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Characterisation of the pressure term in the
incompressible Navier—Stokes equations on the
whole space

Pedro Gabriel Fernandez-Dalgo*!, Pierre Gilles
Lemarié-Rieusset?

Abstract

We characterise the pressure term in the incompressible 2D and
3D Navier—Stokes equations for solutions defined on the whole space.

Keywords : Navier—Stokes equations, pressure term, Leray projection,
extended Galilean invariance, suitable solutions
AMS classification : 35Q30, 76D05.

Introduction

In the context of the Cauchy initial value problem for Navier—Stokes equa-
tions on R? (with d =2 or d = 3)

du=Au—(u-V)u—-Vp+V. F
V-u=0, u(0,.) = uy

an important problem is to propose a formula for the gradient of the pressure,
which is an auxiliary unknown (usually interpreted as a Lagrange multiplier
for the constraint of incompressibility).
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As we shall not assume differentiability of u in our computations, it is
better to write the equations as

du=Au—-V-(u®u)—-Vp+V.F
(NS)
V-u=0, u(0,.) =uy

Taking the Laplacian of equations (NS), since we have for a vector field
w the identity
—Aw =V A(VAW)=V(V- -w)

we get the equations
AU =ANu+VA(VA(V-(u@u-—TF)))
and

0=-AVp—V(V-(V-(u®@u-F)) = -AVp—V( Y 80;(uu; — F;;)).

1<i,j<d

Thus, the rotational-free unknown Vp obeys a Poisson equation. If G is the
fundamental solution of the operator —A :

1 1 1
G2 = —ln(—), G3

o 7] ~ Adnlz|

(which satisifies —AGy4 = 0), we formally have

Vp=GaxV( Y  00;(uu; — Fy))+H (1)

1<i,j<d

with AH = 0. In the litterature, one usually finds the assumption that Vp
vanishes at infinity and this is read as H = 0. Equivalently, this is read as

3tu: Gd*V/\ (V/\@tu),

the operator

P:Gd*V/\<V/\.)

is called the Leray projection operator and the decomposition (when justified)
w=Pw+Gy*V(V-w)

the Hodge decomposition of the vector field w.



Hence, an important issue when dealing with the Navier—Stokes equations
is to study whether in formula (1) the first half of the right-hand term is well-
defined, and if so which values the second half (the harmonic part H) may
have.

In order to give some meaning to the formal convolution Gy * V0,0;(u;u;)
or to (V9;0;Gq) * (u;u;), we should require u; to be locally L7L? (in order
to define w;u; as a distribution) and to have small increase at infinity, since
the distribution V9;9;G has small decay at infinity (it belongs to L' N L™
far from the origin and is O(|z|~(@*Y)). Thus, we will focus on solutions u
that belong to L2((0,7), L>(R% wg,; dx)) where

w, (@) = (1+[2)™,

We shall recall various examples (from recent or older litterature) of solutions
belonging to the space L?((0,7), L*(R%, w., dz)) (with v € {d,d+1}). As F} ;
plays a role similar to u;u;, we shall assume that F € L'((0,7), L'(R?, w.,, dz)).

1 Main results.

First, we precise the meaning of Vp in equations (NS) :

Lemma 1.1 Consider the dimension d € {2,3} and v > 0. Let 0 < T <
+o00. Let F be a tensor F(t,x) = (Fi;(t,)),; ;<4 such that F belongs to
LY((0,T), LY(RY, w,, dz)), and let uw be a vector field u(t,z) = (u;(t,x))1<i<a
such that w belongs to L*((0,T), L*(R% w., dz)) and V - w = 0. Define the
distribution S by

S=Au—-V - (u®@u—F)—-0Ju.
Then the following assertions are equivalent :
(A) S is curl-free : VNS = 0.
(B) There exists a distribution p € D'((0,T) x R?) such that S = Vp.

