
HAL Id: hal-02456229
https://hal.science/hal-02456229

Submitted on 27 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimum-Cost Virtual Network Function Resilience
Yannick Carlinet, Nancy Perrot, Anderson Alves-Tzitas

To cite this version:
Yannick Carlinet, Nancy Perrot, Anderson Alves-Tzitas. Minimum-Cost Virtual Network Function
Resilience. INOC 2019, Jun 2019, Avignon, France. �10.5441/002/inoc.2019.08�. �hal-02456229�

https://hal.science/hal-02456229
https://hal.archives-ouvertes.fr

Minimum-Cost Virtual Network Function Resilience
Yannick Carlinet

Orange Labs Networks
Chatillon, France

yannick.carlinet@orange.com

Nancy Perrot
Orange Labs Networks

Chatillon, France
nancy.perrot@orange.com

Anderson Alves-Tzitas
Univ. Federal de Minas Gerais

Brazil
andersontzitas02@gmail.com

ABSTRACT
In the future 5G networks, a wide range of new services with
strong requirements will be delivered in the form of chains of
service functions on independent virtual networks. These virtual
networks will be deployed on demand, each one adapted to the
specific service requirements. For infrastructure providers a real
challenge consists in providing and setting up the required virtual
networks (network slices) while guaranteeing strict Service Level
Agreements. One of the major stakes is to be able to provide
failure protection for the service function chains at minimal cost.
In this work, we consider a set of deployed service chains, and
we study the best strategy to protect them at minimal cost. We
propose mathematical formulations that provide optimal backup
functions placement over a network, and the associated backup
paths for each VNF of all the chains. We develop an efficient
ILP-based heuristic relying on a separation of the problem into
smaller ones to solve large scale instances. We show that our
heuristic is competitive, both regarding the solution quality and
the solving time.

1 INTRODUCTION
1.1 Telecom context
Network operators face the challenge of making their network
more flexible and cost-effective. They also have to plan the evo-
lution of their networks for the incoming 5G networks. Indeed,
some 5G services, such as the Ultra-Reliable Low Latency (URLL),
require the network functions to be executed as close as possi-
ble to the end-user. This means that the operators will have to
split and distribute the network functions over multiple network
nodes. Thanks to the maturity of virtualization technologies, Vir-
tual Network Functions (VNF) have the capability to run inside
Virtual Machines (VM) or containers on commodity hardware.
In addition, the concept of Network Slicing will bring even more
flexibility, as it allows several virtual networks to run on a unique
physical infrastructure, provided by one or several infrastructure
providers. This flexibility brings the following benefits:
• On-Demand Network. Network Functions can be deployed
and updated remotely, as opposed to manually installing
and plugging a hardware equipment to the network. Net-
work capacity can also be scaled down or up on-the-fly,
depending on the current demand.
• Cost-effectiveness. Maintenance and exploitation of the
physical infrastructure are mutualized between the service
providers.
• Automatization. Operations on software are easily autom-
atized, enabling scaling, healing, reduced delays to market
new services, among others.

A Network Slice could be seen as a set of VNFs that are or-
ganized into Service Function Chains (SFC), that specifies the

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
International Network Optimization Conference (INOC), June 12-14, 2019:
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

sequence of VNFs crossed by the traffic for a specific service.
Figure 1 shows an example of a Service Function Chain taken
from a use-case defined at IETF (Internet Engineering Task Force)
[10]. The provided service is video optimization and it consists
of three basic Virtual Network Functions: the Steering Proxy,
which is able to redirect HTTP traffic, a DPI-based (Deep Packet
Inspector based) controller, which checks for video traffic, and
an optimizer, which transcodes the video into a suitable format
for the user terminal.

Figure 1: Example of Service Function Chain (SFC).

However, this shift in the networking paradigm comes with
many technological obstacles to overcome. One of them concerns
the resilience of the slices and the associated services.

