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Introduction

In the context of the Cauchy initial value problem for Navier-Stokes equations on R d (with d = 2 or d = 3)

   ∂ t u = ∆u -(u • ∇)u -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
an important problem is to propose a formula for the gradient of the pressure, which is an auxiliary unknown (usually interpreted as a Lagrange multiplier for the constraint of incompressibility).

As we shall not assume differentiability of u in our computations, it is better to write the equations as

(N S)    ∂ t u = ∆u -∇ • (u ⊗ u) -∇p + ∇ • F ∇ • u = 0, u(0, .) = u 0
Taking the Laplacian of equations (NS), since we have for a vector field w the identity

-∆w = ∇ ∧ (∇ ∧ w) -∇(∇ • w)
we get the equations

∂ t ∆u = ∆ 2 u + ∇ ∧ (∇ ∧ (∇ • (u ⊗ u -F))) and 0 = -∆∇p -∇(∇ • (∇ • (u ⊗ u -F)) = -∆∇p -∇( 1≤i,j≤d ∂ i ∂ j (u i u j -F i,j )).
Thus, the rotational-free unknown ∇p obeys a Poisson equation. If G d is the fundamental solution of the operator -∆ :

G 2 = 1 2π ln( 1 |x| ), G 3 = 1 4π|x|
(which satisifies -∆G d = δ), we formally have

∇p = G d * ∇( 1≤i,j≤d ∂ i ∂ j (u i u j -F i,j )) + H (1) 
with ∆H = 0. In the litterature, one usually finds the assumption that ∇p vanishes at infinity and this is read as H = 0. Equivalently, this is read as

∂ t u = G d * ∇ ∧ (∇ ∧ ∂ t u);
the operator

P = G d * ∇ ∧ (∇ ∧ .)
is called the Leray projection operator and the decomposition (when justified )

w = Pw + G d * ∇(∇ • w)
the Hodge decomposition of the vector field w.

Hence, an important issue when dealing with the Navier-Stokes equations is to study whether in formula [START_REF] Basson | Solutions spatialement homogènes adaptées des équations de Navier-Stokes[END_REF] the first half of the right-hand term is welldefined, and if so which values the second half (the harmonic part H) may have.

In order to give some meaning to the formal convolution G d * ∇∂ i ∂ j (u i u j ) or to (∇∂ i ∂ j G d ) * (u i u j ), we should require u i to be locally L 2 t L 2 x (in order to define u i u j as a distribution) and to have small increase at infinity, since the distribution ∇∂ i ∂ j G has small decay at infinity (it belongs to L 1 ∩ L ∞ far from the origin and is O(|x| -(d+1) )). Thus, we will focus on solutions u that belong to L 2 ((0, T ), L 2 (R d , w d+1 dx)) where

w γ (x) = (1 + |x|) -γ .
We shall recall various examples (from recent or older litterature) of solutions belonging to the space L 2 ((0, T ), L 2 (R d , w γ dx)) (with γ ∈ {d, d+1}). As F i,j plays a role similar to u i u j , we shall assume that F ∈ L 1 ((0, T ), L 1 (R d , w γ dx)).

Main results.

First, we precise the meaning of ∇p in equations (NS) : Lemma 1.1 Consider the dimension d ∈ {2, 3} and γ ≥ 0. Let 0 < T < +∞. Let F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤d such that F belongs to L 1 ((0, T ), L 1 (R d , w γ dx)), and let u be a vector field u(t, x) = (u i (t, x)) 1≤i≤d such that u belongs to L 2 ((0, T ), L 2 (R d , w γ dx)) and ∇ • u = 0. Define the distribution S by

S = ∆u -∇ • (u ⊗ u -F) -∂ t u.
Then the following assertions are equivalent : (A) S is curl-free : ∇ ∧ S = 0. (B) There exists a distribution p ∈ D ((0, T ) × R d ) such that S = ∇p.

Theorem 1 Consider the dimension d ∈ {2, 3}. Let 0 < T < +∞. Let F be a tensor F(t, x) = (F i,j (t, x)) 1≤i,j≤d such that F belongs to L 1 ((0, T ), L 1 (R d , w d+1 dx)).
Let u be a solution of the following problem

   ∂ t u = ∆u -∇ • (u ⊗ u) -S + ∇ • F ∇ • u = 0, ∇ ∧ S = 0, (2) 
such that : u belongs to L 2 ((0, T ), L 2 w d+1 (R d )), and S belongs to D ((0, T ) × R d ).

