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Characterisation of the pressure term in the
incompressible Navier–Stokes equations on the

whole space

Pedro Gabriel Fernández-Dalgo∗†, Pierre Gilles
Lemarié–Rieusset‡§

Abstract

We characterise the pressure term in the incompressible 2D and
3D Navier–Stokes equations for solutions defined on the whole space.

Keywords : Navier–Stokes equations, pressure term, Leray projection,
extended Galilean invariance, suitable solutions
AMS classification : 35Q30, 76D05.

Introduction

In the context of the Cauchy initial value problem for Navier–Stokes equa-
tions on Rd (with d = 2 or d = 3)

∂tu = ∆u− (u · ∇)u−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

an important problem is to propose a formula for the gradient of the pressure,
which is an auxiliary unknown (usually interpreted as a Lagrange multiplier
for the constraint of incompressibility).
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As we shall not assume differentiability of u in our computations, it is
better to write the equations as

(NS)


∂tu = ∆u−∇ · (u⊗ u)−∇p+∇ · F

∇ · u = 0, u(0, .) = u0

Taking the Laplacian of equations (NS), since we have for a vector field
w the identity

−∆w = ∇∧ (∇∧w)−∇(∇ ·w)

we get the equations

∂t∆u = ∆2u+∇∧ (∇∧ (∇ · (u⊗ u− F)))

and

0 = −∆∇p−∇(∇ · (∇ · (u⊗u−F)) = −∆∇p−∇(
∑

1≤i,j≤d

∂i∂j(uiuj −Fi,j)).

Thus, the rotational-free unknown ∇p obeys a Poisson equation. If Gd is the
fundamental solution of the operator −∆ :

G2 =
1

2π
ln(

1

|x|
), G3 =

1

4π|x|

(which satisifies −∆Gd = δ), we formally have

∇p = Gd ∗ ∇(
∑

1≤i,j≤d

∂i∂j(uiuj − Fi,j)) +H (1)

with ∆H = 0. In the litterature, one usually finds the assumption that ∇p
vanishes at infinity and this is read as H = 0. Equivalently, this is read as

∂tu = Gd ∗ ∇ ∧ (∇∧ ∂tu);

the operator
P = Gd ∗ ∇ ∧ (∇∧ .)

is called the Leray projection operator and the decomposition (when justified)

w = Pw +Gd ∗ ∇(∇ ·w)

the Hodge decomposition of the vector field w.
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Hence, an important issue when dealing with the Navier–Stokes equations
is to study whether in formula (1) the first half of the right-hand term is well-
defined, and if so which values the second half (the harmonic part H) may
have.

In order to give some meaning to the formal convolution Gd ∗∇∂i∂j(uiuj)
or to (∇∂i∂jGd) ∗ (uiuj), we should require ui to be locally L2

tL
2
x (in order

to define uiuj as a distribution) and to have small increase at infinity, since
the distribution ∇∂i∂jG has small decay at infinity (it belongs to L1 ∩ L∞
far from the origin and is O(|x|−(d+1))). Thus, we will focus on solutions u
that belong to L2((0, T ), L2(Rd, wd+1 dx)) where

wγ(x) = (1 + |x|)−γ.

We shall recall various examples (from recent or older litterature) of solutions
belonging to the space L2((0, T ), L2(Rd, wγ dx)) (with γ ∈ {d, d+1}). As Fi,j
plays a role similar to uiuj, we shall assume that F ∈ L1((0, T ), L1(Rd, wγ dx)).

1 Main results.

First, we precise the meaning of ∇p in equations (NS) :

Lemma 1.1 Consider the dimension d ∈ {2, 3} and γ ≥ 0. Let 0 < T <
+∞. Let F be a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤d such that F belongs to

L1((0, T ), L1(Rd, wγ dx)), and let u be a vector field u(t, x) = (ui(t, x))1≤i≤d
such that u belongs to L2((0, T ), L2(Rd, wγ dx)) and ∇ · u = 0. Define the
distribution S by

S = ∆u−∇ · (u⊗ u− F)− ∂tu.
Then the following assertions are equivalent :
(A) S is curl-free : ∇∧ S = 0.
(B) There exists a distribution p ∈ D′((0, T )× Rd) such that S = ∇p.

Theorem 1 Consider the dimension d ∈ {2, 3}. Let 0 < T < +∞. Let F be
a tensor F(t, x) = (Fi,j(t, x))1≤i,j≤d such that F belongs to L1((0, T ), L1(Rd, wd+1 dx)).
Let u be a solution of the following problem

∂tu = ∆u−∇ · (u⊗ u)− S +∇ · F

∇ · u = 0, ∇∧ S = 0,
(2)

such that : u belongs to L2((0, T ), L2
wd+1

(Rd)), and S belongs to D′((0, T ) ×
Rd).

