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A B S T R A C T

Species and community specialization have become popular indicators to track the spatial and temporal
changes of species and community dynamics during current global changes. However, measuring
specialization requires detailed and quantitative descriptions of habitat requirements or resource use,
which are difficult to obtain for many species. Here, we propose and test a new method to quantify and
map the relative composition of specialist and generalist species in local plots compatible with very basic
ecological data, typically used for atlases. We used co-occurrence patterns of 1090 plant species recorded
in the French Mediterranean region of Languedoc-Roussillon in a systematic grid of 1225 5 � 5 km atlas
cells to estimate species specialization. We then calculated the averaged specialization of each cell and
tested several expected relationships of these indices. In particular, we tested the relationship between
species richness and average specialization and the relationship between community specialization and
landscape disturbance induced by land use. As expected from studies conducted on fine-scale data, we
found that specialist species were those with more restricted distributions and occurring in richer species
assemblages. We also found that community specialization was maximized at an intermediate level of
landscape disturbance. These results suggest that aggregating specialization at large spatial scales
provides useful species and community level indicators. Estimating specialization level with co-
occurrence data is a good complementary approach to traditional estimations of diversity indices for
conservation and landscape planning.

ã 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Finding the best indicator of species and community responses
to landscape degradation is an ongoing challenge for ecologists.
Consequently, ecological indicators based on “species diversity”
are very popular; although their relevance was questioned at an
early stage, when species diversity was considered a non-concept
(Hurlbert, 1971). New indices (accounting for ecological, phyloge-
netic, or functional differences among species) have, thus, been
recurrently proposed to complement species diversity metrics
(Monnet et al., 2014). Developing more relevant biodiversity
indicators has become, however, a scientific, political, and societal
issue of great importance (Frederiksen and Gudmundsson, 2013).
But rather than searching for the “best” indicator, authors have
now recognized that indicators are not “good” or “bad” but that
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their relevance depends on the question asked and on the data
available (Feest et al., 2010).

To assess the large-scale impacts of landscape degradation on
communities, ecological metrics reflecting the dynamics of
“losers” versus “winners” within species assemblages were
proposed as a promising approach in conservation biogeography
(Devictor and Robert, 2009). In particular, the replacement rate of
habitat specialist species by generalists was viewed as a direct
signature of a community response to large-scale habitat
degradation for animals and plants (Clavel et al., 2010; Abadie
et al., 2011). In fact, it is generally expected that habitat specialists
will benefit from stable and undisturbed habitats whereas,
generalists should respond positively to habitat variability (Colles
et al., 2009). These expectations have been widely tested and
ecological indicators built upon the temporal trends of specialist
species have been considered relevant official indicators of
sustainable development for use at national and international
levels (Gregory et al., 2005).

Ideally, the spatial or temporal replacement of specialists by
generalists can be estimated using large-scale and standardized
community monitoring programs (Devictor et al., 2007). With such
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Fig.1. The study region and the distribution of occurrence data. Each dot represents
a species list recorded in the database. The grid cells of 5 � 5 km used for the
aggregation are delineated.
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data, the specialization of species and communities can be derived
from the statistical relationships reflecting species distribution
along habitat gradients, both monitored by standardized schemes.
In practice, however, large-scale monitoring data for national or
regional surveys are currently being collected for only a few groups
(mostly birds, butterflies, and mammals) and are based on
presence–absence data. Moreover, measuring species specializa-
tion is often impaired by the lack of high enough resolution data on
habitat requirements or by the difficulty of defining habitat
selection accurately (Podani and Csányi, 2010). Consequently, two
main approaches have been used to quantify change in community
composition following landscape disturbance: (i) at global or
national scales, some authors have used crude classifications of
species into specialist versus generalist groups. For instance,
indicators for the state of the European avifauna rely on the
average trend of some species, classified as being specialized for a
given habitat type (e.g., farmland bird specialists) (Gregory et al.,
2005), (ii) in contrast, others have used high-resolution data on
detailed species requirements. In this case, continuous and
species-specific levels of ecological specialization was derived
from standardized protocols, in which habitat or resource
preferences could be precisely assessed (Devictor et al., 2007;
Correa and Winemiller, 2014). However, methods to estimate the
specialization level of species and communities using classic
ecological data (i.e., the presence or absence of species across sites)
are lacking; although, they could help to track the fate of species
and communities in many contexts.