Let us choose ϕ ∈ D(R d ) such that ϕ(x) = 1 on a neighborhood of 0 and define

A i,j,ϕ = (1 -ϕ)∂ i ∂ j G d .
Then, there exists g(t) ∈ L 1 ((0, T )) such that

S = ∇p ϕ + ∂ t g with p ϕ = i,j (ϕ∂ i ∂ j G d ) * (u i u j -F i,j ) + i,j (A i,j,ϕ (x -y) -A i,j,ϕ (-y))(u i (t, y)u j (t, y) -F i,j (t, y)) dy.

Moreover,

• ∇p ϕ does not depend on the choice of ϕ : if we change ϕ in ψ, then

p ϕ (t, x)-p ψ (t, x) = i,j (A i,j,ψ (-y)-A i,j,ϕ (-y))(u i (t, y)u j (t, y)-F i,j (t, y)) dy.
• ∇p ϕ is the unique solution of the Poisson problem

∆w = -∇(∇ • (∇ • (u ⊗ u -F))
with lim

τ →+∞ e τ ∆ w = 0 in D .

• if F belongs more precisely to L 1 ((0, T ), L 1 w d (R d )) and u belongs to L 2 ((0, T ), L 2 w d (R d )), then g = 0 and ∇p ϕ = ∇p 0 where

p 0 = i,j (ϕ∂ i ∂ j G d ) * (u i u j -F i,j ) + i,j ((1 -ϕ)∂ i ∂ j G d ) * (u i u j -F i,j ).
(p 0 does not actually depend on ϕ and could have been defined as

p 0 = i,j (∂ i ∂ j G d ) * (u i u j -F i,j ).)
When F = 0, the case g = 0 can easily be reduced to a change of referential, due to the extended Galilean invariance of the Navier-Stokes equations :

Theorem 2 Consider the dimension d ∈ {2, 3}. Let 0 < T < +∞. Let u be a solution of the following problem

   ∂ t u = ∆u -∇ • (u ⊗ u) -S ∇ • u = 0, ∇ ∧ S = 0, u(0, x) = u 0 (x) (3) such that : u belongs to L 2 ((0, T ), L 2 w d+1 (R d ))
, and S belongs to D ((0, T ) × R d ).

Let us choose ϕ ∈ D(R d ) such that ϕ(x) = 1 on a neighborhood of 0 and define

A i,j,ϕ = (1 -ϕ)∂ i ∂ j G d .
We decompose S into

S = ∇p ϕ + ∂ t g with p ϕ = i,j (ϕ∂ i ∂ j G d ) * (u i u j ) + i,j
(A i,j,ϕ (x -y) -A i,j,ϕ (-y))(u i (t, y)u j (t, y)) dy and g(t) ∈ L 1 ((0, T )).

Let us define

E(t) = t 0 g(λ)dλ and w(t, x) = u(t, x -E(t)) + g(t).
Then, w is a solution of the Navier-Stokes problem

               ∂ t w = ∆w -∇ • (w ⊗ w) -∇q ϕ ∇ • w = 0, w(0, x) = u 0 (x) q ϕ = i,j (ϕ∂ i ∂ j G d ) * (w i w j ) + i,j (A i,j,ϕ (x -y) -A i,j,ϕ (-y))(w i (t, y)w j (t, y)) dy (4) 
2 Curl-free vector fields.

In this section we prove Lemma 1.1 with simple arguments :

Proof. We take a partition of unity on (0, T )

j∈Z ω j = 1
with ω j supported in (2 j-2 T, 2 j T ) for j < 0, in (T /4, 3T /4) for j = 0 and in (T -2 -j T, T -2 -(j+2) T ) for j > 1. We define

V j = -ω j u + t 0 ω j ∆u -ω j ∇ • (u ⊗ u -F) + (∂ t ω j )u ds.
Then V j is a sum of the form A + ∆B + ∇ • C + D with A, B, C and D in L 1 ((0, T ), L 1 (R d , w d+1 dx)); thus, by Fubini's theorem, we may see it as a time-dependent tempered distribution. Moreover, ∂ t V j = ω j S, V j is equal to 0 for t in a neighbourhood of 0, and ∇ ∧ V j = 0. Moreover, S = j∈Z ∂ t V j . We choose Φ ∈ S(R d ) such that the Fourier transform of Φ is compactly supported and is equal to 1 in the neighbourhood of 0. Then Φ * V j is well-defined and ∇ ∧ (Φ * V j ) = 0. We define

