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Abstract

An original method is presented to measure time resolved unsteady flow rate.
From the kinetic energy theorem, the balance equation of the kinetic energy
is integrated on a conical control volume (Venturi type). A non-linear ODE
is obtained, simple enough to be resolved in real-time (that is to say in less
than one time step). The two coefficients of the ODE depend only on the
geometry of the device and are hence known by construction, it is therefore
not necessary to calibrate the device. Experimental measurements at the
intake of a combustion engine show that the device provides unsteady flow
rate. By temporal integration, the unsteady measurements give a mean flow
rate close to the reference flowmeter.

The same analysis is then applied to a cylindrical control volume with a
singular pressure drop (induce by a grid for example). In this case, one of the
two coefficients of the ODE must be determined experimentally. Experimen-
tal measurements carried out with this device at the intake of a combustion
engine show that this second method follows the flow fluctuations. A good
agreement is found between unsteady measurements integrated over a whole
number of periods and reference mass flowmeter. The inversions of direction
of the flow are taken into account by the prototype. This device, more com-
pact than the conical version (Venturi type), allows real-time measurements
of the unsteady flow rate.
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1. Introduction :

The flow measurement in pipes goes back to the origin of fluid mechanics
and has remained one of a most common operations. There are virtually innu-
merable numbers of more or less advanced techniques for measuring average
flow rates, but there are currently no flowmeters for time resolved measure-
ments of unsteady flow rates. In a number of cases, only the mean flow rate
is of interest to the user, either because more information is not useful to
the process, or because it ignores the possibility of having access to unsteady
flow rate. However it is necessary that the techniques used to measure the
mean flow rate are not disturbed if there is also a more or less strongly un-
steady velocity component. A large number of articles are devoted to this
problem, and look at ways to prevent fluctuations from disturbing average
measurements. (e.g. [1],[2], [3]).

Several ways have been proposed to access unsteady flow rate without
having to spatially integrate spot velocity measurements. In case of pulsating
laminar flows, authors [4, 5] have shown that for low frequencies (≤ 1 Hz)
the mass flow rate of the mean flow and that of the pulsating flow can be
separated and both can be accurately measured.

It appears that it would be much better to measure the actual flow rate,
even if it means to average it, than to try to measure only the continuous
component of it. The purpose of this article is to propose a solution to
measure the unsteady flow rate in a pipe.

Patents from 2005 and 2007 [6, 7] claim to be able to access the unsteady
flow rate in a pipe from pressure drop. An ordinary differential equation
(ODE) similar to Eq. (17) below is suggest without giving any justification.

This idea is taken up by Beaulieu et al [8] which show that this princi-
ple can be use to measure the pulsating flow rate that enters a mechanical
breathing system with sufficient precision. However this does not justify the
geometric constants A and B of Eq. (17). The results were experimentally
validated and the prototype was tested using water. The velocity profiles
were measured by particle image velocimetry (PIV) and the equipment was
calibrated using an ultrasonic meter. The Venturi discharge coefficient was
determined as a function of the Reynolds number for steady flows and pul-
sating flows of low frequencies (≤ 4 Hz) with concurrence of the results.

Doblhoff-Dier et al.[9] also obtained time-resolved measurements using
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orifice plates with an equation very similar to Eq. (17). They concluded
that this equation might yield fair results as long as the ratio of the velocity
pulsating component v′ to ωd/2 is no higher than 10. They argue that for
higher ratios other effects, such as nonlinear impedance come into play. In
spite of all the care brought to the pressure measurements, in particular to the
tube connections and the phenomena of resonance, the bandwidth of their
system was not sufficient for the higher modes of pulsation. This delicate
point will be addressed below when describing the system. A recent review
of pulsed flow measurements by orifices plates flowmeters can be found in Reis
and Hanriot [10]. This shows that for low Reynolds number values at least,the
inertial effects significantly affect the value of the discharge coefficient of the
orifice plate, reducing the discharge values. It can be concluded in any case,
orifice flowmeters, because of the recirculation they generate upstream and
downstream of the orifice, are not good candidates for precise pulsated flow
measurements.

Johnston et al.[11] have presented original measurement methods based
on the wave propagation model to determine the flow rate using measured
pressures as boundary conditions. Experiments have show that method with
three transducers is robust and reliable but the implementation requires rel-
atively long pipes length (typically several meters). This method must be
further developed to allow the measurement of the mean flow rate and be
relevant in turbulent regime.