Theorem 1 Consider the dimension d € {2,3}. Let 0 <T < +oo. Let F be
atensor F(t,z) = (F;(t,)),; ;<4 Such that F belongs to LY(0,T), L" (R, wgyy dx)).
Let w be a solution of the following problem

u=Au—-V-(u®u)—S+V-F

(2)
V-u=0, VAS=0,

such that : w belongs to L*((0,T), L?

wd+1(Rd))7 and S belongs to D'((0,T) x
RY).



Let us choose o € D(RY) such that ¢(z) = 1 on a neighborhood of 0 and
define
AZ'J#D = (1 - QD)azade

Then, there exists g(t) € L*((0,T)) such that
S = Vpgp + 8tg
with

Pp = Z(@aiade) * (wiuy — F )
+ Z /(Ai,j#,(x —y) — Aijo(=y)(wit, y)u;(t,y) — Fij(t,y)) dy.

Moreover,

e Vp, does not depend on the choice of ¢ : if we change ¢ in ), then

pe(t, x)=py(t, ) = Z / (Ao (—y) = Aijo (=0 (wilt, y)u; (¢, y)—Fij(t,y) dy.

o Vp, is the unique solution of the Poisson problem
Aw=-V(V- (V- (u@u—TF))

with
lim e®w=0inD.
T—+00

o if F belongs more precisely to L'((0,T), L, (RY)) and w belongs to
L*((0,T), L (RY)), then g = 0 and Vp, = Vpy where

po =Y _(00:0;Ga) * (wiu; — Fi5) + Y (1= )0:0;Ga) * (wiu; — Fy ;).
2, 2,]

(po does not actually depend on ¢ and could have been defined as py =
>-:(0:0;Ga) * (uuj — Fij).)

When F = 0, the case g # 0 can easily be reduced to a change of referen-
tial, due to the extended Galilean invariance of the Navier—Stokes equations :



Theorem 2 Consider the dimension d € {2,3}. Let 0 < T < 4o00. Let u
be a solution of the following problem

{ du=Au—V-(u®u) —S

(3)
Vou=0, VAS=0, u(0,z)=u(x)

such that : w belongs to L*((0,T), L, (RY)), and S belongs to D'((0,T) x
RY).

Let us choose o € D(R?) such that p(x) =1 on a neighborhood of 0 and
define
Ai,j,tp = (1 - gp)aﬁ]Gd

We decompose S into

S =Vp, + 0y
with
Dy = Z(@ﬁiade) * (uguy)
0,
30 [(issle =) = Aus =) st p)ust,0)
1]
and

g(t) € L'((0, 7).

Let us define

and
w(t,z) = u(t,x — E(t)) + g(t).

Then, w s a solution of the Navier—Stokes problem

( dw=Aw—V - (w® w) — Vg,

V-w=0, w(0, ) = uy(z)

qp = Z(wﬁde) * (wiwy) + Z J(Aijo(x —y) — Aijo(=y) (wilt, y)w;(t,y)) dy
j (4)

\ 7'7.]



2 Curl-free vector fields.
In this section we prove Lemma [1.1| with simple arguments :

Proof. We take a partition of unity on (0,7)
> wi=1
JEL

with w; supported in (27727, 2/T) for j < 0, in (T'/4,3T/4) for j = 0 and in
(T — 2797, T — 27U+IT) for j > 1. We define

t
V; = —wju+ / wiAu—w;V-(u®@u—TF)+ (Quw;)uds.
0

Then V; is a sum of the foom A+ AB+V -C + D with A, B, C' and D
in L*((0,T), L} (R wgy1 dz)); thus, by Fubini’s theorem, we may see it as a
time-dependent tempered distribution. Moreover, 9;V; = w;S, V; is equal to
0 for ¢ in a neighbourhood of 0, and V A V; = 0. Moreover, S = ZjeZ V.

We choose ® € S(R?) such that the Fourier transform of ® is compactly

supported and is equal to 1 in the neighbourhood of 0. Then ® x Vj is
well-defined and V A (® * V;) = 0. We define

X]:CIJ*VJ ande:Vj—Xj.

We have .
Y; =V (ZV . Y])

and (due to Poincaré’s lemma)
1
X; = V(/ x - X;(t, \x)d\)
0

We find S = Vp with

1
1
p= atZ(/o x - X;(t Ar)dA + £V - Y)).