X j = Φ * V j and Y j = V j -X j .
We have

Y j = ∇ 1 ∆ ∇ • Y j
and (due to Poincaré's lemma)

X j = ∇( 1 0 x • X j (t, λx)dλ)
We find S = ∇p with

p = ∂ t j∈Z ( 1 0 x • X j (t, λx)dλ + 1 ∆ ∇ • Y j ). 3 The Poisson problem -∆U = ∂ k ∂ i ∂ j h
We first consider a simple Poisson problem :

Proposition 3.1 Let h ∈ L 1 (R d , (1 + |x|) -(d+1) dx) then U = U 1 + U 2 = (∂ k (ϕ∂ i ∂ j G d )) * h + ∂ k ((1 -ϕ)∂ i ∂ j G d ) * h. is a distribution such that U 2 belongs to L 1 (R d , (1 + |x|) -(d+1) dx) and U is a solution of the problem -∆U = ∂ k ∂ i ∂ j h. (5) 
More precisely, U is the unique solution in S such that lim τ →0 e τ ∆ U = 0 in S .

Proof. We may write ∂ j G d as

∂ j G d = - +∞ 0 ∂ j W t dt where W t (x) is the heat kernel W t (x) = (4πt) -d 2 e -|x| 2 4t
, so that on R d \ {0}, we have

∂ j G d = c d x i |x| d with c d = 1 2(4π) d/2 +∞ 0 e -1 4u du u d+2 2
The first part defining U ,

U 1 = (∂ k (ϕ∂ i ∂ j G d )) * h, is well defined, since ∂ k (ϕ∂ i ∂ j G d ) is a compactly supported distribution. To control U 2 , we write 1 (1 + |x|) d+1 |∂ k (1 -ϕ)∂ i ∂ j G d (x -y)||h(y)|dydx ≤ 1 (1 + |x|) d+1 C (1 + |x -y|) d+1 |h(y)|dydx ≤ C 1 (1 + |y|) d+1 |h(y)|dy since 1 (1 + |x|) d+1 1 (1 + |x -y|) d+1 dx ≤ |x|> |y| 2 1 (1 + |x|) d+1 1 (1 + |x -y|) d+1 dx + |x-y|> |y| 2 1 (1 + |x|) d+1 1 (1 + |x -y|) d+1 dx ≤ 2 d+1 (1 + |y|) d+1 1 (1 + |x -y|) d+1 dx + 2 d+1 (1 + |y|) d+1 1 (1 + |x|) d+1 dx ≤ C 1 (1 + |y|) d+1 .
Now that we know that U is well defined, we may compute -∆U . -∆U 1 is equal to

(-∆∂ k (ϕ∂ i ∂ j G d )) * h = ∂ k (ϕ∂ i ∂ j h)-∂ k ((∆ϕ)∂ i ∂ j G d ) * h-2 1≤l≤d ∂ k ((∂ l ϕ)∂ l ∂ i ∂ j G d ) * h.
For computing -∆U 2 , we see that we can differentiate under the integration sign and find

-∆U 2 == ∂ k ((1-ϕ)∂ i ∂ j h)+∂ k ((∆ϕ)∂ i ∂ j G d ) * h+2 1≤l≤d ∂ k ((∂ l ϕ)∂ l ∂ i ∂ j G d ) * h.
Thus, U is a solution of the Poisson problem.

Computing e τ ∆ U , we find that

e τ ∆ U = (e τ ∆ ∂ k ∂ i ∂ j G d ) * h and thus |e τ ∆ U (x)| ≤ C 1 ( √ τ + |x -y|) d+1 |h(y)| dy.
By the dominated convergence theorem, we get that lim τ →0 e τ ∆ U = 0 in L 1 (R d , (1 + |x|) -(d+1) dx). If V is another solution of the same Poisson problem with V ∈ S and lim τ →0 e τ ∆ V = 0 in S , then ∆(U -V ) = 0 and U -V ∈ S , so that U -V is a polynomial; with the assumption that lim τ →0 e τ ∆ (U -V ) = 0, we find that this polynomial is equal to 0.

If we have better integrability on h, then of course we have better integrability of U 2 . For instance, we have :

Proposition 3.2 Let h ∈ L 1 (R d , (1 + |x|) -d dx)) then U 2 = ∂ k ((1 -ϕ)∂ i ∂ j G d ) * h. belongs to L 1 (R d , (1 + |x|) -d )).

Proof.