The present work focuses on the measurement of unsteady flow in a pipe
from a differential pressure measurement. First it is necessary to establish
a differential equation allowing access to the unsteady flow rate in a pipe.
This will show that the two constants A and B can be known by construc-
tion and that the proposed model therefore requires no calibration. Then
two applications of the system are proposed: a flowmeter whose differential
pressure is due to an increase in the flow velocity (Venturi type flowmeter)
and a flowmeter whose differential pressure is due to a singular pressure drop
(flowmeter with a grid). The system can extend to many other configurations
using for example a pressure drop already present in the pipe where flow is to
be known. The main applications targeted by this study are pulsated flows
at the intake or exhaust of combustion engines.
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Nomenclature

A,B Flowmeter geometric parameters

r Radial coordinate

R Cylinder radius

Re Reynolds number = 4qm
πDµ

C Head loss coefficient

D Cylinder diameter

D Control volume

j Imaginary unit =
√
−1

J0 Zero order Bessel function of the first kind

N Frequency

p Pressure

qm mass flow rate

S Cross-section area

t Time

x Axial coordinate

∆P Pressure difference (Pa)

Λ Friction factor

µ Fluid dynamic viscosity

ν Fluid kinematic viscosity = µ
ρ

ω Pulsation = 2πN

ρ Fluid density

Other symbols

<( ) Real part of complex quantity ()4



2. Theorical framework:

A relationship between unsteady mass flow and the associated pressure
drop is easy to find in pipe flow. The equation kinetic energy balance is well
appropriated for this because it avoids the assumptions of non-viscosity and
irrotational flow (c.f. [12], [13]).

2.1. Kinetic energy balance:

Application of the kinetic energy balance equation to Hagen-Poiseuille
flow.

The kinetic energy balance is obtained by integrating, over a domain D,
the local form given by the kinetic energy theorem:

∂

∂t

∫
D

1

2
ρV 2 dτ

(I)

+

∫
∂D

1

2
ρV 2(

−→
V .−→n ) dσ

(II)

+

∫
∂D
p(
−→
V .−→n ) dσ

(III)

+

∫
D

−→
f .
−→
V dτ

(IV )

=

∫
∂D

−→τ .−→V dσ

(V )

−
∫
D
φ1 dτ

(V I)

(1)

Thus, the temporal variation of kinetic energy over the domain D, added
to the kinetic energy and pressure flux across the boundaries of D, is equal
to the sum of the power of external viscous stresses exerted on ∂D and the
power dissipated in D by viscosity.
This means that in inviscid flows, the temporal variation of kinetic energy in
D is only due to the kinetic energy and pressure fluxes across the boundaries
of D. If the effects of viscosity are not negligible, it will be necessary to
estimate them by experimental measurements.

It then remains to establish the conservation of kinetic energy in an ax-
isymmetric domain (i.e. to write the conservation equation of the kinetic
energy of a fluid motion in pipe of variable section).

2.2. Hypothesis:

1. motion generated by a unsteady longitudinal pressure gradient P =
p(x, t)

2. one-dimensional flow:
−→
V (x, y, z, t) = V (x, y, z, t)−→x

3. no other volume force than gravity
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4. negligible gravitational forces1: Ω = gz = 0

2.3. Venturi type control volume:

Applying the relation (1) to the domain D defined in Fig. 1:

x x

S1
S2

~x

D

1 2

Fig. 1. Venturi type cylindrical pipe with axis ~x and cross-section S(x).

∂

∂t

∫
D

1

2
ρV 2 dτ

(I)

+

∫
S1∪S2

1

2
ρV 2(

−→
V .−→n ) dσ

(II)

+

∫
S1∪S2

p(
−→
V .−→n ) dσ

(III)

=

∫
S1∪S2

−→τ .−→V dσ

(V )

−
∫
D
φ1 dτ

(V I)

(2)

Thus, these terms according to the mass flow qm(t) at the abscissa x:

qm(t) = ρ(x, t)qv(x, t) = ρ(x, t)

∫
S(x)

−→
V (x, y, z, t).−→n dσ

= ρ(x, t)S(x)V (x, t) (3)

1in fact this assumption is not essential, but is often verified.
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Time variation of kinetic energy (I) :

