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ABSTRACT

The thermo-oxidation process at low temperatures for a montmorillonite-nanoreinforced polypropylene
(PP) was studied. Experimental aging kinetic data at 100, 80 and 60 °C have been obtained and compared
with a computational simulation in which a kinetic model based on the closed loop approach was used.
As a result, it has been found that the montmorillonite role is not limited to a role of inert filler in the
polymer matrix but induces a slight catalytic effect leading to induction period reduction. This effect has
been well simulated by increasing initial hydroperoxyde concentration. The consequences of kinetic
control by oxygen diffusion have also been investigated by using micro ATR-FTIR mapping to assess
concentration profiles of the oxidation products across the sample thickness. It has been found that the
oxidized layer thickness is close to 17 um for the pure polypropylene whereas it is around 10 um for the
nanocomposite at 100 °C. These profile variations have been attributed to differences in oxygen diffusion
coefficient values. Simulations based on the kinetic model including diffusion-reaction coupling describe

Modeling these profiles well.

1. Introduction

Nanocomposite materials are attracting great interest in the
search for better performing materials with improved thermal,
mechanical, electrical and barrier properties. Using plastics as
a matrix in this technology is advantageous due to their capability
to improve such properties by incorporating nanofiller quantities
lower than the 20% vol. required by conventional fillers such as talc,
calcium carbonate, and glass fibers [1—3]. Higher aspect ratios as
provided with the use of layer silicates allow stronger interfacial
clay/polymer interactions [4—7], justifying the use of such silicates
as fillers.

The aging process induced by photooxidation in polymer—
matrix nanocomposites has been studied by several researchers.
Through those studies it was found that the incorporation of
nanoclays does not change the aging mechanism of the composite,
but rather decreases its induction time, meaning that the mont-
morillonite (MMT-0) essentially accelerates the oxidation process
[8—10]. In the case of thermo-oxidation there is only a small
number of studies on the aging kinetics of nanofilled PP. Work by
Lomakin — concerning the tracking of weight loss for a nano-
composite during the thermo-oxidation process at temperatures
higher than 250 °C by using thermal analysis [11] — or by Vyazovkin —
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applying a classical kinetic approach [12] — or by Bertini et al. in
which the thermal degradation of a montmorillonite-reinforced
polypropylene is studied by TGA and DTG techniques [13] provided
key insight. However, the results of these studies were obtained far
above the usual temperature interval for the use of PP. To our
knowledge, no studies on the thermo-oxidation mechanisms and
kinetics in solid state at moderate temperatures exist in the
literature.

Concerning a general strategy for studying the thermal oxida-
tion of organic composites, an analytical methodology based on
a classical oxidation scheme has been presented by Verdu [14].
From the pure PP oxidation kinetic modeling point of view, a model
including reaction-diffusion coupling has been used to simulate the
thermal oxidation in air at 80—150 °C [15,16]. Our aim in this paper
is to apply both of these approaches to studying the thermal
oxidation kinetics of polypropylene nanocomposites. In spite of its
complexity, kinetic modeling of the oxidation remains of great
interest for the prediction of end-product lifetime.

The aim of this work is to study the montmorillonite influence
on the oxidation kinetics of polypropylene at moderated temper-
atures from experimental and theoretical points of view. The first
step to accomplish this objective is compounding the material,
which is one of the most critical stages, since good clay dispersion
has to be reached in order to separate the clay sheets. To better split
the nanosheets, the clay and coupling agent are pre-mixed. Next,
the concentrate is blended with pure polypropylene to obtain the
nanocomposite. After a complete material characterization using
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a flexible approach [17], the results from thermo-oxidation exper-
iments are obtained. The first goal is to find possible differences
between nanoreinforced and pure polypropylene. The second
objective is to apply the kinetic model proposed elsewhere [15] to
simulate nanocomposite thermal oxidation and to explore the
influence of the oxygen diffusion coefficient changes on oxidation
profiles of the sample when oxidation is diffusion controlled. Such
influence will also be experimentally studied using a new FTIR
imaging tool (see in Experimental part).