We write

1 (1 + |x|) d |∂ k ((1 -ϕ)∂ i ∂ j G d (x -y))||h(y)| dy dx ≤ C 1 (1 + |x|) d 1 (1 + |x -y|) d+1 |h(y)| dy dx.
For |y| < 1, we have

1 (1 + |x|) d+1 1 (1 + |x -y|) d+1 dx ≤ 1 (1 + |x|) d+1 dx ≤ C and for |y| > 1, as the real number |x|< 1 2 1 |x| d-1 1 |x-y |y| | 2 dx
is finite and does not depend on y, we can write

1 (1 + |x|) d 1 (1 + |x -y|) d+1 dx ≤ |x|> |y| 2 1 (1 + |x|) d 1 (1 + |x -y|) d+1 dx + |x|< |y| 2 1 (1 + |x|) d 1 (1 + |x -y|) d+1 dx ≤ 2 d (1 + |y|) d 1 (1 + |x -y|) d+1 dx + 2 d-1 (1 + |y|) d-1 |x|< |y| 2 1 |x| d-1 1 |x -y| 2 dx ≤ C 1 (1 + |y|) d + C 1 (1 + |y|) d-1 1 |y| |x|< 1 2 1 |x| d-1 1 |x -y |y| | 2 dx ≤ C 1 (1 + |y|) d .
This concludes the proof.

The Poisson problem

-∆V = ∂ i ∂ j h Proposition 4.1 Let h ∈ L 1 ((1 + |x|) -d-1 dx) and A ϕ = (1 -ϕ)∂ i ∂ j G d then V = V 1 + V 2 = (ϕ∂ i ∂ j G d ) * h + (A ϕ (x -y) -A ϕ (-y))h(y)dy is a distribution such that V 2 belongs to L 1 ((1 + |x|) -γ ), for γ > d + 1, and V is a solution of the problem -∆V = ∂ i ∂ j h. (6) 
Proof. We know that V 1 is well defined since ϕ∂ i ∂ j G d is a supported compactly distribution, and we will verify that V 2 is well defined.

We have

1 (1 + |x|) γ |A ϕ (x -y) -A ϕ (-y)|dx ≤ C A ϕ L ∞ 1 (1 + |x|) γ dx
For |y| > 1, we have by the mean value inequality

|x|< |y| 2 1 (1 + |x|) γ |A ϕ (x -y) -A ϕ (-y)|dx ≤ C 1 |y| d+1 |x|< y 2 |x| (1 + |x|) γ dx
and we can control the other part as follows

|x|> |y| 2 1 (1 + |x|) γ |A ϕ (-y)|dx ≤ C 1 |y| d |x|> y 2 1 (|x|) γ ≤ C 1 |y| γ and for ε > 0 such that γ -ε ≥ d + 1, we have |x|> |y| 2 1 (1 + |x|) γ |A ϕ (x -y)|dx ≤ C |x|> |y| 2 1 |x| γ 1 (1 + |x -y|) d dx ≤ C |x|> |y| 2 1 |x| γ 1 |x -y| d-ε dx ≤ C 1 |y| d+1 |x|> 1 2 1 |x| γ 1 |x -y |y| | d-ε dx ≤ C 1 |y| d .
5 Proof of Theorems 1 and 2.

We may now prove Theorem 1 :

Proof. Taking the divergence of

∂ t u = ∆u -∇ • (u ⊗ u) -S + ∇ • F, we obtain - i,j ∂ i ∂ j (u i u j ) + i,j ∂ i ∂ j F i,j -∇ • S = 0 and -∆S = ∇( i,j ∂ i ∂ j (u i u j -F i,j )).
We write h i,j = u i u j -F i,j , and

A ϕ = (1 -ϕ)∂ i ∂ j G d . By Proposition 4.1, we can define p ϕ = i,j (ϕ∂ i ∂ j G d ) * h i,j + i,j (A i,j,ϕ (x -y) -A i,jϕ (-y))h i,j (y)dy and U = U 1 + U 2 = ∇ i,j (ϕ∂ i ∂ j G d ) * h i,j + ∇ i,j ((1 -ϕ)∂ i ∂ j G d ) * h i,j = ∇p ϕ .
Let Ũ = S -U . First, we remark that ∆U = ∆S so that ∆ Ũ = 0, hence Ũ is harmonic in the space variable.

