1141(31) 1277(40) 1437(119)
�22 (MPa) 209(49) 203(30) 278(40) 324(117)
a0 (Å) 3.5776(4) 3.5774(2) 3.5768(3) 3.5762(8)
�2 19 7 9 62

Deposited
Ni

ODF shown
in Fig. 3(b)

�11 (MPa) 525(30) 546(31) 593(36) 618(61)
�22 (MPa) 530(30) 550(31) 597(35) 621(61)
a0 (Å) 3.5232(2) 3.5232(2) 3.5227(2) 3.5225(4)
�2 4 4 5 12

Quasi-
isotropic

�11 (MPa) 511(29) 533(30) 577(35) 602(59)
�22 (MPa) 516(29) 537(30) 580(35) 606(59)
a0 (Å) 3.5232(2) 3.5232(2) 3.5228(2) 3.5226(4)
�2 4 4 5 12

Figure 5
Examples of ha(�,  )i{hkl} versus sin2 plots for the incident angle � = 5�, compared for different
grain interaction models. The results for the ground sample (a) and electrodeposited layer (b) are
shown. Error bars correspond to �(2�{hkl}) = 0.01�.

Figure 4
The 1

2 shkl
2 and shkl

1 constants as a function of 3� calculated from the single-
crystal data (Table 2) for Ni, using Voigt (green lines), Eshelby–Kröner
(red lines) and Reuss (blue lines) models.



Fig. 3. Four theoretical models of grain

interaction were applied, i.e. Reuss,

Voigt, Eshelby–Kröner and free-surface

methods. The dependences of the XECs
1
2 shkl

2 and shkl
1 versus orientation para-

meter 3� ¼ 3ðh2k2
þ h2l2

þ k2l2
Þ=ðh2

þ

k2
þ l2
Þ

2 for a quasi-isotropic sample

are presented in Fig. 4. In this figure the

results for all interaction models are

shown, except for the free-surface

model. In the case of the latter

approach the shkl
2 and shkl

1 constants

cannot be defined because the grain

interaction depends on the direction

with respect to the sample. The results

of the Reuss and Eshelby–Kröner

models confirm a marked elastic aniso-

tropy of the calculated XECs, caused by

elastic anisotropy of the Ni crystal.

The residual stresses (biaxial state,

assuming �33 = 0) and stress-free para-

meter a0 determined for the two studied

samples using different interaction

models are shown in Table 3. In this

table the results of calculations, taking

into account measured textures (Fig. 3),

are compared with those for which the

quasi-isotropic XECs were assumed.

Analysing the values of stresses and

lattice parameter a0 calculated using

different interaction models (Table 3) it

can be concluded that the results

obtained taking into account crystal-

lographic texture in calculations of

XSFs are almost equal to these calcu-

lated with the assumption of a quasi-

isotropic sample, within the uncertainty

range. Because the effect of texture is

not significant in either sample, in

further calculations of XSFs only the

quasi-isotropic approach is considered.

The experimental ha(�,  )i{hkl} versus

sin2 plots, obtained for both investi-

gated samples with incident angle � = 5�

and assuming quasi-isotropic XECs, are

shown in Fig. 5. The substantial nonli-

nearities of these plots are certainly

related to the significant anisotropy of

the SECs. In this figure one can see that

the trends of nonlinearity are replicated

by the lines obtained with the Eshelby–

Kröner, Reuss and free-surface models.