3



Let us choose ϕ ∈ D(Rd) such that ϕ(x) = 1 on a neighborhood of 0 and
define

Ai,j,ϕ = (1− ϕ)∂i∂jGd.

Then, there exists g(t) ∈ L1((0, T )) such that

S = ∇pϕ + ∂tg

with

pϕ =
∑
i,j

(ϕ∂i∂jGd) ∗ (uiuj − Fi,j)

+
∑
i,j

∫
(Ai,j,ϕ(x− y)− Ai,j,ϕ(−y))(ui(t, y)uj(t, y)− Fi,j(t, y)) dy.

Moreover,

• ∇pϕ does not depend on the choice of ϕ : if we change ϕ in ψ, then

pϕ(t, x)−pψ(t, x) =
∑
i,j

∫
(Ai,j,ψ(−y)−Ai,j,ϕ(−y))(ui(t, y)uj(t, y)−Fi,j(t, y)) dy.

• ∇pϕ is the unique solution of the Poisson problem

∆w = −∇(∇ · (∇ · (u⊗ u− F))

with
lim

τ→+∞
eτ∆w = 0 in D′.

• if F belongs more precisely to L1((0, T ), L1
wd

(Rd)) and u belongs to
L2((0, T ), L2

wd
(Rd)), then g = 0 and ∇pϕ = ∇p0 where

p0 =
∑
i,j

(ϕ∂i∂jGd) ∗ (uiuj − Fi,j) +
∑
i,j

((1− ϕ)∂i∂jGd) ∗ (uiuj − Fi,j).

(p0 does not actually depend on ϕ and could have been defined as p0 =∑
i,j(∂i∂jGd) ∗ (uiuj − Fi,j).)

When F = 0, the case g 6= 0 can easily be reduced to a change of referen-
tial, due to the extended Galilean invariance of the Navier–Stokes equations :
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Theorem 2 Consider the dimension d ∈ {2, 3}. Let 0 < T < +∞. Let u
be a solution of the following problem

∂tu = ∆u−∇ · (u⊗ u)− S

∇ · u = 0, ∇∧ S = 0, u(0, x) = u0(x)
(3)

such that : u belongs to L2((0, T ), L2
wd+1

(Rd)), and S belongs to D′((0, T ) ×
Rd).

Let us choose ϕ ∈ D(Rd) such that ϕ(x) = 1 on a neighborhood of 0 and
define

Ai,j,ϕ = (1− ϕ)∂i∂jGd.

We decompose S into
S = ∇pϕ + ∂tg

with

pϕ =
∑
i,j

(ϕ∂i∂jGd) ∗ (uiuj)

+
∑
i,j

∫
(Ai,j,ϕ(x− y)− Ai,j,ϕ(−y))(ui(t, y)uj(t, y)) dy

and
g(t) ∈ L1((0, T )).

Let us define

E(t) =

∫ t

0

g(λ)dλ

and
w(t, x) = u(t, x− E(t)) + g(t).

Then, w is a solution of the Navier–Stokes problem

∂tw = ∆w−∇ · (w⊗w)−∇qϕ

∇ ·w = 0, w(0, x) = u0(x)

qϕ =
∑
i,j

(ϕ∂i∂jGd) ∗ (wiwj) +
∑
i,j

∫
(Ai,j,ϕ(x− y)− Ai,j,ϕ(−y))(wi(t, y)wj(t, y)) dy

(4)
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2 Curl-free vector fields.

In this section we prove Lemma 1.1 with simple arguments :

Proof. We take a partition of unity on (0, T )∑
j∈Z

ωj = 1

with ωj supported in (2j−2T, 2jT ) for j < 0, in (T/4, 3T/4) for j = 0 and in
(T − 2−jT, T − 2−(j+2)T ) for j > 1. We define

Vj = −ωju +

∫ t

0

ωj∆u− ωj∇ · (u⊗ u− F) + (∂tωj)u ds.

Then Vj is a sum of the form A + ∆B + ∇ · C + D with A, B, C and D
in L1((0, T ), L1(Rd, wd+1 dx)); thus, by Fubini’s theorem, we may see it as a
time-dependent tempered distribution. Moreover, ∂tVj = ωjS, Vj is equal to
0 for t in a neighbourhood of 0, and ∇∧ Vj = 0. Moreover, S =

∑
j∈Z ∂tVj.

We choose Φ ∈ S(Rd) such that the Fourier transform of Φ is compactly
supported and is equal to 1 in the neighbourhood of 0. Then Φ ∗ Vj is
well-defined and ∇∧ (Φ ∗ Vj) = 0. We define

Xj = Φ ∗ Vj and Yj = Vj −Xj.