On the other hand, for a test function α ∈ D(R) such that α(t) = 0 for all |t| ≥ ε, and a test function β ∈ D(R 3 ), and for t ∈ (ε, T -ε), we have

Ũ (t) * t,x (α ⊗ β) =(u * (-∂ t α ⊗ β + α ⊗ ∆β) + (-u ⊗ u + F) • * (α ⊗ ∇β))(t, •) - i,j ((h ij ) * (∇(ϕ∂ i ∂ j G d ) * (α ⊗ β)))(t, •) -(U 2 * (α ⊗ β))(t, •).
By Proposition 3.1, we conclude that Ũ * (α ⊗ β)(t, .) belongs to the space

L 1 (R d , (1 + |x| -d-1
). Thus, it is a tempered distribution; as it is harmonic, it must be polynomial. The integrability in L 1 (R d , (1 + |x| -d-1 ) implies that this polynomial is constant.

If F belongs more precisely to L 1 ((0, T ),

L 1 w d (R d )) and u belongs to L 2 ((0, T ), L 2 w d (R d ))
, we find that this polynomial belongs to L 1 (R d , w d dx), hence is equal to 0.

Then, using the identity approximation Φ ε = 1 ε 4 α( t ε )β( x ε ) and letting go to 0, we obtain a similar result for Ũ . Thus S = ∇p ϕ + f (t), with f (t) = 0 if F belongs to L 1 ((0, T ), L 1 w d (R d )) and u belongs to L 2 ((0, T ), L 2 w d (R d )). As f does not depend on x, we may take a function β ∈ D(R d ) with β dx = 1 and write f = f * x β; we find that

f (t) = ∂ t (u 0 * β -u * β + t 0 u * ∆β -(u ⊗ u -F) • * ∇β -p ϕ * ∇β ds) = ∂ t g.
As ∂ t ∂ j g = ∂ j f = 0 and ∂ j g(0, .) = 0, we find that g depends only on t; moreover, the formula giving g proves that g ∈ L 1 ((0, T )).

The proof of Theorem 2 is classical and the result is known as the extended Galilean invariance of the Navier-Stokes equations :

Proof. Let us suppose that

∂ t u = ∆u -(u • ∇)u -∇p ϕ - d dt g(t),
with g ∈ L 1 ((0, T )). We define

E(t) = t 0 g(λ)dλ and w = u(t, x -E(t)) + g(t).
We have

∂ t w =∂ t u(t, x -E(t)) -g(t) • ∇u(t, x -E(t)) + d dt g(t) =∆u(t, x -E(t)) -[(u • ∇)u](t, x -E(t)) -∇p ϕ (t, x -E(t)) - d dt g(t) -g(t) • ∇u(t, x -E(t)) + d dt g(t) =∆w -(w • ∇)w -∇p ϕ (t, x -E(t)).
If we define q ϕ (t, x) = p ϕ (t, x -E(t)), we find that we have

q ϕ = i,j (ϕ∂ i ∂ j G d ) * (w i w j )+ i,j
(A i,j,ϕ (x-y)-A i,j,ϕ (-y))(w i (t, y)w j (t, y)) dy.

The theorem is proved.

Applications

A consequence of Proposition 3.1 is that we may define the Leray projection operator on the divergence of tensors that belong to L 1 ((0, T ), L 1 (R d , w d+1 dx)) : Definition 6.1 Let H ∈ L 1 ((0, T ), L 1 (R d , w d+1 dx)) and w = ∇ • H. The Leray projection P(w) of w on solenoidal vector fields is defined by

Pw = w -∇p ϕ
where ∇p ϕ is the unique solution of

-∆∇p = ∇(∇ • w) such that lim τ →+∞ e τ ∆ ∇p = 0.
A special form of the Navier-Stokes equations is then given by

(M N S) ∂ t u = ∆u -P∇ • (u ⊗ u -F), u(0, .) = u 0 .
This leads to the integro-differential equation

u = e t∆ u 0 - t 0 e (t-s)∆ P∇ • (u ⊗ u -F) ds.
The kernel of the convolution operator e (t-s)∆ P∇• is called the Oseen kernel; its study is the core of the method of mild solutions of Kato and Fujita [START_REF] Fujita | On the non-stationary Navier-Stokes system[END_REF]. Thus, we will call equations (MNS) a mild formulation of the Navier-Stokes equations.