The first term (I) of Eq. (2) becomes :

∂

∂t

∫
D

1

2
ρ(x, t)V 2 dτ =

1

2

∂

∂t

(
q2m(t)

∫ x2

x1

ρ(x, t)

q2m(t)

(∫
S(x)

V 2dσ

)
dx

)
=

1

2

∂

∂t

(
q2m(t)

∫ x2

x1

ρ(x, t)

ρ(x, t)2S(x)

1

S(x)V
2
(x, t)

(∫
S(x)

V 2dσ

)
dx

)

=
1

2

∂

∂t

(
q2m(t)

∫ x2

x1

β(x, t)

ρ(x, t)S(x)
dx

)
=

1

2

∂

∂t

(
q2m(t)f(t)

)
(4)

with :

f(t) =

∫ x2

x1

β(x, t)

ρ(x, t)S(x)
dx (5)

and

β(x, t) =
1

S(x)V
2
(x, t)

∫
S(x)

−→
V

2
(xi, y, z, t)dσ (6)

The function f(t) depends on the shape of the pipe, on the shape of the
velocity profile and also on density ρ(x, t).

The dimensionless number β(x, t) characterizes the momentum distribu-
tion in the section pipe S(x) at the instant t (i.e. momentum coefficient or
shape factor of the velocity profile).

Kinetic energy flux (II) throught S1 ∪ S2 :

The term (II) of the Eq. (2) can be expressed in terms of the mass flow
rate qm(t) :

∫
S1∪S2

1

2
ρV 2(

−→
V .−→n )dσ =

∫
S2

1

2
ρ(x2, t)V

3
(x2, y, z, t)dσ −

∫
S1

1

2
ρ(x1, t)V

3
(x1, y, z, t)dσ

=
1

2
ρ(x2, t)α(x2, t)S2V

3
(x2, t)−

1

2
ρ(x1, t)α(x1, t)S1V

3
(x1, t)

=
q3m(t)

2

(
α(x2, t)

ρ(x2, t)2S2
2

− α(x1, t)

ρ(x1, t)2S2
1

)
(7)

with :
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α(xi, t) = αi(t) =
1

SiV
3
(xi, t)

∫
Si

−→
V

3
(xi, y, z, t)dσ (8)

and ρ(xi, t) = ρi(t) (9)

thus : ∫
S1∪S2

1

2
ρV 2(

−→
V .−→n )dσ =

q3m(t)

2

(
α2(t)

ρ2(t)2S2
2

− α1(t)

ρ1(t)2S2
1

)
(10)

The dimensionless number αi(t) characterizes the distribution of kinetic
energy in section Si at instant t (i.e. kinetic energy coefficient or shape factor
of the kinetic energy profile).
It plays the same role as the β(x, t) coefficient for the shape of the momen-
tum profile.

Power of pressure forces (III) :

Using again the definition of the mass flow rate qm(t) in term (III) of the
Eq. (2), yields:

∫
S1∪S2

p(
−→
V .−→n )dσ = p(x2, t)

∫
S2

V (x2, t)dσ − p(x1, t)
∫
S1

V (x1, t)dσ

= p(x2, t)V (x2, t)S2 − p(x1, t)V (x1, t)S1

= qm(t)

(
p(x2, t)

ρ(x2, t)
− p(x1, t)

ρ(x1, t)

)
(11)

thus : ∫
S1∪S2

p(
−→
V .−→n )dσ = qm(t)

(
p2(t)

ρ2(t)
− p1(t)

ρ1(t)

)
(12)

with :
p(xi, t) = pi(t) (13)
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Power of the external viscous stress (V):

∫
∂D

−→τ .−→V dσ =

∫
S1∪S2

−→τ .−→V dσ = Pvs(t) (14)

Without moving walls, the power of external viscous forces exerted on
the S1 ∪ S2 border of the D domain are summed up by the power of the
viscous stress on the sections S1 and S2. Often negligible when compared to
the power of pressure forces.

Power dissipated by viscosity (VI) :

∫
D
φ1dτ = PvD(t)

The power PvD(t) dissipated in D by viscosity is a priori negligible com-
pared to other terms (parallel flow) except in the cases where fluids undergo
shear stress in D (e.g. meet an obstacle, a grid, a porous material) as will be
seen further on.