1.2 Problem Statement
To operate a service, the VNFs of the service chains must be
installed in some network nodes, and the traffic routed through
the installed VNFs. Some of the VNFs could possibly be shared
among several different chains to reduce the exploitation costs,
while the capacity limitations and security requirements are met.
Figure 2 illustrates a small example of two different SFCs to be
routed between an origin-destination pair (1, 6). SFC1 (respec-
tively SFC2), in red color (resp. blue color), corresponds to a
service that requires the functions VNF1 and VNF3 (resp. VNF1,
VNF2 and VNF4). A SFC routing and VNF placement solution is
illustrated. VNF1 is installed in node 2 and shared by both SFCs.

Figure 2: Example of deployed Service chains

For a commercially exploited network, having a resiliency
scheme for each failure scenario is mandatory. Figure 3 illustrates
a rerouting scenario of the previous example in case of a failure of
the node 2, assuming that a backup of VNF1 has been previously
installed on node 3. In this example both SFCs are to be rerouted
through the backup node 3.

The aim of this paper is to answer the question of how to make
the Service Function Chains resilient to node and link failures.
More specifically, the goal is to protect all the Service Function
Chains already deployed against a single node or link failure, at
minimum cost. It means that all the Virtual Network Functions

ISBN 978-3-89318-079-0 on OpenProceedings, ISSN 2510-7437 37 DOI: 10.5441/002/inoc.2019.08

https://OpenProceedings.org/
https://OpenProceedings.org
http://dx.doi.org/10.5441/002/inoc.2019.08

that compose the Service Chains must be protected. We assume
that a backup VNF can be used as a backup VNF for several
nominal VNFs. Similarly, nominal VNFs with spare capacity can
be used as backup VNF. The new routes to the backup VNFs must
be disjoint from the corresponding nominal route, to protect
from link failure, while satisfying the same latency and capacity
constraints as for the nominal path.

Figure 3: Example of node and routing back-up

Considering routing and placement of nominal and backup
SFCs jointly would yield better solutions, as it would allow a bet-
ter usage of network resources. However, in operational settings,
realistic scenarios are likely to consider a two-phase deployment.

1.3 State of the Art
In [1], Allybokus et al. consider the problem of VNF placement for
the composition of Service Function Chains. Resiliency is taken
into account to a certain extent with the addition of anti-affinity
rules in the model.

The ETSI (European Telecommunications Standards Institute)
has studied the issue of reliability in Network Function Virtual-
ization and has given a comprehensive list of features and models
for end-to-end reliability [4]. In [6], Hmaity et al. solve the prob-
lem of the placement of primary VNFs and backup VNFs, so that
the service chains are protected against node and/or link failure.
In the end-to-end protection scheme, the backup path does not
use any link or node from the primary path. In this scheme, the
service chains are resilient against the failure of all the links and
all the nodes. In [11], Qu et al. aim at finding the best service
chain embedding and routing, for minimizing the overall net-
work bandwidth consumption. The problem considers reliability
of the service chains with constraints to guarantee that there are
enough backup VNF for a given target reliability. In [8], Kong et
al. determine the number of VNF replicas required to guarantee
the availability of the SFC, and place these replicas on the routing
path. In [3], Engelmann and Jukan study the reliability of SFCs
with flow parallelism. They evaluate the number of backup VNF
necessary to reach a certain service reliability. They also study
various placement strategy for the backup VNF. In [13], Wang
and Doucette present an algorithm that aims at maximizing the
network availability with the approach offered by Shared-Backup
Path Protection (SBPP).

We observe that in the cited work, the backup path is disjoint
from the working path. In practice, this level of resilience is
often too costly and hardly needed since the event of all nodes
and all links failing at the same time should seldom occur (if at
all). The practical approach for network resiliency is to protect
the network operations from a certain number of simultaneous
failures. In this paper, we propose and solve a problem that is
more relevant to the practical cases of network resiliency design.
In addition, our approach is to help network architects to design

a resilient network, in a cost-efficient manner. This is why we
seek to minimize the cost of deployment, by contrast to the cited
works.