It is not possible to visually determine

which model is closest to the experi-

mental results. The values of parameter

�2 calculated for both studied samples

(Table 3) show the best accordance with

Figure 6
Simple linear regression results for the y = mx + a0 and y0 = m0x0 functions, calculated using the
WSLR and OSLR methods. Analysis of the MGIXD data (� = 5�) obtained for the ground Ni alloy
was performed. Four different grains interaction models with the assumption of quasi-isotropic
material were used to calculate XSFs: (a) Reuss, (b) Voigt, (c) Eshelby–Kröner and (d) free-surface
models. The y intercepts equal to the a0 value and �2 are given for the WSLR method. Error bars
correspond to �(2�{hkl}) = 0.01�.



experiment for the Eshelby–Kröner and free-surface models,

and slightly lower agreement for the Reuss model. Only in the

case of the Voigt model are the experimental points far away

from the predicted linear ha(�,  )i{hkl} versus sin2 plot, and

the �2 value is significantly higher, i.e. this model does not

correctly take into account the elastic anisotropy of the

studied Ni samples.

4.2. Linear regression methods for data
analysis

In the second approach, simple linear

regression fittings on the basis of

equation (16) were done and the values

a0, �11 and �22 were determined

[equation (17)], as described in Section

2.2.2. Calculations were performed with

two assumptions concerning weights of

the measured points, i.e. the WSLR and

OSLR procedures were applied. Four

different grain interaction models were

used in the calculations. The y versus x

and y0 versus x0 plots (� = 5�) are

presented in Fig. 6 for the ground

sample and in Fig. 7 for the deposited

coating. The intercept of the fitted y

versus x linear function with the y axis

(see the left hand side plots in Figs. 6

and 7) gives the a0 value. The slopes of

the two fitted lines determine the values

of �11 and �22, calculated using equa-

tion (17). Note that only one para-

meter, m0, is fitted in the case of the y0

versus x0 function, and the resulting

straight line passes through the begin-

ning of the coordinate system. In the

case of a ground sample, an apparent

discrepancy of the fitted line with

experimental points is seen for small

values of x0 (see the right hand side

plots in Fig. 6 and Table 4). It is seen

that different straight lines were fitted

using the WSLR and OSLR methods

owing to the difference in weighting of

the experimental data. The final results

of stress and lattice parameter analysis

obtained using different grain interac-

tion models and different adjustment

methods (WLLS, WSLR and OSLR)

are summarized in Fig. 8 in the form of

histograms.

5. Discussion

Tensile stresses found in the ground Ni

alloy sample were generated as a result

of the temperature gradient during

surface processing (Table 3 and Fig. 8).

The residual stresses in the direction of

grinding (�11) are large, while for the

perpendicular direction (�22) they are
Figure 7
The same comparison as in Fig. 6 but for the electrodeposited Ni coating.



much smaller. This effect can be explained as due to the

surface topography (ridges and furrows) as well as the nature

of one-directional processing of the sample surface. In the case

of the electrodeposited Ni coating, similar values of tensile

stresses were found in two perpendicular directions (�11 ’

�22), which is explained by the axial symmetry of the deposi-

tion process. Therefore the proposed methods of data treat-

ment were tested on two different states of the surface stress,

i.e. �11 � �22 and �11 ’ �22.

Three different procedures of stress analysis were applied

to treat the data obtained using MGIXD geometry. It was

found that all the tested adjustment methods give similar

values of �11, �22 and a0, as well as uncertainties of their

determination. The results of the weighted methods (WSLR

and WLLS) are almost identical, because in both cases the

same merit function was minimized. A significant elastic

anisotropy of the XECs (or XSFs) is seen on the ha(�,  ){hkl}

versus sin2 plots obtained using the WLLS method, where

the equivalent lattice parameter is far from the linear function

for the 200 and 111 reflections. In fact, the strongest elastic

anisotropy occurs for the corresponding crystal directions in

the case of Ni crystals (cf. Fig. 4). It was also found that the

influence of texture on the calculated XSFs and consequently

stresses calculated by the WLLS method was not significant

for the studied samples. Therefore, simplified WSLR and

OSLR methods can be used to analyse experimental data,

with XECs calculated for a quasi-isotropic sample (with

random grain orientations).

The advantage of the new analysis approaches proposed in

this paper (i.e. the WSLR and OSLR procedures) is that the

considered plots, given by equations (16), are linear, while

elastic anisotropy is taken into account in the calculations.