Finally:

1

2

∂

∂t

(
q2m(t)f(x, t)

)
+
q3m(t)

2

(
α2(t)

ρ2(t)2S2
2

− α1(t)

ρ1(t)2S2
1

)
= qm(t)

(
p1(t)

ρ1(t)
− p2(t)

ρ2(t)

)
+ Pvs(t)− PvD(t)

2.3.1. Additional assumptions:
1. In case of fully-developed flows (i.e. whose velocity profile shape, but

not amplitude, remains the same at all times), it may be admitted that
shape factors α and β are independent of time.

2. If, in addition, we consider only turbulent flows or entrance regimes (i.e.
the velocity is uniformly distributed over the pipe width), the shape
factors α and β are uniform and (the thickness to the boundary layers
close) are equal to one. Thus:−→
V (x, y, z, t) = V (x, y, z, t)−→x = V (x, t)−→x ; ρ(x, y, z, t) = ρ(x, t).
For pulsating flow, as soon as the frequency exceeds a few Hz, the veloc-
ity profile remains constant over the pipe diameter (with the exception
of boundary layers of course), regardless of the mean flow. This point
is detailed in Appendix A.
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3. Except in special cases, the terms (V) and (VI) are negligible. More
on this point in the section 2.4.

Taking into account these additional assumptions, a simplification is ob-
tained:

1

2

∂

∂t

(
q2m(t)f(x, t)

)
+
q3m(t)

2

(
1

ρ22S
2
2

− 1

ρ21S
2
1

)
= qm(t)

(
p1(t)

ρ1(t)
− p2(t)

ρ2(t)

)
(15)

with:

f(x, t) =

∫ x2

x1

1

ρ(x, t)S(x)
dx

Note that the function f(t) contains ρ(x, t) and will therefore be constant
only if the compressibility effects are negligible. If gas density is assumed not
to vary between positions 1 and 2, ρ(x, t) = ρ(t):

f(t) =

∫ x2

x1

1

ρ(x, t)S(x)
dx =

1

ρ(t)

∫ x2

x1

1

S(x)
dx =

1

ρ(t)
A with : A =

∫ x2

x1

dx

S(x)

and
df(t)

dt
= − A

ρ(t)2
dρ(t)

dt

the different terms of Equation (15) are then written:

(I) 1
2
d
dt

(q2m(t)f(t)) = qm
dqm(t)

dt
f(t) +

1

2
q2m(t)

df(t)

dt

(II) q3m(t)
2

(
1

ρ2(t)2S2
2
− 1

ρ1(t)2S2
1

)
=

q3m(t)

2ρ(t)2

(
1

S2
2

− 1

S2
1

)
=
q3m(t)

ρ(t)2
B with : B =

1

2

[
1

S2
2

− 1

S2
1

]
(III) qm(t)

(
p1(t)
ρ1(t)
− p2(t)

ρ2(t)

)
=
qm(t)

ρ(t)
(p1(t)− p2(t)) =

qm(t)

ρ(t)
∆P (t)

The equation (15) becomes :

qm
dqm(t)
dt

1
ρ(t)
A− 1

2
q2m(t) A

ρ(t)2
dρ(t)
dt

+ q3m(t)
ρ(t)2

B =
qm(t)

ρ(t)
∆P (t)

⇔ dqm(t)
dt

A− 1
2
qm(t) A

ρ(t)
dρ(t)
dt

+ q2m(t)
ρ(t)

B = ∆P (t)
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2.3.2. Taking into account the reversal of the flow direction:

When the direction of the flow is reversed (e.g. intake of combustion
engine) the preceding equations must be re-written because they come from
global balance equations related to the reference frame (1-D flow and one
direction −→x ). To take this into account in the kinetic energy term (II), thus:

dqm(t)

dt
A− 1

2
qm(t)

A

ρ(t)

dρ(t)

dt
+
qm(t)|qm(t)|

ρ(t)
B = ∆P (t) (16)

with : A =

∫ x2

x1

dx

S(x)
and B =

1

2

[
1

S2
2

− 1

S2
1

]
It is a much simpler and more natural method than the method used

by Werner et al.[14] to calculate the bidirectional flow from the stationary
Bernoulli equation.