=



3  The Poisson problem —AU = 0,,0;0;h

We first consider a simple Poisson problem :

Proposition 3.1 Let h € L*(R?, (1 + |z|)~@*Vdz) then
U= U1 + U2 = (8k(g086Gd)) x h + 8k(( — )08Gd) * .

is a distribution such that Uy belongs to L*(R?, (1 + |z|)~*Vdz) and U is a
solution of the problem

More precisely, U is the unique solution in S’ such that lim,_oe™U = 0 in
S’

Proof. We may write 0;G4 as
+oo
ade - —/ 8]Wtdt
0

where W;(x) is the heat kernel W;(z) = (471’15)_%6_%, so that on R?\ {0},

we have N p
T 1 1 du
aj Gd Wlth Cd W /0' e 4u ——

e 2(4m us’

The first part defining U, Uy = (0k(¢0;0;G4)) * h, is well defined, since
Ok (p0,0;Gy) is a Compactly supported distribution. To control Uy, we write

ke |d+1'ak< ?)0:0,Gal — )| |h(y)|dydz

// 1+|x| )+l 1+|x_y|)d+1’ (y)|dyda
SC/W| (y)ldy

since

/ 1 1 d
(L + [T (1 + [z — gy ™

1 1 1 1
S/ dx+/
a)> 1 (1 + [2[)T (1 + |z — y[)HH jo—y)> 2 (1 + [2[)T (1 + |z — y[)*

IA

d+1 d+1
2 / 1 dr + 2 1 d
x x
L+ fyhat J (1 + |z —y[)™! L+ yhat J (14 [z])
1
C——.
(1+ [y[)**t

IA

dx



Now that we know that U is well defined, we may compute —AU. —AU;
is equal to

1<i<d

For computing —AU,, we see that we can differentiate under the integration
sign and find

1<i<d

Thus, U is a solution of the Poisson problem.

Computing e™ U, we find that
BTAU = (eTAGk(?i@de) xh

and thus )

G e

By the dominated convergence theorem, we get that lim, ,oe™U = 0 in
LY(RY, (1 + |z|)~@+Ydx). If V is another solution of the same Poisson prob-
lem with V € & and lim,_,0e™V = 0 in &, then A(U — V) = 0 and
U—-V € &8 sothat U — V is a polynomial; with the assumption that
lim, ,oe™ (U — V) = 0, we find that this polynomial is equal to 0. o

|h(y)] dy.

If we have better integrability on h, then of course we have better inte-
grability of U,. For instance, we have :

Proposition 3.2 Let h € LY(R?, (1 + |z|)~%dz)) then

belongs to L*(RY, (1 + |x])~9)).

Proof.
We write

1
[ [ el - poaGuts —lint] dydo

1 1
<0 [ [ @ pmaey syl




For |y| < 1, we have

1 1 1
dr < — — dx<C
/ (I + )™ (1 [z — ) “””—/ (I ) ™ =

and for [y| > 1, as the real number [

1 1

:p|<% WWCZ!E is finite and does

not depend on y, we can write

1 1
d
/ (U + ) (1 + o — gy "

1 1 1 1
S/ dx+/ dzx
a)> 1 (14 [z[)? (1 + [z — y[)*H aj<l (14 [z[)? (1 + [z — y[)*H

< 24 / 1 dr + 2d4-1 / 1 1 d
< T+ — —— 0 dx
L+ Jyh? S Atz =yttt (L ) ety |27 o = y[?