The mild formulation together with the local Leray energy inequality has been as well a key tool for extending Leray's theory of weak solutions in L 2 to the setting of weak solutions with infinite energy. We may propose a general definition of suitable Leray-type weak solutions :

Definition 6.2 (Suitable Leray-type solution) Let F ∈ L 2 ((0, T ), L 2 (R d , 1 (1+|x|) d+1 )) and u 0 ∈ L 2 (R d , 1 (1+|x|) d+1 ) with ∇ • u 0 = 0. We consider the Navier-Stokes problem on (0, T ) × R d : ∂ t u =∆u -P(u ⊗ u -F), ∇ • u = 0, u(0, .) = u 0 .
A suitable Leray-type solution u of the Navier-Stokes equations is a vector field u defined on (0, T ) × R d such that :

• u is locally L 2 t H 1 x on (0, T ) × R d • sup 0<t<T |u(t, x)| 2 1 (1+|x|) d+1 dx < +∞ • (0,T )×R d |∇ ⊗ u(t, x)| 2 1 (1+|x|) d+1 dx dt < +∞ • the application t ∈ [0, T ) → u(t, x) • w(x)
dx is continuous for every smooth compactly supported vector field w

• for every compact subset K of R d , lim t→0 K |u(t, x) -u 0 (x)| 2 dx = 0.
• defining p ϕ as (the) solution of -∆p ϕ = i,j ∂ i ∂ j (u i u j -F i,j ) given by Proposition 4.1, u is suitable in the sense of Caffarelli, Kohn and Nirenberg : there exists a non-negative locally bounded Borel measure µ on (0, T ) × R d such that

∂ t ( |u| 2 2 ) = ∆( |u| 2 2 ) -|∇ ⊗ u| 2 -∇ • (( |u| 2 2 + p ϕ )u) + u • (∇ • F) -µ
Remarks : a) With those hypotheses, p ϕ belongs locally to L 3/2 t,x and u belongs locally to L 3 t,x so that the distribution ( |u| 2 2 + p ϕ )u is well-defined. b) Suitability is a local assumption. It has been introduced by Caffarelli, Kohn and Nirenberg in 1982 [START_REF] Caffarelli | Partial regularity of suitable weak solutions of the Navier-Stokes equations[END_REF] to get estimates on partial regularity for weak Leray solutions. If we consider a solution of the Navier-Stokes equations on a small domain with no specifications on the behaviour of u at the boundary, the estimates on the pressure (and the Leray projection operator) are no longer available. However, Wolf described in 2017 [START_REF] Wolf | On the local pressure of the Navier-Stokes equations and related systems[END_REF] a local decomposition of the pressure into a term similar to the Leray projection of ∇ • (u ⊗ u) and a harmonic term; he could generalize the notion of suitability to this new description of the pressure. On the equivalence of various notions of suitability, see the paper by Chamorro, Lemarié-Rieusset and Mayoufi [START_REF] Chamorro | The role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations[END_REF]. c) The relationship between the system (NS) and its mild formulation (MNS) described in Theorem 1 has been described by Furioli, Lemarié-Rieusset and Terraneo in 2000 [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces limites pour Navier-Stokes[END_REF][START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] in the context of uniformly locally square integrable solutions. See the paper by Dubois [START_REF] Dubois | What is a solution to the Navier-Stokes equations?[END_REF], as well.

We list here a few examples to be found in the litterature :

1. Solutions in L 2 : in 1934, Leray [START_REF] Leray | Essai sur le mouvement d'un fluide visqueux emplissant l'espace[END_REF] studied the Navier-Stokes problem (NS) with an initial data u 0 ∈ L 2 and a forcing tensor

F ∈ L 2 t L 2 x . He then obtained a solution u ∈ L ∞ L 2 ∩ L 2 Ḣ1 .
Remark that this solution is automatically a solution of the mild formulation of the Navier-Stokes equations (MNS). Leray's construction by mollification provides suitable solutions.

Solutions in L 2

uloc : in 1999, Lemarié-Rieusset [START_REF] Lemarié-Rieusset | Solutions faibles d'énergie infinie pour les équations de Navier-Stokes dans R 3[END_REF][START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] studied the Navier-Stokes problem (MNS) with an initial data u 0 ∈ L 2 uloc (and, later in [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF], a forcing tensor F ∈ (L 2 t L 2 x ) uloc ). He obtained (local in time) existence of a suitable solution u on a small strip (0, T 0 ) × R d such that sup

x 0 ∈R d sup 0<t<T 0 B(x 0 ,1) |u(t, x)| 2 dx < +∞ and sup x 0 ∈R d T 0 0 B(x 0 ,1) |∇ ⊗ u(t, x)| 2 dx < +∞. Remark that we have u ∈ L 2 ((0, T 0 ), L 2 (R d , 1 (1+|x|) d+1 dx)) but u does not belong to L 2 ((0, T 0 ), L 2 (R d , 1 (1+|x|) d dx))
; thus, in this setting, problems (NS) and (MNS) are not equivalent.