2.3.3. Cases of incompressible fluids:

As long as the flow velocity is not too high (i.e. Ma < 0, 3) the flow can
be considered as incompressible and the density ρ is only a function of local
temperature and static pressure. The Eq. (16) becomes:

A
dqm(t)

dt
+B

qm(t)|qm(t)|
ρ(t)

= ∆P (t) (17)

with : A =

∫ x2

x1

dx

S(x)
and B =

1

2

[
1

S2
2

− 1

S2
1

]
An ordinary nonlinear differential equation (ODE) is obtained that it looks
like the unsteady Bernoulli equation. It is simple enough to be computed
in real-time, that is to say in less than one time step. The two constants A
and B depend only on the geometry of the device and are therefore known
a priori : There is no calibration to perform.

The flow measurement is deduced from the pressure drop induced by the
Venturi (the flow velocity is different between the inlet and the outlet of the
control volume), but the total energy carried by the fluid is conserved. It is
assumed that head loss due to the friction in the control volume is negligible,
which is true over a wide range of flow rates. To gain precision it is possible to
estimate the head loss and take it into account in the flow rate computation
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but it will be significant only for high flow rate and increases the computation
time.

The principle require a fully developed flow profile and so this device is
sensitive to disturbed flow conditions. The flowmeter should be inserted as
far away as possible from any flow disturbances with a inlet length (and
outlet if there is backflow) of at least 10 diameters.

Attention must be paid to the change of direction of the flow (backflow),
which for a too high flow rate, would cause separation of the flow from the
wall. The equation (17) would no longer be valid and the measurements would
be wrong. This principle of measurement with a pressure drop induced by a
Venturi is therefore only relevant without backflow or for reverse flow rate
very small.

2.3.4. Example of an application to the intake of a combustion engine:

Fig. 2 shows an example of unsteady flow rate measured at the intake of
a 2.0 L four-cylinder combustion engine at 2271 rpm. It is compared with
the mean flow measured by a reference mass flowmeter placed in series.

Fig. 2. Example of unsteady flow rate at the intake of a 2.0 l 4-cylinder combustion
engine at 2271 RPM. Comparison between unsteady prototype flow meter (blue) and
reference mass flowmeter (red) : mean Flow Rate = 34± 2 g/s.
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2.4. Control volume with a singularity:

A control volume is defined as shown in Fig. 3, consisting of a right
circular cylinder of diameter D inside which is placed a grid (for example).
Eq. (2) always applies and each of its terms written as previously except
terms (II) and (VI).

x x

S1

1

S2

~X2

Grid

Fig. 3. Control volume consisting of a right circular cylinder with ~x axis and cross
section Si(x).

Kinetic energy flux (II) throught S1 ∪ S2 :

If the inlet cross section S1 and outlet S2 are equal, the term (II) is then
zero.

Viscosity dissipation (VI) :

It has been assumed previously that the power dissipated by viscous fric-
tion PvD(t) in domain D of Venturi type control volume is usually negligible
in front of the other terms. This is not the case if the fluid undergoes shear
stress within the bulk, for example in the case where the fluid passes through
a grid or a porous material. The integral of the dissipation rate in D is usu-
ally defined by the product of the head loss ∆ξ and the volumetric flow rate
qv:

∫
D
φ1dτ = ∆ξ × qv(t) = ∆ξ × qm(t)

ρ
wiyh ∆ξ = Λ

1

2
ρV

2

hence: ∫
D
φ1dτ =

qm(t)3

ρ2
C with C = Λ

8

π2D4
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The constant C is the coefficient of head loss due to the singularity, it
must be determined experimentally (or the dimensionless friction factor Λ).

The equation (15) becomes :

1

2

∂

∂t

(
q2m(t)f(x, t)

)
+
q3m(t)

ρ2
C = qm(t)

(
p1(t)

ρ1(t)
− p2(t)

ρ2(t)

)
With the same assumptions as previously, it is coming for an incompress-

ible fluid:

A
dqm(t)

dt
+ C

qm(t)|qm(t)|
ρ

= ∆P (t) (18)

with : A =

∫ x2

x1

dx

S(x)
and C = Λ

8

π2D4

Here again, an ordinary nonlinear differential equation (ODE) is obtained
sufficiently straightforward to be computed in real-time, in the sense that all
computations can be done in less than one time step and the flow rate ob-
tained in less than 100 µs for an acquisition frequency of 10 kHz. The explicit
Euler method, for example, provides sufficient precision while not requiring
much computing time. The precision of a higher order Euler scheme would
be obtained at the expense of the calculation time.