1 1 1 1 1
<C +C — dx
O ) L O o 1) B e e e e i
1
<O
(1+ |y[)?
This concludes the proof. o

4  The Poisson problem —AV = 9,0;h
Proposition 4.1 Let h € L'((1+|z])~%'dz) and A, = (1 — ¢)9;0;Gq4 then
V= Vi Ve = (600,Ga) + o+ [[(Aue — ) = A,(-)h(u)dy

is a distribution such that Vy belongs to L'((1 + |x|)™7), for v > d+ 1, and
V' is a solution of the problem

— AV = 8,9;h. (6)

Proof. We know that V; is well defined since ¢0;0;G is a supported
compactly distribution, and we will verify that V5 is well defined.
We have

1
/ / T e e =) — Ae(=)lde
1

SCHA@HLOO/de



For |y| > 1, we have by the mean value inequality

1 1 ||
——— A (r —y) — A,(—y)|de < C / ————dx
A L T 9 - A T oy T4

2

and we can control the other part as follows

1 1 1 1
A (—y)|dr < C— <C
/W Gy O <Crm | T <R

2

and for € > 0 such that v —e > d + 1, we have

1 1 1
— A (xr — y)|dx < C/ dx
/| T ey el = o) iy TP (LT o= )7
1 1

o>l 2|7 |z — gl
1 1 1
< C—/ dr
Y1 St 2 [ — )9

1
[yl*

<C dx

<

5 Proof of Theorems (1| and .

We may now prove Theorem [1] :

Proof. Taking the divergence of
du=Au—-V-(u®u)—-S+V-F,

we obtain

— Zaﬁj(uzuj) + Zaﬁij — V . S =0
@] @]

and
—AS = V(> 0:0;(uu; — Fy;)).
2%
We write h; ; = wju; — F; j, and A, = (1 —¢)0;0,G4. By Proposition
we can define

Py = Z(@aiade) * hij+ Z /(Ai,j,cp(x —y) — Aijo(—y))hi;(y)dy
4]

.3

10



and

U= U1 + U2 = VZ(gp@Z@de) * h@j + \V4 Z((l — go)@lade) X hi,j = pr

i3 i,J

Let U = S — U. First, we remark that AU = AS so that AU = 0, hence U
is harmonic in the space variable.

On the other hand, for a test function a € D(R) such that a(t) = 0 for
all |t| > ¢, and a test function 8 € D(R?), and for t € (¢, T — €), we have

Ult) %2 (@@ ) =(u* (—0,a @B+ a®@ AB) + (—u®@u+TF) - «x(a® Vp))(t,")
- Z((hij) * (V(90;0;Ga) * (a @ B)))(t, ) — (U2 (a @ B))(L, ).

By Proposition , we conclude that U % (a® 3)(t, .) belongs to the space
LYRY, (1 + |o|7%71). Thus, it is a tempered distribution; as it is harmonic,
it must be polynomial. The integrability in L'(R?, (1 + |z|~¢7!) implies that
this polynomial is constant.

If F belongs more precisely to L' ((0,T), L, (R?)) and u belongs to L*((0, T, L2, (RY)),
we find that this polynomial belongs to L'(R¢, w,dz), hence is equal to 0.

Then, using the identity approximation ®, = E%a(é)ﬁ (%) and letting € go
to 0, we obtain a similar result for U. Thus S = Vp,, + f(t), with f(t) =0
if F belongs to L'((0,T), L., (R?)) and u belongs to L*((0,T), L2, (R?)).

As f does not depend on z, we may take a function 3 € D(R?) with
J Bdx =1 and write f = f *, 8; we find that

f(t) =3t(uo*ﬁ—u*ﬁ+/ uxAB— (u@u—F) -*VE—p,*xVBds) = d,g.
0

As 0,0;9 = 0;f = 0 and 0,¢(0,.) = 0, we find that g depends only on ¢;
moreover, the formula giving g proves that g € L'((0,7T)). o

The proof of Theorem |2 is classical and the result is known as the ex-
tended Galilean invariance of the Navier—Stokes equations :

Proof. Let us suppose that

d
du=Au—(u-V)u-Vp, — ag(t),

with g € L'((0,7)). We define
B(t) = /0 g(N)dA and w = u(t, z — E(t)) + g(t).

11



We have

Ow =0wu(t,x — E(t)) — g(t) - Vu(t,x — E(t)) + %g(t)

—u(t,z — B(2)) ~ [(a- V)t 2 — Bt)) - Vpalt,z — B(1) ~ S o(0)
— g(t) Vult,z — B(®) + 5o(0)

=Aw — (W - V)w — Vp,(t,z — E(t)).