Therefore, the departure of the experimental points from a

straight line can be easily noticed (Figs. 6 and 7). However, as

was proven above, the disagreement between experiment and

the fitted line is not caused by shear stresses. The reasons for

the observed discrepancies must be discussed.

We emphasize that in the case of the y = mx + a0 plot [where

the sum of the lattice parameters measured for � = 0� and � =

90� is considered in equations (14a) and (15a)] the slope of the

fitted line is proportional to the sum of plane stresses (�11 +

�22), while the departure of experimental points from the

fitted line informs us about accumulated errors caused by

instrumental errors, inaccuracies of the XECs used in the

analysis (for example due to texture which is not taken

into account), microstresses present in the sample, stress

Figure 8
Comparison of the results obtained using four models of grain interaction and three analysis methods. The values of biaxial stresses and stress-free lattice
constant obtained using the MGIXD method with � = 5� for the ground Ni alloy sample (a) and deposited Ni layer (b) are presented.

Table 4
The �2 and �02 values obtained using the WSLR and OSLR methods with
XECs calculated using different models [assuming �(2�{hkl}) = 0.01�].

Sample
Model for XEC
calculations �2 for y = mx + a0 �02 for y0 = m0x0

Ground Ni Voigt �2 = 26.5 �02 = 8.3
Eshelby–Kröner �2 = 6.2 �02 = 3.3
Free surface �2 = 5.4 �02 = 2.5
Reuss �2 = 8.2 �02 = 4.5

Ni coating Voigt �2 = 18.6 �02 = 0.13
Eshelby–Kröner �2 = 7.4 �02 = 0.13
Free surface �2 = 6.1 �02 = 0.13
Reuss �2 = 6.2 �02 = 0.12



heterogeneity etc. On the other hand, the slope of

the fitted y0 = m0x0 line and its accordance with the

difference in the lattice parameters measured for

the two � directions [cf. equations (14b) and

(15b)] verifies the axial symmetry of the sample

with respect to the direction normal to the sample

surface. For axial symmetry, i.e. when �11 = �22, the

y0 = m0x0 line should be horizontal. Furthermore,

possible instrumental and some other systematic

errors can subtract from and reduce each other

when the difference in lattice parameters is

calculated for the two sample orientations.

Undoubtedly, axial symmetry is observed in the

case of the deposited Ni layer investigated in the

present research. The fitted line y0 = m0x0 perfectly

passes through the experimental points, causing

the uncertainty bars to be overestimated because

of possible compensation of some systematic

errors (see also the small values of �02 shown in

Table 4). The axial symmetry of the deposited Ni

coating is also confirmed by two other results, i.e.

the approximated fibre texture shown in Fig. 3(b)

and �11 ’ �22 (Table 3 and Fig. 8). It is also clear

that the ground sample does not show axial

symmetry, as can be seen in the pole figures

presented in Fig. 3(a). Moreover, in this case different stresses

were determined for the two measured directions (i.e. �11 �

�22). The lack of axial symmetry and the difference in principal

stresses result in a significant slope of the y0 = m0x0 lines and a

noticeable departure of the experimental data from these

lines, as seen in Figs. 6 and 7. A significant disagreement was

found for small values of x0, i.e. for the points with the largest

error bar values, corresponding to the reflections having the

lowest multiplicity (i.e. 111 and 200 reflections) and measured

using the lowest values of the scattering angle. These reflec-

tions are the most sensitive to sample anisotropy, i.e. effects of

texture and anisotropic microstresses (Hauk, 1997).

In spite of the simplifications assumed in the proposed new

data treatments (i.e. WSLR and OSLR), the results obtained

for both investigated samples are reasonable (experimental

points are close to fitted straight lines) and they are confirmed

by the weighted linear least-squares method (WLLS), which

has been well tested in other work (see Fig. 8). For the

considered grain interaction models such as Reuss, Eshelby–

Kröner and free-surface, the theoretical results correctly fit to

the experimental points but it is not possible to distinguish

which model deals better with the elastic anisotropy (cf.