We have

Yj = ∇
(

1

∆
∇ · Yj

)
and (due to Poincaré’s lemma)

Xj = ∇(

∫ 1

0

x ·Xj(t, λx)dλ)

We find S = ∇p with

p = ∂t
∑
j∈Z

(

∫ 1

0

x ·Xj(t, λx)dλ+
1

∆
∇ · Yj).

�
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3 The Poisson problem −∆U = ∂k∂i∂jh

We first consider a simple Poisson problem :

Proposition 3.1 Let h ∈ L1(Rd, (1 + |x|)−(d+1)dx) then

U = U1 + U2 = (∂k(ϕ∂i∂jGd)) ∗ h+ ∂k((1− ϕ)∂i∂jGd) ∗ h.

is a distribution such that U2 belongs to L1(Rd, (1 + |x|)−(d+1)dx) and U is a
solution of the problem

−∆U = ∂k∂i∂jh. (5)

More precisely, U is the unique solution in S ′ such that limτ→0 e
τ∆U = 0 in

S ′.

Proof. We may write ∂jGd as

∂jGd = −
∫ +∞

0

∂jWtdt

where Wt(x) is the heat kernel Wt(x) = (4πt)−
d
2 e−

|x|2
4t , so that on Rd \ {0},

we have

∂jGd = cd
xi
|x|d

with cd =
1

2(4π)d/2

∫ +∞

0

e−
1
4u

du

u
d+2
2

The first part defining U , U1 = (∂k(ϕ∂i∂jGd)) ∗ h, is well defined, since
∂k(ϕ∂i∂jGd) is a compactly supported distribution. To control U2, we write∫ ∫

1

(1 + |x|)d+1
|∂k(1− ϕ)∂i∂jGd(x− y)||h(y)|dydx

≤
∫ ∫

1

(1 + |x|)d+1

C

(1 + |x− y|)d+1
|h(y)|dydx

≤ C ′
∫

1

(1 + |y|)d+1
|h(y)|dy

since∫
1

(1 + |x|)d+1

1

(1 + |x− y|)d+1
dx

≤
∫
|x|> |y|

2

1

(1 + |x|)d+1

1

(1 + |x− y|)d+1
dx+

∫
|x−y|> |y|

2

1

(1 + |x|)d+1

1

(1 + |x− y|)d+1
dx

≤ 2d+1

(1 + |y|)d+1

∫
1

(1 + |x− y|)d+1
dx+

2d+1

(1 + |y|)d+1

∫
1

(1 + |x|)d+1
dx

≤ C
1

(1 + |y|)d+1
.
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Now that we know that U is well defined, we may compute −∆U . −∆U1

is equal to

(−∆∂k(ϕ∂i∂jGd))∗h = ∂k(ϕ∂i∂jh)−∂k((∆ϕ)∂i∂jGd)∗h−2
∑

1≤l≤d

∂k((∂lϕ)∂l∂i∂jGd)∗h.

For computing −∆U2, we see that we can differentiate under the integration
sign and find

−∆U2 == ∂k((1−ϕ)∂i∂jh)+∂k((∆ϕ)∂i∂jGd)∗h+2
∑

1≤l≤d

∂k((∂lϕ)∂l∂i∂jGd)∗h.

Thus, U is a solution of the Poisson problem.

Computing eτ∆U , we find that

eτ∆U = (eτ∆∂k∂i∂jGd) ∗ h

and thus

|eτ∆U(x)| ≤ C

∫
1

(
√
τ + |x− y|)d+1

|h(y)| dy.

By the dominated convergence theorem, we get that limτ→0 e
τ∆U = 0 in

L1(Rd, (1 + |x|)−(d+1)dx). If V is another solution of the same Poisson prob-
lem with V ∈ S ′ and limτ→0 e

τ∆V = 0 in S ′, then ∆(U − V ) = 0 and
U − V ∈ S ′, so that U − V is a polynomial; with the assumption that
limτ→0 e

τ∆(U − V ) = 0, we find that this polynomial is equal to 0. �

If we have better integrability on h, then of course we have better inte-
grability of U2. For instance, we have :

Proposition 3.2 Let h ∈ L1(Rd, (1 + |x|)−ddx)) then

U2 = ∂k((1− ϕ)∂i∂jGd) ∗ h.

belongs to L1(Rd, (1 + |x|)−d)).

Proof.
We write∫ ∫

1

(1 + |x|)d
|∂k((1− ϕ)∂i∂jGd(x− y))||h(y)| dy dx

≤ C

∫ ∫
1

(1 + |x|)d
1

(1 + |x− y|)d+1
|h(y)| dy dx.