If we define q,(t,z) = p,(t,x — E(t)), we find that we have

Qo = Z(waiade)*(wiwj)JrZ/(Amm(ﬁ—y)—Az’J,w(—y))(wz'(tay)wj(t;y)) dy.

ihj

The theorem is proved. o

6 Applications

A consequence of Proposition is that we may define the Leray projection
operator on the divergence of tensors that belong to L'((0,7"), L}(R?, wq, dx)) :

Definition 6.1 Let H € L'((0,7), L'(R, wgy1 dx)) and w = V - H. The
Leray projection P(w) of w on solenoidal vector fields is defined by

Pw=w— Vp,
where Vp,, is the unique solution of
—AVp=V(V - w)

such that
lim eTAVp = 0.

T—+00

A special form of the Navier—Stokes equations is then given by
(MNS) du=Au—-PV.-(u®@u-F), u0,.)=mu,.

This leads to the integro-differential equation

t
u = ey — / VAPV . (u@u — F) ds.
0

12



The kernel of the convolution operator e*=*2PV. is called the Oseen kernel;
its study is the core of the method of mild solutions of Kato and Fujita [12].
Thus, we will call equations (MNS) a mild formulation of the Navier-Stokes
equations.

The mild formulation together with the local Leray energy inequality has
been as well a key tool for extending Leray’s theory of weak solutions in L? to
the setting of weak solutions with infinite energy. We may propose a general
definition of suitable Leray-type weak solutions :

Definition 6.2 (Suitable Leray-type solution)
LetF € L2((0,T), L2(Rd, W)) and Uy € LQ(Rd, W) with V - Uy =
0. We consider the Navier—Stokes problem on (0,T) x R :

hu=Au—Plu® u—TF),
V-u=0, u0,.)=u.

A suitable Leray-type solution u of the Navier—Stokes equations is a vector
field w defined on (0,T) x R? such that :

o w is locally L?H} on (0,T) x R?
® supgier | |U(t>$)|2m dr < 400
° ff(O,T)XRd |V & u(t,;z:)PW dr dt < +00

e the application t € [0,T) — [ u(t,z) - w(z)dz is continuous for every
smooth compactly supported vector field w

e for every compact subset K of R%, limy_ [} |u(t, z) — ug(x)|* da = 0.

e defining p, as (the) solution of —Apy, = 37, 0;0;(uiu; — F ;) given
by Proposition u 1s suitable in the sense of Caffarelli, Kohn and
Nirenberg : there exists a non-negative locally bounded Borel measure
pon (0,T) x R? such that

o) =A%) v e up v (U pou) 4w (VF)

Remarks :

a) With those hypotheses, p,, belongs locally to Lif

to L?,m so that the distribution (g + p,)u is well-defined.

b) Suitability is a local assumption. It has been introduced by Caffarelli,
Kohn and Nirenberg in 1982 [6] to get estimates on partial regularity for

and u belongs locally

13



weak Leray solutions. If we consider a solution of the Navier—Stokes equa-
tions on a small domain with no specifications on the behaviour of u at the
boundary, the estimates on the pressure (and the Leray projection opera-
tor) are no longer available. However, Wolf described in 2017 [21] a local
decomposition of the pressure into a term similar to the Leray projection of
V- (u®u) and a harmonic term; he could generalize the notion of suitability
to this new description of the pressure. On the equivalence of various notions
of suitability, see the paper by Chamorro, Lemarié-Rieusset and Mayoufi []].
¢) The relationship between the system (NS) and its mild formulation (MNS)
described in Theorem (1| has been described by Furioli, Lemarié-Rieusset and
Terraneo in 2000 [I3],[16] in the context of uniformly locally square integrable
solutions. See the paper by Dubois [I1], as well.

We list here a few examples to be found in the litterature :

1. Solutions in L? : in 1934, Leray [I8] studied the Navier-Stokes problem
(NS) with an initial data ug € L? and a forcing tensor F € L?L2. He
then obtained a solution u € L*L?N L2H'. Remark that this solution
is automatically a solution of the mild formulation of the Navier-Stokes
equations (MNS). Leray’s construction by mollification provides suit-
able solutions.