Tables 3 and 4). The worst result was always obtained with the

Voigt model, in which the XECs do not depend on the hkl

reflection (Fig. 4). This in turn leads to a large spread of the

experimental points around the fitted lines (for all types of

analysis performed in this work). From our previous investi-

gations of other materials (Marciszko et al., 2015, 2016), in

which external stress was applied to the sample, the best

agreement of experimental and theoretical XSFs was obtained

for the Reuss and free-surface models when the measurements

were done using MGIXD for shallow penetration depths.

Finally, to check the potential influence of the shear stresses

on the obtained results, the extension of the WSLR and OSLR

methods is proposed using the linear functions given by

equations (24) and (25), which are derived in Appendix B.

These functions were fitted by straight lines using the WSLR

method with free-surface XECs, and the results for both

studied samples are shown in Fig. 9. Insignificant values of

shear stresses �13 and �23 were found in both samples, and

therefore the departure of the experimental points from the

theoretical lines in Figs. 6 and 7 is not caused by these stresses.

6. Conclusions

It can be concluded that the proposed new methods of

MGIXD data treatment were successfully tested on Ni

samples exhibiting significant elastic anisotropy of crystals. An

important advantage of the proposed analysis is its simplicity,

resulting from linear regression in which the straight line is

fitted to experimental data, while taking into account the

elastic anisotropy of the studied material. The presented

comparison of the measured points with the straight line

allows straightforward interpretation, demonstrating if the

assumptions concerning grain interactions, texture and shear

stresses are correct. Moreover, the value of the stress-free

lattice parameter a0 can be directly determined as the inter-

cept of the fitted line with the y axis. All necessary equations

used in the analysis are provided in this paper, including

Appendices A and B.

It was found that the three tested methods of adjustment

procedure (i.e. WLLS, WSLR and OSLR) give similar values

and uncertainties of the determined stresses and stress-free

Figure 9
Simple linear regression results for the w = nz and w0 = n0z0 functions (cf. Appendix B).
Calculations using the WSLR method with free-surface XECs were done for the ground
Ni alloy (a) and electrodeposited Ni coating (b). Error bars correspond to �{2�hkl} =
0.01�.



lattice parameter. The anisotropy of the XSFs (or XECs) is

well predicted by the Reuss, Eshelby–Kröner and free-surface

methods, but it is not possible to decide which model is the

best one. The worst result was always obtained with the Voigt

model in which the XSF (or XEC) values do not depend on

the hkl reflection.

APPENDIX A
The explicit formulas for the weighted solution of the linear

least-squares method (WSLR) can be derived for the func-

tions given in equation (16). The two parameters (m, a0) of the

first linear function and their statistical uncertainties

[u(m), u(a0)] are given by

m ¼

PN
n¼1wn

PN
n¼1wnxnyn �

PN
n¼1wnxn

PN
n¼1wnyn

D
;

u mð Þ ¼ �2

PN
n¼1wn

D

!1=2

;

ð18Þ

a0 ¼

PN
n¼1wnyn

PN
n¼1wnx2

n �
PN

n¼1wnxn

PN
n¼1wnxnyn

D
;

u a0ð Þ ¼ �2

PN
n¼1wnx2

n

D

 !1=2

;

ð19Þ

where �2 ¼ ½1ðN � 2Þ�
PN

n¼1 wnðyn �mxn � a0Þ
2, wn ¼ 1=�2

ðynÞ

and D ¼
PN

n¼1 wn

PN
n¼1 wnx2

n � ð
PN

n¼1 wnxnÞ
2
.