8



For |y| < 1, we have∫
1

(1 + |x|)d+1

1

(1 + |x− y|)d+1
dx ≤

∫
1

(1 + |x|)d+1
dx ≤ C

and for |y| > 1, as the real number
∫
|x|< 1

2

1
|x|d−1

1
|x− y

|y| |2
dx is finite and does

not depend on y, we can write∫
1

(1 + |x|)d
1

(1 + |x− y|)d+1
dx

≤
∫
|x|> |y|

2

1

(1 + |x|)d
1

(1 + |x− y|)d+1
dx+

∫
|x|< |y|

2

1

(1 + |x|)d
1

(1 + |x− y|)d+1
dx

≤ 2d

(1 + |y|)d

∫
1

(1 + |x− y|)d+1
dx+

2d−1

(1 + |y|)d−1

∫
|x|< |y|

2

1

|x|d−1

1

|x− y|2
dx

≤ C
1

(1 + |y|)d
+ C

1

(1 + |y|)d−1

1

|y|

∫
|x|< 1

2

1

|x|d−1

1

|x− y
|y| |2

dx

≤ C ′
1

(1 + |y|)d
.

This concludes the proof. �

4 The Poisson problem −∆V = ∂i∂jh

Proposition 4.1 Let h ∈ L1((1 + |x|)−d−1dx) and Aϕ = (1−ϕ)∂i∂jGd then

V = V1 + V2 = (ϕ∂i∂jGd) ∗ h+

∫
(Aϕ(x− y)− Aϕ(−y))h(y)dy

is a distribution such that V2 belongs to L1((1 + |x|)−γ), for γ > d + 1, and
V is a solution of the problem

−∆V = ∂i∂jh. (6)

Proof. We know that V1 is well defined since ϕ∂i∂jGd is a supported
compactly distribution, and we will verify that V2 is well defined.

We have ∫ ∫
1

(1 + |x|)γ
|Aϕ(x− y)− Aϕ(−y)|dx

≤ C‖Aϕ‖L∞
∫

1

(1 + |x|)γ
dx

9



For |y| > 1, we have by the mean value inequality∫
|x|< |y|

2

1

(1 + |x|)γ
|Aϕ(x− y)− Aϕ(−y)|dx ≤ C

1

|y|d+1

∫
|x|< y

2

|x|
(1 + |x|)γ

dx

and we can control the other part as follows∫
|x|> |y|

2

1

(1 + |x|)γ
|Aϕ(−y)|dx ≤ C

1

|y|d

∫
|x|> y

2

1

(|x|)γ
≤ C

1

|y|γ

and for ε > 0 such that γ − ε ≥ d+ 1, we have∫
|x|> |y|

2

1

(1 + |x|)γ
|Aϕ(x− y)|dx ≤ C

∫
|x|> |y|

2

1

|x|γ
1

(1 + |x− y|)d
dx

≤ C

∫
|x|> |y|

2

1

|x|γ
1

|x− y|d−ε
dx

≤ C
1

|y|d+1

∫
|x|> 1

2

1

|x|γ
1

|x− y
|y| |d−ε

dx

≤ C ′
1

|y|d
.

�

5 Proof of Theorems 1 and 2.

We may now prove Theorem 1 :

Proof. Taking the divergence of

∂tu = ∆u−∇ · (u⊗ u)− S +∇ · F,

we obtain
−
∑
i,j

∂i∂j(uiuj) +
∑
i,j

∂i∂jFi,j −∇ · S = 0

and
−∆S = ∇(

∑
i,j

∂i∂j(uiuj − Fi,j)).

We write hi,j = uiuj −Fi,j, and Aϕ = (1−ϕ)∂i∂jGd. By Proposition 4.1,
we can define

pϕ =
∑
i,j

(ϕ∂i∂jGd) ∗ hi,j +
∑
i,j

∫
(Ai,j,ϕ(x− y)− Ai,jϕ(−y))hi,j(y)dy

10



and

U = U1 + U2 = ∇
∑
i,j

(ϕ∂i∂jGd) ∗ hi,j +∇
∑
i,j

((1− ϕ)∂i∂jGd) ∗ hi,j = ∇pϕ.

Let Ũ = S− U . First, we remark that ∆U = ∆S so that ∆Ũ = 0, hence Ũ
is harmonic in the space variable.