Interestingly, Fridley et al. (2007) proposed a method to
estimate species specialization that only requires presence–
absence data. It assumes that species co-occurring with similar
species are usually those found in similar habitats and could, thus,
be considered specialists. Conversely, generalists should be widely
distributed across habitats and thus co-occur with many different
species. In other words, for a given species, the similarity in the
identity of species co-occurring with that species can be
considered, according to this approach, a continuous proxy for
species habitat specialization. From this assumption, and provid-
ing that co-occurrence data are available, a species specialization
index (SSI) can be simply deduced for each given species using the
identity of the species co-occurring with that species. This
approach can be applied to any dataset providing that different
species assemblages have been recorded in different locations
(Abadie et al., 2011; Boulangeat et al., 2012). Using this approach,
specialization was equated to niche breadth to test a specific
hypothesis on the role played by competition (Manthey et al.,
2011), or specific functional traits (Albert et al., 2010) in species
distribution. Although originally developed for plants, this
approach has also been successfully used for amphibians (Rannap
et al., 2009), and fishes (Munroe et al., 2013).

This approach does not a priori tell whether ecological
specialization can be relevant when measured for data collected
at coarse spatial grain. Indeed, co-occurrence patterns are
expected to yield different types of specialization when estimated
at the quadrat, landscape, or regional scale. In this respect,
although Fridley’s method has been applied to various organisms
in different contexts, its relevance for co-occurrence data obtained
from species lists recorded across large spatial scales has not been
explored (but see Boulangeat et al., 2012). Furthermore, it remains
unclear whether specialization is still relevant and sensitive when
defined at spatial scales different from those most likely to capture
habitat selection and species interactions.

Once the specialization levels of species are estimated and are
sensitive enough to habitat disturbance, the distribution of species
and assemblages according to their specialization level can be
investigated. In particular, specialist species are expected to be
more numerous and to concentrate more individuals in less
fragmented landscapes (Devictor et al., 2007). At the community
level, a community specialization index (CSI) of species assemb-
lages can be calculated as the average of each species SSI present in
the assemblage (Devictor et al., 2008). The CSI is expected to be
higher for species assemblages mostly composed of specialist
species. It can then be used as an interesting ecological indicator
complementary to more traditional indicators based on diversity
(Filippi-Codaccioni et al., 2010; Abadie et al., 2011). Mapping the
CSI can thus provide a picture of spatial variation in the
specialization level of communities, which can be related to
independent sources of disturbance or used as a spatial guideline
to identify sites of conservation interest (Devictor et al., 2008). Yet
whether such a community specialization index can be used as a
relevant ecological indicator with basic ecological data has never
been explored.

Here, we used a large-scale co-occurrence dataset on plants to
estimate a species specialization index (SSI) for each species and a
community specialization index (CSI) for each grid cell. We then
specifically tested several hypotheses on SSI and CSI derived from
studies on specialization conducted with higher resolution data
and at finer spatial resolution. In particular, we investigated (i)
whether and how the species distribution was dependent on their
SSI. At the assemblage level, we tested (ii) the relationship between
CSI and species richness, and (iii) the relationships between these
two metrics and landscape disturbance.

2. Methods

2.1. The study region

The study was carried out in the Languedoc-Roussillon region
(27,376 km2) in southern France, which encompasses most of the
Mediterranean region west of the Rhône valley (Fig. 1). The main
landscape types occurring here are coastal landscapes with
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lagoons, marshes, cliffs and dunes, and lowland garrigues. These
habitats are often included in mosaic landscapes with cultivated
areas, vast areas of vines, extensive upland limestone plateau
areas, and hilly or mountainous landscapes on granite and schist in
the southern tip of the Massif Central and the south-eastern
Pyrenees. In the last 50 years, these landscapes have been
profoundly modified by human activities so that heavily disturbed
habitats coexist with stable ones (Thompson, 2005; Blondel et al.,
2010). First, extensive and rapid urbanization spread around towns
and villages across the lowland plains in conjunction with massive
proliferation of coastal tourist resorts. Second, human population
decline in many rural areas was accompanied by the abandonment
of vineyards and grazing activity, which was followed by rapid
natural reforestation of agricultural fields (IFEN, 2003).