The parameter m0 of the second linear function and its

A-type uncertainty u(m0) can be determined from

m0 ¼

PN
n¼1 w0nx0ny0n

D0
; u m0ð Þ ¼

�02

D0

� 1=2

; ð20Þ

where �02 ¼ ½1=ðN � 1Þ�
PN

n¼1 w0nðy
0
n �m0x0nÞ

2, w0n ¼ 1=�2
ðy0nÞ

and D0 ¼
PN

n¼1 w0nx02n .

Note that the solutions of the OSLR method can be easily

obtained by substituting wn ¼ w0n ¼ 1 in equations (18)–(20).

APPENDIX B

Assuming fibre texture or a quasi-isotropic sample, equa-

tions similar to equation (12) can be written as

F13ðhkl; � ¼ 0�;  ; f Þ ¼ F23ðhkl; � ¼ 90�;  ; f Þ

¼ Mðhkl;  Þ;

F23ðhkl; � ¼ 0�;  ; f Þ ¼ F13ðhkl; � ¼ 90�;  ; f Þ

¼ Nðhkl;  Þ;

ð21Þ

where M(hkl,  ) and N(hkl,  ) depend on the hkl reflection

and  angle but not on the � angle.

Then equations (13) can be written with additional terms

depending on shear stresses �13 and �23:

hað� ¼ 0�;  Þifhklg ¼
�
Gðhkl;  Þ�11 þHðhkl;  Þ�22

þMðhkl;  Þ�13 þ Nðhkl;  Þ�23

�
a0 þ a0;

hað� ¼ 90�;  Þifhklg ¼
�
Hðhkl;  Þ�11 þGðhkl;  Þ�22

þ Nðhkl;  Þ�13 þMðhkl;  Þ�23

�
a0 þ a0:

ð22Þ

When m, m0 and a0 [equations (16)] are determined from the

least-squares procedure described in Section 2.2.2, the devia-

tions from linearity for the sum and difference of the above

equations can be expressed by

hað� ¼ 0�;  Þifhklg þ hað� ¼ 90�;  Þifhklg

2
� mxþ a0ð Þ

¼
Mðhkl;  Þ þ Nðhkl;  Þ

2
�13 þ �23ð Þa0;

hað� ¼ 0�;  Þifhklg � hað� ¼ 90�;  Þi hklf g �m0x0

¼ Mðhkl;  Þ � Nðhkl;  Þ½ � �13 � �23ð Þa0;

ð23Þ

or in the case of a quasi-isotropic sample by

hað� ¼ 0�;  Þifhklg þ hað� ¼ 90�;  Þifhklg

2
� mxþ a0ð Þ

¼ 1
4 s

hkl

2 sin 2 

 �

�13 þ �23ð Þa0;

hað� ¼ 0�;  Þifhklg � hað� ¼ 90�;  Þi hklf g �m0x0

¼ 1
2 s

hkl

2 sin 2 

 �

�13 � �23ð Þa0:

ð24Þ

Both sets of equations (23) and (24) can be rewritten in the

linear form

w ¼ nz; w0 ¼ n0z0; ð25Þ

where w ¼ ½hað� ¼ 0�;  Þifhklg þ hað� ¼ 90�;  Þifhklg�=2 �

ðmxþ a0Þ, z ¼ ½Mðhkl;  Þ þ Nðhkl;  Þ�=2, n = (�13 + �23)a0,

w0 ¼ hað� ¼ 0�;  Þifhklg � hað� ¼ 90�;  Þifhklg �m0x0 and z0 =

[M(hkl,  ) � N(hkl,  )]. For a quasi-isotropic sample

z ¼ 1
4 s

hkl

2 sin 2 , z0 ¼ 1
2 s

hkl

2 sin 2 and m0 = (�13 � �23)a0.

In order to determine the values of the �13 and �23 shear

stresses, the WSLR and OSLR methods can be applied for

equations (25), analogously to what was previously done in the

case of equations (16).
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