The flow measurement is deduced from the pressure drop due to the
singularity introduced into the pipe and, unlike the Venturi, it is energy
dissipated in the form of heat and thus lost for flow.

However, this device with a grid to create the pressure drop is much less
sensitive to the disturbed flow conditions than the Venturi device.

The constant A depends only on the geometry of the device and is there-
fore known a priori. On the other hand, the constant C (or the friction
factor Λ) must be determined beforehand, this configuration consequently
requires a calibration of the flowmeter prototype.

2.4.1. Calibration:

The device causing the pressure drop, must be calibrated according to the
maximum flow rate to be measured and the range of the differential pressure
sensor.

A prototype of unsteady flowmeter was built with a grid to produce the
pressure drop. It consists of a cylindrical pipe of diameter D = 63 mm pro-
vided with a square mesh grid (Stainless Steel Wire, mesh square 1 mm, wire
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diameter 0.3 mm ), a differential pressure sensor (FirstSensor, HCL series,
range ±2500 Pa, calibrated and temperature compensated) , a K-type ther-
mocouple with 1.5 probe diameter and static pressure sensors (FirstSensor,
HMA series, range ±100 hPa) for estimating the flow density ρ(t). The dif-
ferential pressure sensor is positioned near the grid, the pressure taps are
separated by a distance equal to the half pipe diameter on both side of the
grid.

This flowmeter prototype is placed in a steady flow in series with a refer-
ence mass flowmeter (Proline t-mass Endress+Hauser, maximum measured
error ±1.5%). The pressure loss coefficient C was determined for the two flow
regimes: transition and turbulent (c.f. Fig. 4).
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Fig. 4. Calibration curves of flowmeter prototype. Coefficient C = ρ∆P/q2m
.
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2.4.2. Example of pulsating flow at the intake of a driven single-cylinder
combustion engine:

An example of the unsteady flow rate measured at the intake of a driven
single-cylinder engine of 0.5 litre is shown in the Fig. 5. The unsteady flowme-
ter and the reference mass flowmeter are placed in series immediately up-
stream of the cylinder head and the intake is done at atmospheric pressure.
The figure shows that the flow is strongly pulsated and changes direction
several times per period. The unsteady flowmeter prototype tracks flow
fluctuations even when it changes direction. The mean flow rate given by
the reference flowmeter is 7.3 g/s while the unsteady measurements provided
by the prototype, and integrated over a whole number of periods, gives 7.46
g/s, that is to say barely 2.2% difference.
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Fig. 5. Unsteady flow rate at the inlet of a single-cylinder combustion engine electrically
driven at 1709 rpm.
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3. Results and Discussion:

A particular care must be taken in the differential pressure measuring
chain by a remote sensor.

3.1. Bandwidth of the differential pressure measurement system:

The bandwidth of the system must be as wide as possible and in all
cases wider than the double of the higher frequency of the unsteady flow to
be measured according to the Shannon’s theorem (at least larger than the
double of the the frequencies that carry the most energy). This bandwidth
must also be as flat as possible despite the resonances that can appear in the
whole data chain acquisition of the differential pressure (orifice, connecting
tube and pressure sensor), as explained for example in Doblhoff-Dier et al.[9].
An anechoic termination of the connection tubes allow to significantly extend
the flat part of the spectral bandwidth of the differential pressure sensor.

The remote pressure probes (i.e. differential pressure sensor, connecting
tube 0.8 mm inner diameter and 15 cm long) are frequency calibrated by
comparison to 1/4” GRAS type BP40 microphone. For this both measuring
systems are connected in a coupler crossed by a pressurized jet of air used as
acoustic source. The phase measurement (c.f. Fig. 6) allow to estimate the
group delay to a little less than 0.8 ms (−dφ/dω = 0.77) for the 0− 400 Hz
frequency band. The bandwidth was also examined and compared with the
bandwidth of a device with an anechoic termination added to the connecting
tube.

Fig. 7 shows that the bandwidth of the system is significantly improved
by the anechoic termination and that at up to 400 Hz it remains flat, which
goes well beyond the 200 Hz that can be considered as the main target for
combustion engines applications.