2.2. Species data

Plant species data were compiled by the Conservatoire
Botanique National Méditerranéen de Porquerolles (CBNMP),
which is in charge of the regional database of all plant species
present in this region. Original data were collected between the
years 1611 and 2009 and correspond to the combination of all the
naturalist inventories, herbariums, bibliographies, reports, and
atlases available in the region. For the purpose of this study, only
data on vascular plant species collected since the year 1980 were
used. A database of 3667 species with 420,659 occurrences was
obtained. All data were then combined and aggregated in a
systematic grid of 1227 5 � 5 km cells to define a standardized
spatial scale resolution (Fig. 1). Each grid cell was considered a site
of species co-occurrence. The robustness of our results to changes
in the scale of aggregation was also tested with 2 � 2 km and
10 � 10 km grids.

In large-scale biodiversity inventories, spatial, and temporal
variation in sampling can introduce significant biases into the
representation of species distribution. Here, species have been
sampled by different observers using several methodologies.
Although this variability in the protocol represents a lack of
standardization, the species selection to estimate specialization
(see below) further ensured that it is estimated, for each species,
with the same sample size.

2.3. Measuring species and community specialization indices

First, the algorithm proposed from Fridley et al. (2007) was used
to measure a species specialization index (SSI) for each plant
species. This approach has recently been shown to be a suitable
method for measuring plant specialization using large samples
across very heterogeneous environments (Boulangeat et al., 2012).
For each given species, a random combination of sites (50 sites) in
which this species occurs is selected. A similarity index is then
calculated between each pair of sites to reflect the degree of
between sites species turnover in the 50 sites. This is repeated
100 times for each species. For each of the 100 repetitions, a new
random set of 50 sites is thus selected and a corresponding SSI is
calculated. The overall SSI of the given species is calculated as the
average of the 100 SSI obtained (see Fridley et al., 2007). Note that
species occurring in fewer than 50 sites are not considered, as it
would be unreliable to measure their specialization level from co-
occurring species. Among the 3667 species, 1090 were present in
enough sites to provide an SSI so all analyses were conducted on
these species. Note also that, in this approach, the SSI is always
calculated for each species from a fixed number of sites (50). In
each combination, the sites are selected randomly across the
species range within the studied area. Thus, specialization of rare
and common species is derived from combinations of species
assemblages of equal size. This approach provides an increasing SSI
value from the most generalist (i.e., those expected to co-occur
with more different species and thus generate less similarity
between sites) to the most specialist species (co-occurring with
more similar pools of species).

Ecologists have used a large number of different measures of
community dissimilarity (also called beta-diversity or turnover)
with different properties and meanings (Koleff et al., 2003). Here,
we measured similarity using the average of pairwise bsim

calculated among sites (Baselga, 2010). For two sites, bsim is an
index given by bsim = min(b,c)/(a + min(b,c)) where a is the number
of species common to both sites, b is the number of species that
occur in the first site but not in the second and c is the number of
species that occur in the second site but not in the first. This index
varies between 0 (all species shared) and 1 (no specie shared). We
then used SSI = 1 � bsim to measure a specialization. The SSI is,
therefore, also theoretically bounded between 0 (most generalist)
to 1 (most specialist).

Note that other dissimilarity indices including species abun-
dance when available and independent of species richness can also
be used (Boulangeat et al., 2012). However, other traditional ways
of measuring similarity between plots (e.g., in partitioning
diversity in local, regional, and among-site components (Lande,
1996)) should be used with caution. In fact, a common though
unwanted property of these alternative similarity metrics is to be
correlated to species richness (Koleff et al., 2003). In Fridley’s
algorithm, these other metrics tend to be highly sensitive to
species occurring in species-poor habitats, which have strongly
skewed richness distributions (Manthey and Fridley, 2009). The
Simpson’s pairwise index (bsim) is among the less biased metric of
similarity (Baselga, 2010) so we used it as a good index of beta-
diversity.

Once an SSI was obtained for each species, a community
specialization index (CSI) was calculated for each grid cell as the
average of the SSI values belonging to the species present in this
cell (Devictor et al., 2008). Only cells in which at least 10 species
were present were considered. The CSI is higher for species
assemblages with more specialist species (i.e., with a high SSI) and
is, by construction, independent of species richness.