2. Solutions in L2 . : in 1999, Lemarié-Rieusset [I5, [16] studied the
Navier-Stokes problem (MNS) with an initial data uy € L? . (and,

later in [17], a forcing tensor F € (LZL2),0c). He obtained (local in
time) existence of a suitable solution u on a small strip (0,7,) x R?
such that

sup sup / lu(t, z)|* do < +o0
zo€R? 0<t<To J B(xo,1)

and
To
sup / / IV ®@u(t,z)|* dr < +oo.
0 B(zo,1)

moERd

Remark that we have u € L%((0,Tp), L*(R, W dz)) but u does

not belong to L2((0,Ty), L*(R?, m dz)); thus, in this setting, prob-
lems (NS) and (MNS) are not equivalent.

Various reformulations of local Leray solutions in L2, . have been pro-

vided, such as Kikuchi and Seregin in 2007 [14] or Bradshaw and Tsai
in 2019 [4]. The formulas proposed for the pressure, however, are ac-
tually equivalent, as they all imply that u is solution to the (MNS)
problem.

14



In the case of dimension d = 2, Basson [1] proved in 2006 that the
solution u is indeed global (1.e. = T) and that, moreover, the
solution is unique.

. Solutions in a weighted Lebesgue space : in 2019, Fernandez-Dalgo
and Lemarié-Rieusset [9] considerered data uy € L*(R* w,dz) and
F € L*((0,+00), L*(R® w, dr)) with 0 < v < 2. They proved (global
in time) existence of a suitable solution u such that, for all Ty < +oo0,

sup /|u(t,x)|2w7(a:) dr < 400

0<t<To

and .
0
/ /|V ®u(t, )|* w,(z), dr < +oo.
0

[Of course, for such solutions, (NS) and (MNS) are equivalent.] They
showed that, for % < v < 2, this frame of work is well adapted to the
study of discretely self-similar solutions with locally L? initial value,
providing a new proof of the results of Chae and Wolf in 2018 [7] and
of Bradshaw and Tsai in 2019 [3].

. Homogeneous Statistical Solutions : in 1977, Vishik and Fursikov [19]
considered the (MNS) problem with a random initial value ug(w).
The statistics of the initial distributions were supposed to be invari-

ant though translation of the arguments of ug : for every Borel subset
B of L2 _(R?) and every zy € R3,

loc
Pr(ug(- — zg) € A) = Pr(ug € A).
Another assumption was that uy has a bounded mean energy density :
. |110|2 dx
J<1 4

Then
Pr(ug € L? and u # 0) = 0

while, for any ¢ > 0,

1
PT(/ |UOPW dx < —|—OO) = 1.

In [20], they constructed a solution u(¢,z,w) that solved the Navier—
Stokes equation for almost every initial value ug(w), and the solution

belonged almost surely to L{® L3 (peee dz) with Vou € L L2 (qyppee do)-

1+\x 1+|x|)

15



In 2006, Basson [2] gave a precise description of the pressure in those
equations (which is equivalent to our description through the Leray
projection operator) and proved the suitability of the solutions.

7 The space B:.

Instead of dealing with weighted Lebesgue spaces, one may deal with a kind
of local Morrey space, the space Bg.

Definition 7.1 For~y > 0, define w.(z) = (1+\x| and L3, = LP(R?, w,(z) dx).
For1 < p < 400, we denote BY the Banach space of allfunctzons ue Lt
such that :

loc

1
|ullge = sup( / lulP dz)Y? < 4o0.
7 R JB(o,r)

Similarly, BYLP(0,T) is the Banach space of all functions u C (LyLE)ioc

such that
1 7 ,
1wl g2 e o,y = sup (E/o /|u|p> dx ds.

Lemma 7.1 Lety > 0 and v < 6 < 400, we have the continuous embedding
Ly, — B§ — BP — LF ., where B];O C BP is the subspace of all functions

we

u € BY such that hmR_>+oo 7 fB(o,R) |u(x)|P dz = 0.