On the other hand, for a test function α ∈ D(R) such that α(t) = 0 for
all |t| ≥ ε, and a test function β ∈ D(R3), and for t ∈ (ε, T − ε), we have

Ũ(t) ∗t,x (α⊗ β) =(u ∗ (−∂tα⊗ β + α⊗∆β) + (−u⊗ u + F) · ∗(α⊗∇β))(t, ·)

−
∑
i,j

((hij) ∗ (∇(ϕ∂i∂jGd) ∗ (α⊗ β)))(t, ·)− (U2 ∗ (α⊗ β))(t, ·).

By Proposition 3.1, we conclude that Ũ ∗(α⊗β)(t, .) belongs to the space
L1(Rd, (1 + |x|−d−1). Thus, it is a tempered distribution; as it is harmonic,
it must be polynomial. The integrability in L1(Rd, (1 + |x|−d−1) implies that
this polynomial is constant.

If F belongs more precisely to L1((0, T ), L1
wd

(Rd)) and u belongs to L2((0, T ), L2
wd

(Rd)),
we find that this polynomial belongs to L1(Rd, wd dx), hence is equal to 0.

Then, using the identity approximation Φε = 1
ε4
α( t

ε
)β(x

ε
) and letting ε go

to 0, we obtain a similar result for Ũ . Thus S = ∇pϕ + f(t), with f(t) = 0
if F belongs to L1((0, T ), L1

wd
(Rd)) and u belongs to L2((0, T ), L2

wd
(Rd)).

As f does not depend on x, we may take a function β ∈ D(Rd) with∫
β dx = 1 and write f = f ∗x β; we find that

f(t) = ∂t(u0 ∗β−u ∗β+

∫ t

0

u ∗∆β− (u⊗u−F) · ∗∇β− pϕ ∗∇β ds) = ∂tg.

As ∂t∂jg = ∂jf = 0 and ∂jg(0, .) = 0, we find that g depends only on t;
moreover, the formula giving g proves that g ∈ L1((0, T )). �

The proof of Theorem 2 is classical and the result is known as the ex-
tended Galilean invariance of the Navier–Stokes equations :

Proof. Let us suppose that

∂tu = ∆u− (u · ∇)u−∇pϕ −
d

dt
g(t),

with g ∈ L1((0, T )). We define

E(t) =

∫ t

0

g(λ)dλ and w = u(t, x− E(t)) + g(t).

11



We have

∂tw =∂tu(t, x− E(t))− g(t) · ∇u(t, x− E(t)) +
d

dt
g(t)

=∆u(t, x− E(t))− [(u · ∇)u](t, x− E(t))−∇pϕ(t, x− E(t))− d

dt
g(t)

− g(t) · ∇u(t, x− E(t)) +
d

dt
g(t)

=∆w− (w · ∇)w−∇pϕ(t, x− E(t)).

If we define qϕ(t, x) = pϕ(t, x− E(t)), we find that we have

qϕ =
∑
i,j

(ϕ∂i∂jGd)∗(wiwj)+
∑
i,j

∫
(Ai,j,ϕ(x−y)−Ai,j,ϕ(−y))(wi(t, y)wj(t, y)) dy.

The theorem is proved. �

6 Applications

A consequence of Proposition 3.1 is that we may define the Leray projection
operator on the divergence of tensors that belong to L1((0, T ), L1(Rd, wd+1 dx)) :

Definition 6.1 Let H ∈ L1((0, T ), L1(Rd, wd+1 dx)) and w = ∇ · H. The
Leray projection P(w) of w on solenoidal vector fields is defined by

Pw = w−∇pϕ

where ∇pϕ is the unique solution of

−∆∇p = ∇(∇ ·w)

such that
lim

τ→+∞
eτ∆∇p = 0.

A special form of the Navier–Stokes equations is then given by

(MNS) ∂tu = ∆u− P∇ · (u⊗ u− F), u(0, .) = u0.

This leads to the integro-differential equation

u = et∆u0 −
∫ t

0

e(t−s)∆P∇ · (u⊗ u− F) ds.

12



The kernel of the convolution operator e(t−s)∆P∇· is called the Oseen kernel;
its study is the core of the method of mild solutions of Kato and Fujita [12].
Thus, we will call equations (MNS) a mild formulation of the Navier–Stokes
equations.

The mild formulation together with the local Leray energy inequality has
been as well a key tool for extending Leray’s theory of weak solutions in L2 to
the setting of weak solutions with infinite energy. We may propose a general
definition of suitable Leray-type weak solutions :

Definition 6.2 (Suitable Leray-type solution)
Let F ∈ L2((0, T ), L2(Rd, 1

(1+|x|)d+1 )) and u0 ∈ L2(Rd, 1
(1+|x|)d+1 ) with ∇ ·u0 =

0. We consider the Navier–Stokes problem on (0, T )× Rd :

∂tu =∆u− P(u⊗ u− F),

∇ · u = 0, u(0, .) = u0.