2 THE VIRTUAL NETWORK FUNCTION
RESILIENCE PROBLEM (VNFR)

2.1 Problem Definition
The network is represented by a directed graph G(V ,A), where
V is the set of network nodes andA the set of arcs. Each network
nodeu corresponds to a site in which a network function could be
executed, either by running it on existing server or by opening a
new site. Opening a new site has a high costmu and corresponds
to setting up a new small DC on an eligible site. We assume that
the nominal service chains are already deployed in the network.
This assumption corresponds to many planned real use-case,
in particular when protecting service chains related to critical
virtualized functions like vEPC (virtual Evolved Packet Core,
[9]) or vRAN (virtual Radio Access Network, [2]). The nominal
functions already in place in the network can be shared and used
to protect other service chains, and the residual capacity Cu ∈ N
of used servers can be used to install new functions.

Each arc (uv) of G is characterized by a weight luv that is a
function of the transmission delay between nodes u and v , by a
maximal bandwidth capacity Buv , and by a unitary usage cost
euv .

The set of all the VNFs to be protected against failure is denoted
by F . Each virtual function is characterized by a type f ∈ F ,
and a maximal flow rate tf the function is able to process. The
placement cost of a new function of type f in a node u is denoted
h
f
u .
A service chain k ∈ K is composed of an ordered set of virtual

network functions, and an associated routing path Pk . It is char-
acterized by a traffic demand between origin-destination nodes,
named respectively ok and dk . Without loss of generality, we de-
compose each service chain k into micro chains i, i = 1, . . . , |Fk |
composed of one function each, of type f ik ∈ F .

Then, from now, a section (i,k) corresponds to a unique func-
tion between an origin node oik and a destination node dik along
the routing path Pk of the global service chain. Then, oik is the
node where f i−1

k is placed if i ≥ 2, ok otherwise, and dik the node
where f i+1

k is placed if i ≤ n − 1, dk otherwise. The paths of
these micro chains are sections Sik of the path Pk . An example
of nominal service chain path is given in Figure 4. The repre-
sented SFC is routed along a path P1 from the source node o1 to
the destination one d1, and the flow runs 3 functions f i1 , with
i = 1, 2, 3. The three corresponding sections Si1, with i = 1, 2, 3
are respectively represented in figures 5, 6 and 7.

Figure 4: A service function chain path P1, composed of 3
functions

The service chain sections deployed in the network are defined
by two set of parameters:

38

• p
ikf
u that has value 1 is a VNF of type f in section i of
service chain k is installed on u, 0 otherwise, and
• qikuv whose value is 1 if the traffic in section i of service
chain k is routed along arc (uv), 0 otherwise.

Figure 5: First section of Path P1, S1
1

Figure 6: Second section of Path P1, S2
1

Figure 7: Third section of Path P1, S3
1

All the notations previously introduced in this section are
summarized in Table 1.

2.2 Problem Formulation
The Virtual Network Function Resilience (VNFR) Problem can
be formulated as an integer linear program. The four types of
decision variables are :
• Routing variables

r ikuv =

{
1 if (u,v) is used to re-route section i,k
0 otherwise

• Function placement

y
ikf
u =


1 if backup function of f for section i of k is

placed on node u
0 otherwise

• Number of instances of a same type of the backup function
f installed on node u

x
f
u ∈ N

• Opening of a new site

zu =


1 if the node u is newly used to install at least
one back up function

0 otherwise
Then, a compact formulation for the problem is as follows :

min
∑
u ∈V

∑
f ∈F

h
f
ux

f
u +

∑
u ∈V \N

muzu +
∑
(uv)∈A

∑
k ∈K

∑
i ∈Sk

euvbkr
ik
uv

(1)

subject to

∑
(uv)∈A

r ikuv −
∑

(v ′u)∈A

r ikv ′u =


1 if u = oik
− 1 if u = d ik
0 otherwise

∀i ∈ Sk , ∀k ∈ K,
∀u ∈ V .