2.4. Measuring landscape disturbance

The indicator of spatial disturbance used was based on the
compilation, for each site, of three kinds of human pressure: road
density, urbanization, and agriculture. Note that disturbance is
used here as a generic term without specific expectation of its
negative or positive impact on plant assemblages: some of these
artificial landscape modifications can be positive for some species
and negative for others. For road density and urbanization, the
“road” and “built-up” layers from the BD TOPO1/RGE GIS database
(IGN Institut Géographique National) were used. For agriculture,
the “arable land”, “mixed agriculture”, and “permanent culture”
layers from the corine land cover database (Bossard et al., 2000)
were used. For each site, the proportion of disturbance elements
within the site was calculated. Then, a disturbance indicator was
calculated for each site as the mean value of the normalized value
(from 0 to 1) for each proportion. This disturbance indicator was
explicitly tested in this region and was shown to provide a relevant
proxy for mapping the spatial distribution of the intensity of
human-induced modification of landscape composition (Vimal
et al., 2011).

2.5. Data analysis

We first focused on the characteristics of more or less
specialized species. We tested whether the species distribution
in the area considered was related to their SSI using linear



Fig. 2. Relationships between the species specialization index (SSI) and (a) the
number of sites where the species occurs and (b) the average site species richness
where the species occurs.

Fig. 3. Relationship between the community specialization index (CSI) of species
assemblages and their species richness.
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regression. SSI was considered as a dependent variable and the
number of sites occupied by the species the explanatory variable
assuming independence of the observations and a Gaussian
distribution of the errors. Species with lower SSI (more generalists)
were expected to occur in many sites in line with the Brown
hypothesis (Brown, 1984; Gaston, 2003). Indeed, niche breadth
should reflect the degree to which species requirements meet
environmental conditions. Niche breadth is, therefore, generally
found to be positively related to species occupancy (i.e., generalist
are those with broader niches, and thus with wider regional
occupancy).

Similarly, how specialist and generalist species were distributed
in rich and poor species assemblages was tested. To do this, we
used linear regression to test the relationship between SSI and the
average species richness of the assemblage where the species
occurs. We expected species with lower SSI to be found in species-
poor assemblages following lower niche packing in these
assemblages. On the contrary, we expected species-rich assemb-
lages to favor specialist species, best able to partition the total
ecological niche space (Belmaker et al., 2011).

Finally, we tested whether the richness and CSI of assemblages
were related to environmental disturbance. We expected spatial
dependency in observations and potential non-linearity in the
relationships. We used generalized least square (GLS) models to
test this relationship. GLS are specific weighted regressions in
which a direct marginal variance–covariance spatial structure of
the responses can be specified (Zuur et al., 2009). This structure
was first investigated using different forms of semi-variograms to
account for spatial dependency of the residuals. The best spatial
structure (exponential) and corresponding range and nugget
were then added to the model (using the function GLS and CorExp
in the package nlme in R). R2 is not well defined for GLS. Thus, to
get a rough estimate of the goodness of fit for these models, we
used the R2 of linear regressions accounting for spatial gradients in
which polynomial terms of the coordinates (x,y, x 2, y2, and xy)
were added as covariates (Fortin and Dale, 2005). Community
descriptors are often found to be non-linearly related to
environmental variables. To test for any potential hump-shaped
relationships between species richness (or CSI) and disturbance,
we used the same model than above with disturbance and
disturbance2 as predictors. All statistical analyses were carried out
using R 2.11 software and the package “nlme” for GLS models (R
Development Core Team, 2014).

3. Results

At the species level, when calculated using a 5 � 5 km grid, the
species specialization index (SSI) ranged from 0.21 to 0.43 (mean
0.32 � 0.03 s.e.). It was robust towards change in the spatial scale
considered (correlations between SSI calculated at 5 km2 and
2 km2, R2 = 0.82, P < 0.001 and between 5 km2 and 10 km2, R2 = 0.83,
P < 0.001). Generalist species were more widely distributed (i.e.,
occurred in more sites) than specialist species (F1,1088 = 244;
P < 0.0001; R2 = 0.18; Fig. 2a). Interestingly, the shape of the
relationship suggests that both specialists and generalists can have
restricted distributions (i.e., occur in few sites) while, compara-
tively, only generalists can have wide distributions. There was also
a strong positive linear relationship between specialization and the
mean species richness of co-occurring species (F1,1088 = 357;
P < 0.0001; R2 = 0.25; Fig. 2b). In other words, specialist species
tend to occur in richer assemblages than generalists do.