A suitable Leray-type solution u of the Navier–Stokes equations is a vector
field u defined on (0, T )× Rd such that :

• u is locally L2
tH

1
x on (0, T )× Rd

• sup0<t<T

∫
|u(t, x)|2 1

(1+|x|)d+1 dx < +∞

•
∫∫

(0,T )×Rd |∇ ⊗ u(t, x)|2 1
(1+|x|)d+1 dx dt < +∞

• the application t ∈ [0, T ) 7→
∫
u(t, x) · w(x) dx is continuous for every

smooth compactly supported vector field w

• for every compact subset K of Rd, limt→0

∫
K
|u(t, x)− u0(x)|2 dx = 0.

• defining pϕ as (the) solution of −∆pϕ =
∑

i,j ∂i∂j(uiuj − Fi,j) given
by Proposition 4.1, u is suitable in the sense of Caffarelli, Kohn and
Nirenberg : there exists a non-negative locally bounded Borel measure
µ on (0, T )× Rd such that

∂t(
|u|2

2
) = ∆(

|u|2

2
)− |∇ ⊗ u|2 −∇ · (( |u|

2

2
+ pϕ)u) + u · (∇ · F)− µ

Remarks :
a) With those hypotheses, pϕ belongs locally to L

3/2
t,x and u belongs locally

to L3
t,x so that the distribution ( |u|

2

2
+ pϕ)u is well-defined.

b) Suitability is a local assumption. It has been introduced by Caffarelli,
Kohn and Nirenberg in 1982 [6] to get estimates on partial regularity for

13



weak Leray solutions. If we consider a solution of the Navier–Stokes equa-
tions on a small domain with no specifications on the behaviour of u at the
boundary, the estimates on the pressure (and the Leray projection opera-
tor) are no longer available. However, Wolf described in 2017 [21] a local
decomposition of the pressure into a term similar to the Leray projection of
∇· (u⊗u) and a harmonic term; he could generalize the notion of suitability
to this new description of the pressure. On the equivalence of various notions
of suitability, see the paper by Chamorro, Lemarié-Rieusset and Mayoufi [8].
c) The relationship between the system (NS) and its mild formulation (MNS)
described in Theorem 1 has been described by Furioli, Lemarié–Rieusset and
Terraneo in 2000 [13, 16] in the context of uniformly locally square integrable
solutions. See the paper by Dubois [11], as well.

We list here a few examples to be found in the litterature :

1. Solutions in L2 : in 1934, Leray [18] studied the Navier–Stokes problem
(NS) with an initial data u0 ∈ L2 and a forcing tensor F ∈ L2

tL
2
x. He

then obtained a solution u ∈ L∞L2 ∩L2Ḣ1. Remark that this solution
is automatically a solution of the mild formulation of the Navier–Stokes
equations (MNS). Leray’s construction by mollification provides suit-
able solutions.

2. Solutions in L2
uloc : in 1999, Lemarié-Rieusset [15, 16] studied the

Navier–Stokes problem (MNS) with an initial data u0 ∈ L2
uloc (and,

later in [17], a forcing tensor F ∈ (L2
tL

2
x)uloc). He obtained (local in

time) existence of a suitable solution u on a small strip (0, T0) × Rd

such that

sup
x0∈Rd

sup
0<t<T0

∫
B(x0,1)

|u(t, x)|2 dx < +∞

and

sup
x0∈Rd

∫ T0

0

∫
B(x0,1)

|∇ ⊗ u(t, x)|2 dx < +∞.

Remark that we have u ∈ L2((0, T0), L2(Rd, 1
(1+|x|)d+1 dx)) but u does

not belong to L2((0, T0), L2(Rd, 1
(1+|x|)d dx)); thus, in this setting, prob-

lems (NS) and (MNS) are not equivalent.

Various reformulations of local Leray solutions in L2
uloc have been pro-

vided, such as Kikuchi and Seregin in 2007 [14] or Bradshaw and Tsai
in 2019 [4]. The formulas proposed for the pressure, however, are ac-
tually equivalent, as they all imply that u is solution to the (MNS)
problem.
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In the case of dimension d = 2, Basson [1] proved in 2006 that the
solution u is indeed global (i.e. T0 = T ) and that, moreover, the
solution is unique.

3. Solutions in a weighted Lebesgue space : in 2019, Fernández-Dalgo
and Lemarié–Rieusset [9] considerered data u0 ∈ L2(R3, wγ dx) and
F ∈ L2((0,+∞), L2(R3, wγ dx)) with 0 < γ ≤ 2. They proved (global
in time) existence of a suitable solution u such that, for all T0 < +∞,

sup
0<t<T0

∫
|u(t, x)|2wγ(x) dx < +∞

and ∫ T0

0

∫
|∇ ⊗ u(t, x)|2wγ(x), dx < +∞.