(2)∑
k∈K

∑
i∈Sk

r ikuvbk ≤ Buv ∀(u, v) ∈ A (3)∑
f ∈F

x fu ≤ Cu ∀u ∈ V (4)∑
(uv)∈A

r ikuv luv ≤ Lik ∀k ∈ K, ∀i ∈ Sk (5)∑
k∈K
i∈Sk

[
bky

ikf
u −

∑
k′∈K\k
i∈Sk′

pik
′f

u (tf − bk′)
]
≤ tf x

f
u ∀u ∈ V , ∀f ∈ F

(6)

pikfu ≤
∑

u′∈V \u

yikfu′ ∀u ∈ V , ∀k ∈ K, ∀f ∈ F , ∀i ∈ Sk (7)

r ikuv + q
ik
uv ≤ 1 ∀k ∈ K, ∀(u, v) ∈ A, ∀i ∈ Sk (8)∑

f ∈F

x fu ≤ Cuzu ∀u ∈ V \N (9)

yikfu ≤
∑
(uv)∈A

(
r ikuv + r

ik
vu

)
∀u ∈ V , ∀k ∈ K, ∀f ∈ F , ∀i ∈ Sk

(10)

r ikuv ∈ {0, 1} ∀k ∈ K, ∀(u, v) ∈ A, ∀i ∈ Sk
yikfu ∈ {0, 1} ∀f ∈ F , ∀k ∈ K, ∀u ∈ V , ∀i ∈ Sk
x fu ∈ N ∀f ∈ F , ∀u ∈ V
zu ∈ {0, 1} ∀u ∈ V

The objective (1) of the problem consists in minimizing the
whole cost of protecting the service chains against a single failure.
The first term refers to the installation cost of a function f in a
site u, the second one to the cost of opening a new site u, and
finally the last one refers to the cost of re-routing the traffic of
section i , of demand k , on the arc (u,v).

The first set of constraints (2) are the flow conservation con-
straints, to ensure the flow continuity on the back up routes for
all the demands on all the network nodes. The constraints (3) are
to ensure that the sum of the flows routed on each arc are less or
equal to the bandwidth limit capacity. The constraints (4) are the
node capacity constraints and (5) the latency constraints all along
the backup routes of all the demands. The maximal flow rates
that can be processed by a function f on a node u is expressed
in (6) : the capacity of a function being the capacity of the new
installed function instances in addition to the residual capacity
of the functions f already installed for the nominal chains.

The placement constraints (7) are to ensure that each nominal
function f has a back up function installed on another node, while
constraints (8) are to ensure the disjunction between nominal
and backup paths. The constraints (9) are to define the opening of
a site : if at least one function f is installed on a siteu ∈ V \N , ie a
site where no function has been installed yet. Finally, constraints
(10) are to link the backup functions to the backup routes for all
the functions.

2.3 A variant with protection sharing
A shared protection model can easily be obtained from this model,
considering that just one VNF failure can occur at a given time,
in the same geographical area. The shared protection consists

39

Table 1: Indexes, Sets, Constants, and Variables

Indexes

f Virtual Network Function types
u Nodes
k Service Function Chains
i Sections of a service chain
(u,v) Arcs

Sets

V Set of nodes
A Set of arcs
F Set of VNF types
K Set of service chains to protect
S Set of all sections of all chains
N Set of open nodes i.e. hosting at least one VNF

Constants

Graph notation

Cu Max number of VNF that can be hosted on u
mu Cost of opening node u
luv Latency of arc (u,v)
Buv Bandwidth capacity of arc (u,v)
euv Cost per traffic unit on arc (u,v)

Service chains

Pk Nominal path of service chain k
ok Source node for service chain k
dk Destination node service chain k
bk Bandwidth necessary for service chain k
Fk Set of VNFs in service chain k
Sk the set of sections in path Pk
tf Maximum rate of f
h
f
u Cost of installing f in node u

Service chain sections

sik Source node of the section i of service chain k

S f The set of sections containing function f
dik Destination node of the section i of service chain k

nik Backup node for backup section i of service chain k

f ik VNF type in the section i of service chain k

Lik Max. latency for section i of service chain k

p
ikf
u Binary indicator of nominal VNFs placement
qikuv Binary indicator of nominal arc usage

in reserving, in each node, a free capacity space to run only the
VNF with the largest capacity requirement, so that any single
VNF could be run.

Thus, the capacity constraint Equation (6) becomes :

max
k ∈K
i ∈Sk

(bky
ikf
u) ≤ tf x

f
u +

∑
k ∈K
i ∈Sk

∑
k ′∈K\k
i ∈Sk′

p
ik ′f
u (tf − bk ′)

∀u ∈ V ,∀f ∈ F
And the bandwidth constraint (3) becomes :

max
k ∈K
i ∈Sk

(bk r ikuv) ≤ Buv ∀(u,v) ∈ A

This alternate formulation is referred to as PS-VNFR (Protec-
tion Sharing VNFR) in the following.