Various reformulations of local Leray solutions in L 2

uloc have been provided, such as Kikuchi and Seregin in 2007 [START_REF] Kikuchi | Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality[END_REF] or Bradshaw and Tsai in 2019 [START_REF] Bradshaw | Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations[END_REF]. The formulas proposed for the pressure, however, are actually equivalent, as they all imply that u is solution to the (MNS) problem.

In the case of dimension d = 2, Basson [START_REF] Basson | Solutions spatialement homogènes adaptées des équations de Navier-Stokes[END_REF] proved in 2006 that the solution u is indeed global (i.e. T 0 = T ) and that, moreover, the solution is unique. [Of course, for such solutions, (NS) and (MNS) are equivalent.] They showed that, for 4 3 < γ ≤ 2, this frame of work is well adapted to the study of discretely self-similar solutions with locally L 2 initial value, providing a new proof of the results of Chae and Wolf in 2018 [START_REF] Chae | Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in L 2 loc (R 3 )[END_REF] and of Bradshaw and Tsai in 2019 [START_REF] Bradshaw | Discretely self-similar solutions to the Navier-Stokes equations with data in L 2 loc , to appear in Analysis and PDE[END_REF]. [START_REF] Bradshaw | Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations[END_REF]. Homogeneous Statistical Solutions : in 1977, Vishik and Fursikov [START_REF] Vishik | Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier-Stokes[END_REF] considered the (MNS) problem with a random initial value u 0 (ω).

The statistics of the initial distributions were supposed to be invariant though translation of the arguments of u 0 : for every Borel subset B of L 2 loc (R 3 ) and every x 0 ∈ R 3 , P r(u 0 (• -x 0 ) ∈ A) = P r(u 0 ∈ A).

Another assumption was that u 0 has a bounded mean energy density :

e 0 = E |x|≤1 |u 0 | 2 dx |x|≤1 dx < +∞.
Then P r(u 0 ∈ L 2 and u = 0) = 0 while, for any > 0,

P r( |u 0 | 2 1 (1 + |x|) 3+ dx < +∞) = 1.
In [START_REF] Vishik | Mathematical Problems of Statistical Hydromechanics[END_REF], they constructed a solution u(t, x, ω) that solved the Navier-Stokes equation for almost every initial value u 0 (ω), and the solution belonged almost surely to

L ∞ t L 2 x ( 1 (1+|x|) 3+ dx) with ∇⊗u ∈ L 2 t L 2 x ( 1 (1+|x|) 3+ dx).
In 2006, Basson [START_REF] Basson | Homogeneous Statistical Solutions and Local Energy Inequality for 3D Navier-Stokes Equations[END_REF] gave a precise description of the pressure in those equations (which is equivalent to our description through the Leray projection operator) and proved the suitability of the solutions.

7 The space B 2 γ .

Instead of dealing with weighted Lebesgue spaces, one may deal with a kind of local Morrey space, the space B 2 γ .

Definition 7.1 For γ ≥ 0, define w γ (x) = 1 (1+|x|) γ and L p wγ = L p (R d , w γ (x) dx). For 1 ≤ p < +∞, we denote B p γ the Banach space of all functions u ∈ L p loc such that : 

u B p γ = sup R≥1 ( 1 R γ B(0,R) |u| p dx)
p (1 + |x|) δ dx = |x|≤1 |u| p (1 + |x|) δ dx + n∈N 2 n-1 ≤|x|≤2 n |u| p (1 + |x|) δ dx ≤ |x|≤1 |u| p dx + n∈N 1 (1 + 2 n-1 ) δ 2 n-1 ≤|x|≤2 n |u| p dx ≤ |x|≤1 |u| p dx + c n∈N 1 2 δn 2 n-1 ≤|x|≤2 n |u| p dx ≤ (1 + c n∈N 1 2 (δ-γ)n ) sup R≥1 1 R γ |x|≤R |u| p dx, thus, B p γ ⊂ L p w δ .
Remark : Similarly, for all δ > γ, B p γ L p (0, T ) ⊂ L p ((0, T ), L p w δ ).

Proposition 7.1 The space B p γ can be obtained by interpolation,

B p γ = [L p , L p w δ ] γ δ ,∞
for all 0 < γ < δ < ∞, and the norms

• B p γ and • [L p ,L p w δ ] γ δ ,∞
are equivalent.