At the species assemblage level, the CSI increased linearly with
species richness suggesting that rich assemblages are principally
composed of specialists (GLS: F1,1225 = 26.5; P < 0.0001; R2 = 0.16,
Fig. 3). Note that the variability of CSI values was unevenly
distributed along the species richness gradient: poor assemblages
included assemblages with high and low CSI values while rich
assemblages mostly consisted of specialists.

The relationships between CSI or species richness and
disturbance were poorly described using linear models (not
significant for CSI, P = 0.23, nor for species richness, P = 0.84).
However, there were curvilinear relationships between species
richness and disturbance (complete quadratic model: R2 = 0.16;
P < 0.0001; quadratic term b = �0.0024, P = 0.007). As part of the
relationship between CSI and disturbance could potentially be
driven by the relationship between CSI and species richness, the
effect of disturbance on CSI was tested while controlling for species
richness by adding it as a covariate. When variation in CSI was
adjusted for variation in species richness, there was still a



Fig. 4. The spatial distribution of (a) disturbance (b) species richness (c) community specialization index (the value increases from pale to dark colors. The missing values are
in white). As examples, y is a zone of relatively high disturbance but with low richness and CSI. In contrast, z is an area of low disturbance but high CSI and richness. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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curvilinear effect of disturbance on CSI (R2 = 16; P < 0.0001;
quadratic term b = �0.25; P = 0.003).

Finally, mapping species richness, landscape disturbance, and
community specialization revealed specific areas of congruencies
and mismatches (Fig. 4). For instance, zone z illustrates an area in
which richness and CSI are both of high value. These areas are of
high conservation interest, yielding many specialist species.
Comparatively, in zone y where landscape disturbance is high,
richness, and CSI are relatively low, suggesting that these are areas
where plant communities have been strongly impacted by
disturbance leading to poor assemblages mainly composed of
generalists.

4. Discussion

Using very basic co-occurrence data, we were able to segregate
species along a continuous gradient of specialization. Obviously, in
this approach, “specialization” is not equivalent to niche breadth as
generally estimated using fine species responses to environmental
conditions or specific functional traits. In our study, specialization
rather reflects the tendency of species to occur in different
landscapes composed of different species. Instead of providing a
traditional niche breadth index, this approach gives an operational
and quantitative metric for measuring the similarity of co-
occurring species, relevant to large-scale occurrence data.

The ecological meaning of this species-specific attribute is
scale-dependent. While plant species interact at very local scales,
the co-occurrence patterns at larger scales will be more influenced
by regional and dispersal processes. In other words, a species can
be considered specialist at a landscape level although the same
species could be a generalist for specific habitats within landscapes
(Devictor et al., 2010; Boulangeat et al., 2012).

Nevertheless, our species specialization index (SSI) estimated
with atlas data was robust towards changes in the scale considered
(2 � 2 km, 5 � 5 km, or 10 � 10 km) which suggests weak variations
in landscape composition between such scales. It is therefore,
likely that the SSI calculated at 5 � 5 km already captures relevant
variability in the composition of species assemblages in the region
considered. This first result also suggests that large-scale
specialization estimated with atlas data reflects an interesting
and robust characteristic of species. Moreover, co-occurrence-
based indices of specialization were shown to be correlated with
more detailed and commonly used metrics of niche breadth as well
as with specialization metrics derived from multivariate analysis
including habitat variables more explicitly (see Boulangeat et al.,
2012 for comparison of indices).

Other results further suggest that estimating specialization
with atlas data provides relevant results, in harmony with those
found with finer estimations of niche breadth. First, when
specialization is measured for specific habitats or resources,
specialist species are generally found to be those with smaller
ranges (Gaston, 2003). Here, we found that species co-occurring
with many different species (i.e., with low SSI) are also those with
larger distributions in the region considered (Fig. 2a), a pattern
already documented for the regional flora of the French Alps
(Boulangeat et al., 2012). At fine scales, greater niche partitioning is
also expected when species richness (and possibly competition)
increases (Mason et al., 2008). Here, we also found that specialist
species tend to occur in richer assemblages (Fig. 2b). The
relationship between CSI and species richness was also positive
(Fig. 3) showing that richer assemblages were those concentrating
more specialist species and that, inversely, poorer assemblages
were those concentrating more generalist species. These results
support those derived from fine-scale communities in which
species interact (Belmaker et al., 2011).