Table 2: Compact formulation

|V | |A| |F | |S | Time (s) Var. Constr.
30 198 20 400 1820 319,830 892,258
50 538 40 500 >3600 1,271,050 3,568,138
100 2030 40 400 >3600 2,416,100 6,474,630

2.4 Problem Formulation Analysis
These formulations have been solved to optimality using the
commercial solver Cplex 12 ([7]). The largest generated instances,
described in section 4.1, couldn’t be solved within one hour. An
illustration of the size of the formulation (number of variables
and constraints) of VNFR is given in Table 2; where |V | and |A|
refers to the graph size, |F | to the number of function types,
and |S | is the number VNF instances, i.e. the number of chain
sections to be protected against failure. From the formulation of
the problem, we can compute the number of variables as

|S | |A| + |S | |F | |V | + |F | |V | + |V | (11)

and the number of constraints as

|A| + 2|V | + |S | + |V | |S | + 2|F | |V | + 2|S | |A| + 3|V | |S | |F | (12)

We can observe from Equation (11) that for a given graph (i.e.
with given V and A), the factor for the number of function types
is |V | and the factor for the number of sections is |A|. In typical
production networks, the number of arcs is much greater than
the number of nodes, i.e. |V | ≪ |A|. The same reasoning applies
for the number of constraints, in Equation 12. Therefore, we
conclude that the size of the formulation is particularly sensitive
to the number of sections, for a given graph.

3 ILP-BASED HEURISTIC
For some instances, solving the ILP (Integer Linear Program) to
optimality might not be feasible in a reasonable time. For this
reason, we have designed a heuristic called DC-VNFR (Divide
and Conquer in the VNFR problem). This heuristic is based on
the principle of dividing the original problem into a set of smaller
problems. The approach is to process the backups for each type
of VNF, one type at a time. More specifically, the set of all the
sections S is divided into subsets S f such that S f contains all the
sections that contain a VNF of type f .

The VNFR problem is then solved for each S f separately. The
order of resolution is by decreasing λf , with λf =

∑
(i,k)∈S f bk .

In other words, we determine the backups for the type of VNF
with the largest traffic first.

The heuristic DC-VNFR is detailed in Algorithm 1.
As the heuristic consists in fixing a set of variables at each

iteration, it may not find a feasible solution for some instances.
In that case, the algorithm stores the rejected backups in a set
R and carry on the processing. However, over all our numerical
experiments the heuristic has always terminated with a feasible
solution.

4 RESULTS
4.1 Random Instances Creation
In order to evaluate the performance of our model, we have
designed a random instance generator, that allows us to generate
arbitrarily large instances. It is implemented with python3 and
the networkX package [12].

40

Algorithm 1: The DC-VNFR heuristic
Input :An instance of the VNFR problem (cf. 2), with

S =
⋃ |F |
f =1 Sf , with S f the set of all sections with

function type f

Output :A solution to the VNFR problem (i.e. x̄ fu , ȳ
ikf
u , z̄u ,

r̄ ikuv), the total cost ct , and the set of rejected
demands R

1 Compute all the λf =
∑
(i,k)∈S f bk for f ∈ F

2 Sort the sets S f by decreasing λf
3 for f← 1 to |F | do
4 Solve VNFR to optimality with S f instead of S
5 if there is a solution then
6 Update variables x̄ fu , ȳ

kf
u , z̄u , r̄kuv

7 Update total cost ct
8 Update capacities of arcs and nodes
9 for all u such that zu = 1 do

10 N ← N ∪ {u}

11 end
12 else
13 R ← R ∪ {S f }

14 end
15 end

The inputs for the random instance generator are the number
of nodes in the graph, the number of types of VNF and the number
of sections. The other parameters are randomly and uniformly
chosen in-between an input interval given in Table 3.