Proof. Let u € L, . We verify easily that [ul|pr < 27/pHu||ng and we

see that
1 julP (14 [z|)”

— upd:v:/
R |z|§R| | wi<r (L+[z)7 RY

converges to zero when R — +o0o by dominated convergence, so Lf, — Bl
To demonstrate the other part, we estimate

|ul? / CfulP / |ul?
———dx = dm + ———dx
/ (1+ |z])? |lz|<1 ( + |o])° Z n— 1<|z\<2n (1+ |z])?

neN

1
< ul? dx + P EE—— / ul? dx
/|x|<1 i Z (1+2771)0 2n-1< |z <2n [
< |ulP dx + ¢ / |ulP dx
L > o

neN n— 1§‘$|§2"

1
1+c¢ ul? dx,
> g

neN

dx
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thus, BY C L . o
Remark : Similarly, for all § > ~, BELP(0,T) C LP((0,T), L%, ).
Proposition 7.1 The space BY can be obtained by interpolation,

BY =[LP, L7, ]%
for all 0 < v < < o0, and the norms

[ N B

,00

are equivalent.

Proof. Let f € BY. For A < 1, we write fo = 0 and f; = f, then we
have f = fo+ fi and || fi]|rz, < CA%AHf”Bs-
For A > 1, welet R = A% > 1. We write fy, = fliz<r and fi = fl,>g,
then . .
[ follp < Cllfll sz R? = CA%| f[| gz

and

Hf1|p_2/ Widx

en J2n 1R<|a;|<2nR (1 + |2

nGN
- OA%-”PHfugp
Thus, BY < [LP, L, |5
Let f € [LP, LP, ] 00) then there exist ¢ > 0 such that for all A > 0, there
exist fo € L” and f1 6 Lt so that f = fo+ fi,

Ifolly < cA%and || fillp, < A
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For 7 € N we take A = 2%, then

1
o [fIP dz

27 Jiz<2s

1 1
297 ) \z1<2i 297 J\gl<2s

C AP 2’“5/ LAl
Py = dz + C ————d
<237Hf I+ 247 /|$|<1 (1+ |z|)? Z 27 Jorrcpay<an (14 ]2])° !

1 -
<0 (g5l -+ 2Rl )
< O//

|fIPdx <

which implies sup;cy 57 f
+00.

|fIPdz < 400, 50 supg>, va

|z| <27 |z|<R

Thus, we can see that the local Morrey spaces B are very close to
the weighted Lebesgue spaces L§, . Indeed, the methods and results of
Fernandez-Dalgo and Lemarié—Rieusset [9] can be easily extended to the
setting of local Morrey spaces in dimension d = 2 or d = 3 : considering
data ug € B2(R?) and F € (B2L?)(0,T)(R?) with 0 < v < 2, one gets (local
in time) existence of a suitable solution u for the (MNS) system on a small
strip (0,Tp) x R? such that u € L>*((0,7p), B2) and V @ u € (B2L?)(0, Ty).

The case of v = 2 deserves some comments. In the case d = 3, the results
is slightly more general than the results in [9], as the class B3 is larger
than the space Lfm. Equations in B2 have been very recently discussed by
Bradshaw, Kukavica and Tsai [5]. The case d = 2 is more intricate. Indeed,
while the Leray projection operator is bounded on B3(R?) (by interpolation
with L? and L2, with 2 < § < 3, the Riesz transforms being bounded on L,
by the theory of Muckenhoupt weights), this is no longer the fact on B3(R?).
Thus, one must be careful in the handling of the pressure. This has been
done by Basson in his Ph. D. thesis in 2006 [I].

Local Morrey spaces B3 occur naturally in the setting of homogeneous
statistical solutions. By using an ergodicity argument, Dostoglou [10] proved
in 2001 that, under the assumptions of Vishik and Fursikov [19], we have

Pr(uy(.,w) € B3(R%)) = 1.

Thus, the solutions of Vishik and Fursikov live in a smaller space than Lwd+
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