3.2. Unsteady flow rate at the intake of a combustion engine:

It is difficult to evaluate the accuracy of measurements of a device that is
the only one that can provide them.There are mainly three systems that can
be used to estimate an unsteady flow in a pipe. It is possible to use a Hot
Wire Anemometer and then integrate the local velocity measurement on the
section of the pipe. However, the hot wire is intrusive and can not be used
when the flow velocity is less than about 5 m/s (it induces convection which
is not negligible when the flow velocity is low) but moreover it is not sensitive
in the velocity direction and therefore the measurements are rectified when
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Fig. 6. Phase and Group-Delay of the remote differential pressure sensor

the direction of the flow is reversed (in case of backflow). It is therefore not
a reference measurement.

-It is also possible to use Laser Doppler Velocimetry (LDV). As the Hot
Wire Anemometer it provides an almost local measurement of the flow ve-
locity, which must be then integrated on the section of the pipe to obtain
flow rate. In addition it is necessary to seed the flow with particles and
the measurements are not well time resolved (the velocity is measured only
when particle passes through the measurement volume). The accuracy of flow
measurement by LDV is not easy to estimate; it is therefore not a reference
measurement.

Measurements by Particle Image Velocimetry (PIV) are also possible but
they impose constraining optical accesses and, as with the LDV, it is neces-
sary to seed the flow with particles and then to integrate the velocity field
onto the section of the pipe. The measurements are not very well time re-
solved and their accuracies are not easy to estimate; it is still not a reference
measurement.
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Fig. 7. Frequency response of remote differential pressure sensor, with and without
damping.

On the other hand there are several devices allowing with a good accu-
racy to measure mean flow rate.The choice was made to compare the results
obtained by our device averaged in time with the mean flow measurements
given by Thermal Mass Flowmeter.

Two examples of unsteady flow rates measured at the intake of a three-
cylinder combustion engine are shown below.

Fig. 9 and 10 show measurements obtained with a rotational speed of
1200 rpm and 2500 rpm, respectively. The sampling frequency was 10 kHz.
It can be seen that in this configuration the rate of pulsation is much lower
than on the single-cylinder and there is no longer any backflow. It can be
noted that the convergence time of the flow rate computation is about 40 ms
for 1200 rpm and 25 ms for 2500 rpm, about half a period.

As explained above, the accuracy of experimental results is difficult to
evaluate, as it is difficult to establish the unsteady flow by other means in
order to obtain a meaningful comparison. However results presented here
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Fig. 8. Scheme of the experimental setup

show good agreement with the mean flow rate. The expected mean flow rate
is 12.5 g/s for 1200 rpm while the unsteady measurements provided by the
prototype and integrated over a whole number of periods gives 11.46 g/s.
The difference is slightly less than 9%, but the mean flow measured by the
thermal reference flowmeter on the engine test stand is not accurate to more
than 5% . For the 2500 rpm case, the expected mean flow rate is 33.6 g/s
while the unsteady measurements integrated over a whole number of periods
gives 31 g/s.

3.3. Response time:

The nonlinear ODE equations (17) & (18) on which the device is based
can be seen as ”low-pass filters”. It is therefore useful to examine the step
response of these equations. The following figure Fig. (11) shows the response
of equation (18) to steps of different amplitudes. It shows that the response
time of the system is shorter as the amplitude of the excitation increased.
The response time is defined as the moment when 99% of the step amplitude
is reached.

Fig.(12) is a zoom of Fig.(10) with response of equation (18) to a step
of 31.08 equal to the mean flow rate measured. It can be seen that the
convergence time of the unsteady flowmeter towards the mean flow rate cor-
responds to the response time of equation (18). The response time of the
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Fig. 9. Unsteady flow rate at the intake of a 3 cylinders engine of 1.2 litre; torque 80
Nm at 1200 rpm.

device is therefore mainly due to the behavior as a low-pass filter of equation
(18).

4. Conclusion

Two methods in order to measure unsteady flow rate in real time (that
is to say in less than one time step) from a differential pressure in a pipe
were presented. Both methods are based on two similar nonlinear ordinary
differential equations obtained from the equation kinetic energy balance.