The arcs are added as follows. First a path that connects all the
nodes is added, so as to ensure that the graph is connected. Then,
arcs are chosen randomly and added until a certain percentage
of the maximum number of arcs in the graph is reached. In the
following, we name the graphs that have 20% of the maximum
number of arcs type A and the graphs at 80% type B (cf. Table 3).
These values were selected in order to assess the impact of the
graph density on performance.

Table 3: Parameters for random instances

Intervals
Cu [1, 3]
luv [1, 20]
Buv [100, 500]
tf [1000, 2000]
bk [1, 20]
Lk [100, 500]
euv [1, 5]
h
f
u [10, 100]

mu [100, 300]
Graphs

type A 20% complete
type B 80% complete

The nominal Service Function Chains are placed as follows:
first the origin and destination nodes of each section are randomly
selected, then a node is randomly selected on the shortest path
to host the VNF. The type of the VNF is also randomly selected.

4.2 Numerical Results
We have generated random instances with varying numbers of
nodes and varying number of sections. For a given set of input
parameters, we have generated 10 random instances. Then, we
have solved all the instances, first with the ILPs (Integer Linear
Programs) described in section 2 and then with the DC-VNFR
heuristic described in section 3. The ILPs were implemented in
Python3 with the Pyomo library [5] and the heuristic was also
developed with Python3. We have recorded the execution time
in terms of CPU time, and recorded the relative gap between the
optimal solution and the solution given by DC-VNFR.

First, it is interesting to note that the two ILPs presented in
section 2 yield to the same results (both in terms of objective
function and execution time). Therefore, in the following we refer
simply to the optimal solution as the ILP. This is due to the fact
that, in the random instances we have generated, the parameter
tf (maximum rate processed by a function) was high enough
not to need to instantiate two of them in a node. In addition,
the capacity of the links were not saturated. In consequence,
since both constraints (3) and (6) were not saturated, there is
no difference with the model that relaxes them. We could check
that, on the instances where one or both these constraints were
actually saturated, the objective was lower with the PS-VNFR
variant.

Figures 8 and 9 show the CPU Time needed for the resolution
of the ILP and the execution of the heuristic, when varying re-
spectively the number of nodes in the graph and the number of
sections K . The y-axis scale is logarithmic so it appears from the
figures that there is almost always at least an order of magnitude
in the performance of the heuristic and the exact resolution.

Figures 10 and 11 represent the relative gap between the DC-
VNFR solution and the optimum. The relative gap is defined as
(β −α)/α with α the minimum cost and β the cost of the solution
provided by DC-VNFR. When varying the number of nodes, the
relative gap is always below 0.6%.

4.3 Discussion
The results given in section 4.2 first show that the performance
gain with the proposed algorithm over the exact resolution is
very good, irrespective of the number of nodes in the graph or
the number of sections to protect. It is also noteworthy that the
type B instances take more time to solve, in average, than the
type A instances. This is because the combinatorial exploration
is larger when the graph is more connected.

The results also show that the proposed algorithm yields high-
quality solutions, in the sense that whatever the number of nodes
in the graph, the gap to optimality stays under 0.6%. In fact, the
heuristic is always optimal when the node capacities are not
saturated. This is due to the fact that, in that case, the problems
of finding the backups for each VNF type are independent from
one another. Since in DC-VNFR the optimal solution is found
for each VNF type separately, the combined solution remains
optimal. We have also observed that when the node capacities
are less saturated, the solutions of DC-VNFR tends to be closer
to the optimal solutions, which seems quite natural.

However, when varying the number of sections, two opposite
trends appear. With type A instances, the gap to optimality in-
creases with the number of sections (after 100 sections). This is
due to the fact that, for sparse graphs, there is a limited number
of nodes to choose from, for the selection of the backup node
(because of the latency constraints). In consequence, the node

41

Figure 8: CPU Time vs. Number of Nodes

Figure 9: CPU Time vs. Number of Sections

Figure 10: Gap vs. Number of Nodes

Figure 11: Gap vs. Number of Sections

capacities are more often saturated, leading to sub-optimal place-
ment of backup VNfs. In contrast, with type B instances, the gap
decreases (cf. Figure 11). This is because in that case, there is a
larger number of choices for the backup node, which means they
are less prone to reach their capacity, which allows the heuristic
to lead to a near-optimal solution.