[Of course, for such solutions, (NS) and (MNS) are equivalent.] They
showed that, for 4

3
< γ ≤ 2, this frame of work is well adapted to the

study of discretely self-similar solutions with locally L2 initial value,
providing a new proof of the results of Chae and Wolf in 2018 [7] and
of Bradshaw and Tsai in 2019 [3].

4. Homogeneous Statistical Solutions : in 1977, Vishik and Fursikov [19]
considered the (MNS) problem with a random initial value u0(ω).
The statistics of the initial distributions were supposed to be invari-
ant though translation of the arguments of u0 : for every Borel subset
B of L2

loc(R3) and every x0 ∈ R3,

Pr(u0(· − x0) ∈ A) = Pr(u0 ∈ A).

Another assumption was that u0 has a bounded mean energy density :

e0 = E

(∫
|x|≤1
|u0|2 dx∫

|x|≤1
dx

)
< +∞.

Then
Pr(u0 ∈ L2 and u 6= 0) = 0

while, for any ε > 0,

Pr(

∫
|u0|2

1

(1 + |x|)3+ε
dx < +∞) = 1.

In [20], they constructed a solution u(t, x, ω) that solved the Navier–
Stokes equation for almost every initial value u0(ω), and the solution
belonged almost surely to L∞t L

2
x(

1
(1+|x|)3+ε dx) with∇⊗u ∈ L2

tL
2
x(

1
(1+|x|)3+ε dx).
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In 2006, Basson [2] gave a precise description of the pressure in those
equations (which is equivalent to our description through the Leray
projection operator) and proved the suitability of the solutions.

7 The space B2
γ.

Instead of dealing with weighted Lebesgue spaces, one may deal with a kind
of local Morrey space, the space B2

γ.

Definition 7.1 For γ ≥ 0, define wγ(x) = 1
(1+|x|)γ and Lpwγ = Lp(Rd, wγ(x) dx).

For 1 ≤ p < +∞, we denote Bp
γ the Banach space of all functions u ∈ Lploc

such that :

‖u‖Bpγ = sup
R≥1

(
1

Rγ

∫
B(0,R)

|u|p dx)1/p < +∞.

Similarly, Bp
γL

p(0, T ) is the Banach space of all functions u ⊂ (LptL
p
x)loc

such that

‖u‖BpγLp(0,T ) = sup

(
1

Rγ

∫ T

0

∫
|u|p
) 1

p

dx ds.

Lemma 7.1 Let γ ≥ 0 and γ < δ < +∞, we have the continuous embedding
Lpwγ ↪→ Bp

γ,0 ↪→ Bp
γ ↪→ Lpwδ , where Bp

γ,0 ⊂ Bp
γ is the subspace of all functions

u ∈ Bp
γ such that limR→+∞

1
Rγ

∫
B(0,R)

|u(x)|p dx = 0.

Proof. Let u ∈ Lpwγ . We verify easily that ‖u‖Bpγ ≤ 2γ/p‖u‖Lpwγ and we
see that

1

Rγ

∫
|x|≤R

|u|p dx =

∫
|x|≤R

|u|p

(1 + |x|)γ
(1 + |x|)γ

Rγ
dx

converges to zero when R→ +∞ by dominated convergence, so Lpwγ ↪→ Bp
γ,0.

To demonstrate the other part, we estimate∫
|u|p

(1 + |x|)δ
dx =

∫
|x|≤1

|u|p

(1 + |x|)δ
dx+

∑
n∈N

∫
2n−1≤|x|≤2n

|u|p

(1 + |x|)δ
dx

≤
∫
|x|≤1

|u|p dx+
∑
n∈N

1

(1 + 2n−1)δ

∫
2n−1≤|x|≤2n

|u|p dx

≤
∫
|x|≤1

|u|p dx+ c
∑
n∈N

1

2δn

∫
2n−1≤|x|≤2n

|u|p dx

≤ (1 + c
∑
n∈N

1

2(δ−γ)n
) sup
R≥1

1

Rγ

∫
|x|≤R

|u|p dx,
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thus, Bp
γ ⊂ Lpwδ . �

Remark : Similarly, for all δ > γ, Bp
γL

p(0, T ) ⊂ Lp((0, T ), Lpwδ).

Proposition 7.1 The space Bp
γ can be obtained by interpolation,

Bp
γ = [Lp, Lpwδ ] γδ ,∞

for all 0 < γ < δ <∞, and the norms

‖ · ‖Bpγ and ‖ · ‖[Lp,Lpwδ ] γ
δ
,∞

are equivalent.