Proof. Let f ∈ B p γ . For A < 1, we write f 0 = 0 and

f 1 = f , then we have f = f 0 + f 1 and f 1 L p w δ ≤ CA γ δ -1 f B p γ . For A > 1, we let R = A p δ > 1. We write f 0 = f 1 |x|≤R and f 1 = f 1 |x|>R , then f 0 p ≤ C f B p γ R γ p = CA γ δ f B p γ and f 1 p p = n∈N 2 n-1 R≤|x|≤2 n R |u| p (1 + |x|) δ dx ≤ CR γ-δ n∈N 1 2 (δ-γ)j f p B p γ = CA ( γ δ -1)p f p B p γ Thus, B p γ → [L p , L p w δ ] γ δ ,∞ . Let f ∈ [L p , L p w δ ] γ δ ,∞
, then there exist c > 0 such that for all A > 0, there exist f 0 ∈ L p and f 1 ∈ L p w δ so that f = f 0 + f 1 , γ (R d ) and F ∈ (B 2 γ L 2 )(0, T )(R d ) with 0 < γ ≤ 2, one gets (local in time) existence of a suitable solution u for the (MNS) system on a small strip (0, T 0 ) × R d such that u ∈ L ∞ ((0, T 0 ), B 2 γ ) and ∇ ⊗ u ∈ (B 2 γ L 2 )(0, T 0 ). The case of γ = 2 deserves some comments. In the case d = 3, the results is slightly more general than the results in [START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF], as the class B 2 2 is larger than the space L 2 w 2 . Equations in B 2 2 have been very recently discussed by Bradshaw, Kukavica and Tsai [START_REF] Bradshaw | Existence of global weak solutions to the Navier-Stokes equations in weighted spaces[END_REF]. The case d = 2 is more intricate. Indeed, while the Leray projection operator is bounded on B 2 2 (R 3 ) (by interpolation with L 2 and L 2 w δ with 2 < δ < 3, the Riesz transforms being bounded on L 2 w δ by the theory of Muckenhoupt weights), this is no longer the fact on B 2 2 (R 2 ). Thus, one must be careful in the handling of the pressure. This has been done by Basson in his Ph. D. thesis in 2006 [START_REF] Basson | Solutions spatialement homogènes adaptées des équations de Navier-Stokes[END_REF].

f 0 p ≤ cA
Local Morrey spaces B 2 d occur naturally in the setting of homogeneous statistical solutions. By using an ergodicity argument, Dostoglou [START_REF] Dostoglou | Homogeneous measures and spatial ergodicity of the Navier-Stokes equations[END_REF] proved in 2001 that, under the assumptions of Vishik and Fursikov [START_REF] Vishik | Solutions statistiques homogènes des systèmes différentiels paraboliques et du système de Navier-Stokes[END_REF], we have P r(u 0 (., ω) ∈ B 2 d (R d )) = 1.

Thus, the solutions of Vishik and Fursikov live in a smaller space than L 2 w d+ .
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 30 Solutions in a weighted Lebesgue space : in 2019, Fernández-Dalgo and Lemarié-Rieusset[START_REF] Fernández-Dalgo | Weak solutions for Navier-Stokes equations with initial data in weighted L 2 spaces[END_REF] considerered data u 0 ∈ L 2 (R 3 , w γ dx) and F ∈ L 2 ((0, +∞), L 2 (R 3 , w γ dx)) with 0 < γ ≤ 2. They proved (global in time) existence of a suitable solution u such that, for all T 0 < +∞, sup 0<t<T 0 |u(t, x)| 2 w γ (x) dx < +∞ and T |∇ ⊗ u(t, x)| 2 w γ (x), dx < +∞.

γ δ and f 1 L p w δ ≤ cA γ δ - 1 . 2 jδj∈N 1 2 1 R

 1211 For j ∈ N we take A = jγ |x|<2 j |f | p dx < +∞, so sup R≥1 γ |x|<R |f | p dx < +∞. Thus, we can see that the local Morrey spaces B p γ are very close to the weighted Lebesgue spaces L p wγ . Indeed, the methods and results of Fernández-Dalgo and Lemarié-Rieusset [9] can be easily extended to the setting of local Morrey spaces in dimension d = 2 or d = 3 : considering data u 0 ∈ B 2

  1/p < +∞.
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Lemma 7.1 Let γ ≥ 0 and γ < δ < +∞, we have the continuous embedding