The first method gives the unsteady flow rate from the pressure drop
measured at a Venturi throat. It is demonstrated that there is no calibration
to perform (except eventually for the differential pressure sensor) because the
two constants in the ODE depend only on the geometry of the device and
then known a priori . The principle requires a fully developed flow profile and
so this device is sensitive to disturbed flow conditions. The flowmeter should
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Fig. 10. Unsteady flow rate at the intake of a 3 cylinders engine of 1.2 litre; torque 120
Nm at 2500 rpm.

be inserted as far away as possible from any flow disturbances with a inlet
length (and outlet if there is backflow) of at least 10 diameters. However this
method is mainly relevant without backflow or for small reversed flow rate
to avoid separation.

-The second method is based on a nonlinear ordinary differential equa-
tion similar to the former one but one of the two constants in the ODE must
be determined experimentally. The flow measurement is deduced from the
pressure drop due to a grid introduced into the pipe (or similar singularity);
unlike the first method (Venturi throat), this device with a grid is clearly less
sensitive to the disturbed flow conditions. The device causing the pressure
drop, must be calibrated according to the maximum flow rate reached in the
pipe and according to the range of the differential pressure sensor.

A prototype of unsteady flowmeter was built on this principle and cali-
brated with a steady flow and a reference mass flowmeter. The remote differ-
ential pressure measurement must be performed with care. The bandwidth
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Fig. 11. Step Response of equation (18).

of the system is founded significantly improved by an anechoic termination
and remains flat up to 400 Hz which is broadly sufficient for the targeted
applications, the intake or exhaust of combustion engines. It has been shown
that the convergence time of the device is shorter as the amplitude of the ex-
citation increased, according to the behaviour of a low-pass filter of the ODE.

-The accuracy of experimental results is challenging to evaluate, as it is
difficult to measure unsteady flow by other means in order to obtain a mean-
ingful comparison. However results obtained show good agreements with un-
steady measurements integrated over a whole number of periods and reference
mass flowmeter.

The presented device and methodology yield adequate performances for
the combustion engine application context.
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Fig. 12. Zoom of Fig. (10); comparison with Step Response of equation (18).
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Appendix A. Pulsating laminar flow in pipe

The error made on the mean flow rate measurement of a oscillatory flow
by neglecting the boundary layers can be estimated. Consider laminar and
incompressible flow in a circular cylindrical pipe. The flow is generated by a
periodic pressure gradient in the longitudinal direction ∂p

∂x
= < [a0exp(jωt)].

Numbers of authors (e.g. : [15, 16]) have shown that there is an exact solution
of this problem with Bessel functions of order 0.

u(r, t) =
a0
4ν

(R2 − r2) + <
{
a1R

2

jνα2

[
1− J0(αr/Rj

3/2)

J0(αj3/2)

]
ejωt
}

The first term of the right-hand side is the Poiseuille solution for a per-
manent flow with a constant longitudinal pressure gradient a0. It is easy to
deduce the flow rate U0 = a0R2

8ν
.

The second term of the right-hand side corresponds to a periodic solution
of zero mean flow. The relation between the inertial effects due to pulsatile
flow frequency and the viscous effects is defined by the dimensionless number
first proposed by Lambossy [17] but known as Womersley number: α = R

√
ω
ν

(where ω = 2πN (rad/s) is the angular velocity). It denotes the phase lag
between pressure gradient and flow. When α is small (1.32 or less [18]), the
frequency of pulsations is sufficiently low that a parabolic velocity profile has
time to develop during each cycle, thus the flow will be very nearly in phase
with the pressure gradient. When α is large (10 or more), the velocity profile
is relatively flat or plug-like and the mean flow lags the pressure gradient by
about 90 degrees. However, when the flow is turbulent (Re over 2300), the
time-averaged velocity profile in pipes remains approximately flat even if the
Womersley Number is relatively small.

To get an idea, figure A.13 shows the velocity profile of a pulsed laminar
flow at the same frequency as the flow rate measured at the inlet side of a
single-cylinder engine driven at 1709 rpm(c.f. figure (5)).

Computed velocity profiles are plotted for different values of the phase
angle ∈ [−180◦, 180◦]. The phase shift between the boundary layers and the
center of the pipe is clearly noticeable, as is the flat profile in much of the
field.

In conclusion, for most applications considered, for example the air loop
of combustion engines, the velocity is constant in most of the pipe. The error
committed by neglecting the boundary layers will remain very small, either
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Fig. A.13. Laminar pulsated flow in pipe. Theoretical computation.

because the flow pulsations are relatively high (α > 10) or because the flow
is turbulent (Re > 2300).
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