In conclusion, the DC-VNFR heuristic allows to take advantage
of the mutualization of the backups of each particular VNF types.
It is a good compromise between the optimal resolution of the
ILP and a reasonable computation time.

5 CONCLUSION
In this work, we have studied how to improve the resiliency of
a set of given Service Function Chains, in a practical and cost-
effective manner. The aim is to deploy a backup VNF and an
associated backup path for each VNF of all the chains. Since the
goal is to protect against a single failure, the backups can be
mutualized for several nominal VNFs, and also a nominal VNF
with spare capacity can be used as backup. The formulation that
we proposed allows to solve this problem at minimal cost, and an
ILP-based heuristic, relying on a separation of the problem into
smaller ones, is provided in order to solve large scale instances.
Empirical results on instances representative of real use-cases
show the benefits of this approach.

ACKNOWLEDGMENTS
This work is supported by the french Agence Nationale de la
Recherche (ANR), Project MAESTRO-5G ANR-18-CE25-0012.

REFERENCES
[1] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin. 2018. Virtual

Function Placement for Service Chaining with Partial Orders and Anti-Affinity
Rules. Networks 71 (2018), 97–106.

[2] C. J. Bernardos, A. Rahman, and A. Mourad. 2018. Service Function Chain-
ing Use Cases in Fog RAN. Internet-Draft draft-bernardos-sfc-fog-ran-
04. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-bernardos-sfc-fog-ran-04 Work in Progress.

[3] A. Engelmann and A. Jukan. 2017. A Reliability Study of Parallelized VNF
Chaining. CoRR abs/1711.08417 (2017). arXiv:1711.08417 http://arxiv.org/abs/
1711.08417

[4] ETSI. 2016. Network Functions Virtualisation (NFV) ; Reliability ; Report on
Models and Features for End-to-End Reliability. ETSI GS NFV-REL 003 V1.1.2
(2016).

[5] W. E. Hart, C. D. Laird, J.P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, and J. D. Siirola. 2017. Pyomo–optimization modeling in python
(second ed.). Vol. 67. Springer Science & Business Media.

[6] A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina. 2016. Virtual
Network Function placement for resilient Service Chain provisioning. 2016
8th International Workshop on Resilient Networks Design and Modeling (RNDM)
(2016), 245–252.

[7] IBM ILOG. 2015. IBM ILOG CPLEX V12.6: User’s manual for CPLEX.
[8] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi, and

J. P. Jue. 2017. Guaranteed-Availability Network Function Virtualization with
Network Protection and VNF Replication. GLOBECOM 2017 - 2017 IEEE Global
Communications Conference (2017), 1–6.

[9] S. Matsushima and R. Wakikawa. 2016. Stateless user-plane architecture for
virtualized EPC (vEPC). Internet-Draft draft-matsushima-stateless-uplane-
vepc-06. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-matsushima-stateless-uplane-vepc-06 Work in Progress.

[10] J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro. 2018. Service Function
Chaining Use Cases in Mobile Networks. Internet-Draft draft-ietf-sfc-use-case-
mobility-08. Internet Engineering Task Force. https://datatracker.ietf.org/doc/
html/draft-ietf-sfc-use-case-mobility-08 Work in Progress.

[11] L. Qu, C. M. Assi, K. B. Shaban, and M. J. Khabbaz. 2017. A Reliability-Aware
Network Service Chain Provisioning With Delay Guarantees in NFV-Enabled
Enterprise Datacenter Networks. IEEE Transactions on Network and Service
Management 14 (2017), 554–568.

[12] D. A. Schult. 2008. Exploring network structure, dynamics, and function using
NetworkX. In In Proceedings of the 7th Python in Science Conference (SciPy.
11–15.

[13] W. Wang and J. Doucette. 2018. Availability optimization in shared-backup
path protected networks. IEEE/OSA Journal of Optical Communications and
Networking 10, 5 (May 2018), 451–460. https://doi.org/10.1364/JOCN.10.000451

42

	Minimum-Cost Virtual Network Function ResilienceYannick Carlinet, Nancy Perrot, Anderson Alves-Tzitas