These relationships could, however, miss complex community
responses to large-scale disturbance. For instance, non-linear
(Davey et al., 2012) and negative (Filippi-Codaccioni et al., 2010)
relationships between CSI and species richness have been
documented in human disturbed landscapes. Here, we found
similar curvilinear relationships between landscape disturbance
and species richness or community specialization index, which
also correspond to those widely described in the so-called
intermediate disturbance hypothesis (Wilkinson, 1999). According
to this hypothesis, competitive, and specialist species should
dominate and exclude others at low levels of disturbance, and only
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a few generalist species can thrive in highly disturbed sites. Species
richness should therefore be greater at intermediate levels of
disturbance, under which both specialist and generalist species
can coexist. Although the mechanisms of such curvilinear
relationships have been debated, our results can be explained
by the Mediterranean mosaic landscapes in which human
activities can contribute, up to a certain point, to increasing local
species richness (Thompson, 2005; Blondel et al., 2010).

The curvilinear relationship between CSI and disturbance also
suggests that the coexistence of many specialist species is
maximized at an intermediate level of anthropogenic landscape
modification. This pattern is probably driven by the presence, in
this region, of many species co-occurring in human-dominated
landscapes. This result also generalizes previous findings estab-
lished with fine-scale data showing that individual specialist
species can be associated with habitats disturbed by humans
(Davison and Fitzpatrick, 2010; Boulangeat et al., 2012). Although
many studies have shown that, following habitat disturbance,
generalists should replace specialists (Devictor et al., 2008), others
have documented the relative increase in specialist species in
disturbed assemblages (Clavero et al., 2011). Here, we have shown
that the direction of change in community composition can also be
dependent on disturbance intensity. Although a more detailed
analysis of the mechanisms leading to non-linear relationships is
needed, these results suggest that, as already stated at a local scale,
large-scale specialization and CSI will not always be a surrogate of
ecosystem quality but should rather be used in conjunction with
other community descriptors (Filippi-Codaccioni et al., 2010;
Filippi-Codaccioni et al., 2010).

Overall, our results suggest that measuring species and commu-
nity specialization (SSI and CSI) generates meaningful results
compared to what is expected using more detailed and finer data
on species associations with habitats. Some of our results, however,
couldbebiasedby thewaydatawerecollected. Inparticular,agreater
sampling effort could be expected for rare, charismatic, or endemic
species. However, the SSI was calculated only for those species
present in at least 50 squares, thus, eliminating the effect of rare and
occasional species. The randomization procedure of Fridley’s
algorithm also removes most of the potentialnon-uniformcollection
effort throughout the studiedregion. Note alsothatdependingon the
data considered, this technique could induce a link between
specialization and rarity. For a given species, the index is estimated
as the average (after 100 repetitions) of the similarity indices
calculated from 50 sites randomly selected among the sites where
thisspecies occurs. Forrare and localizedspecies, theprobabilitythat
two repetitions include more often the same sites is higher. The
variability in the similarity indices generated is thus lower for rare
species. Although this does not necessarily biases the index itself, it
might affect the confidence in specialization estimates. A more
elaborated algorithm in which the number of repetition is
proportional to species rarity could be used. Finally, the objective
of our analysis was not to define the localvariation in SSIor CSI values
precisely but rather to describe their relative variations across
species or across large spatial gradients. The biases above, if any,
would hardly explain the curvilinear relationship between CSI and
disturbance and the positive relationship between CSI and species
richness.

We believe that our approach offers an interesting tool to
delineate areas of conservation interest based on the spatial
variation in community composition. The CSI derived from atlas
data could enable managers to implement differentiated conser-
vation plans among ecoregions when coupled with other
indicators. A similar analysis can be conducted on any group or
data providing that co-occurrence-based specialization can be
estimated. Moreover, the estimation of a temporal change in the
CSI calculated in areas where data have been collected several
times should be a promising route to shed light on biotic
homogenization.
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