Proof. Let f ∈ Bp
γ . For A < 1, we write f0 = 0 and f1 = f , then we

have f = f0 + f1 and ‖f1‖Lpwδ ≤ CA
γ
δ
−1‖f‖Bpγ .

For A > 1, we let R = A
p
δ > 1. We write f0 = f1|x|≤R and f1 = f1|x|>R,

then
‖f0‖p ≤ C‖f‖BpγR

γ
p = CA

γ
δ ‖f‖Bpγ

and

‖f1‖pp =
∑
n∈N

∫
2n−1R≤|x|≤2nR

|u|p

(1 + |x|)δ
dx

≤ CRγ−δ
∑
n∈N

1

2(δ−γ)j
‖f‖p

Bpγ

= CA( γ
δ
−1)p‖f‖p

Bpγ

Thus, Bp
γ ↪→ [Lp, Lpwδ ] γδ ,∞.

Let f ∈ [Lp, Lpwδ ] γδ ,∞, then there exist c > 0 such that for all A > 0, there
exist f0 ∈ Lp and f1 ∈ Lpwδ so that f = f0 + f1,

‖f0‖p ≤ cA
γ
δ and ‖f1‖Lpwδ ≤ cA

γ
δ
−1.
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For j ∈ N we take A = 2
jδ
p , then

1

2jγ

∫
|x|<2j

|f |p dx

≤ C

(
1

2jγ

∫
|x|<2j

|f0|p dx+
1

2jγ

∫
|x|<2j

|f1|p dx
)

≤ C

(
1

2jγ
‖f0‖pp +

C

2jγ

∫
|x|≤1

|f1|p

(1 + |x|)δ
dx+ C

j∑
k=1

2kδ

2jγ

∫
2k−1<|x|<2k

|f1|p

(1 + |x|)δ
dx

)

≤ C

(
1

2jγ
‖f0‖pp + C ′2j(δ−γ)‖f1‖pLpwδ

)
≤ C ′′

which implies supj∈N
1

2jγ

∫
|x|<2j

|f |p dx < +∞, so supR≥1
1
Rγ

∫
|x|<R |f |

p dx <
+∞. �

Thus, we can see that the local Morrey spaces Bp
γ are very close to

the weighted Lebesgue spaces Lpwγ . Indeed, the methods and results of
Fernández-Dalgo and Lemarié–Rieusset [9] can be easily extended to the
setting of local Morrey spaces in dimension d = 2 or d = 3 : considering
data u0 ∈ B2

γ(Rd) and F ∈ (B2
γL

2)(0, T )(Rd) with 0 < γ ≤ 2, one gets (local
in time) existence of a suitable solution u for the (MNS) system on a small
strip (0, T0)× Rd such that u ∈ L∞((0, T0), B2

γ) and ∇⊗ u ∈ (B2
γL

2)(0, T0).
The case of γ = 2 deserves some comments. In the case d = 3, the results

is slightly more general than the results in [9], as the class B2
2 is larger

than the space L2
w2

. Equations in B2
2 have been very recently discussed by

Bradshaw, Kukavica and Tsai [5]. The case d = 2 is more intricate. Indeed,
while the Leray projection operator is bounded on B2

2(R3) (by interpolation
with L2 and L2

wδ
with 2 < δ < 3, the Riesz transforms being bounded on L2

wδ

by the theory of Muckenhoupt weights), this is no longer the fact on B2
2(R2).

Thus, one must be careful in the handling of the pressure. This has been
done by Basson in his Ph. D. thesis in 2006 [1].

Local Morrey spaces B2
d occur naturally in the setting of homogeneous

statistical solutions. By using an ergodicity argument, Dostoglou [10] proved
in 2001 that, under the assumptions of Vishik and Fursikov [19], we have

Pr(u0(., ω) ∈ B2
d(Rd)) = 1.

Thus, the solutions of Vishik and Fursikov live in a smaller space than L2
wd+ε

.
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[16] P.G. Lemarié-Rieusset, Recent developments in the Navier–Stokes prob-
lem, CRC Press, 2002.
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Scuola Norm. Sup. Pisa, série IV, IV (1977), 531–576.

[20] M.I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical
Hydromechanics, Dordrecht: Kluwer Academic Publishers, 1988.

[21] J. Wolf, On the local pressure of the Navier–Stokes equations and re-
lated systems, Adv. Differential Equations 22 (2017), 305–338.

20


	Main results.
	Curl-free vector fields.
	 The Poisson problem -U = k i j h 
	 The Poisson problem -V = i j h 
	Proof of Theorems 1 and 2.
	Applications
	The space B2.