To follow the evolution of the oxidation process over time,
infrared micro-spectrometry measurements in transmittance
mode are often performed [18,19]. However, its spatial resolution of
about 25—30 pum does not permit the measurement of oxidation
layers, whose individual thickness is of the order or even lower
than this resolution. To enhance lateral resolution, some experi-
mental alternatives are available, such as the use of synchrotron
radiation as a source for FTIR measurements [20]. By reducing the
resolution with the use of high refractive index ATR crystals,
attenuated total reflectance infrared spectrometry (ATR-FTIR)
permitted us to follow the extent of oxidation in aged carbon-filled
rubbers and polyethylene samples [21,22]. Several recent publica-
tions have used this approach [23—25]. Here, we applied this
micro-ATR-FTIR approach to assess the oxidation profiles and the
thickness of the oxidized layer by using a Perkin—Elmer SpotLight
300 FTIR Microscope with Spectrum 100 in ATR mode imaging
showing spatial resolution of 6 um.

2. Experimental
2.1. Materials

The matrix used was the Propilco 01R25 propylene—ethylene
copolymer supplied by Propilco (MFI 0.8 g/10min). The nanoclay
was Nanofil® SE 3000, montmorillonite modified with di-tallow di-
methyl quaternary ammonium salt (Specific weight: 1.2 g/cm?®)
supplied by Siid Chemie AG. The coupling agent was the Polybond®
3200, 1%w maleic anhydride grafted propylene (MFI 115 g/10 min)
provided by Cromtom. The proportion of MMT-O and coupling
agent was 9.5% weight and 28.5% weight, respectively.

2.2. Composition of the clay reinforced polypropylene

The mixing of the materials was done in an internal Brabender
Plasti-Corder PLE 331 mixer at 200 °C and 90 rpm, during 20 min.
To achieve optimum dispersion, clay and coupling agent were
incorporated, allowed to mix for 2 min, and then the polymer was
added until the end of mixing time. The mixing processing condi-
tions were optimized according to an experimental design. The
screw speed varied in order to maximize the exfoliation index
which was determined from dynamic shear tests in the linear
viscoelastic domain [26]. Then, films were pressed and molded at
160 °C. Pure PP and nanocomposite films were obtained with the
same processing conditions to ensure a similar pre-oxidation state.

2.3. XRD

WAXS measurements were performed in a Philips X'pert MRD
diffractometer employing punctual CuKe radiation at 40 mA and
40 kV within the scanning angle of 2@ from 1.5 to 20°.

2.4. STEM
Cross sections of films were thinned down below 100 nm with

a JEOL EM9100IS ion slicer. Scanning Transmission Electron
Microscopy, STEM, images of nanocomposite were obtained by

using a JEOL 7400F SEM equipped with a STEM accessory at 30 kV.
Several areas were scanned to ensure that analysis was represen-
tative of the sample.

2.5. Oxygen permeability measurement

At standard temperature and humidity, (23 °C, 50% humidity),
oxygen permeability was measured in an OX-TRAN Model 2/21
MOCON permeameter, having 5.067 cm? of active area.

2.6. Thermal aging

In order to study only the thermal oxidation of non-stabilized
samples in the first approach, stabilizers were extracted using
a published method [27]. Extracted samples were exposed in air-
circulating ovens at atmospheric pressure. The thickness of the film
samples used to study the aging kinetics at 60, 80 and 100 °C was
75 um. To measure the oxidation profiles, 150 pum-thick films were
used.

2.6.1. FTIR analysis

In order to study the growth of carbonyl (CO) bands during
thermal oxidation, FTIR measurements were performed by using
a Brucker IFS 128 spectrometer in transmission mode, with a reso-
lution of 4 cm~! between 400 and 4000 cm ™. Concentration of the
carbonyl group was determined from the peak absorbance at
1713 cm~!, assuming this peak was assigned to carboxylic acids
forming [28,29]. According to Beer—Lambert law, the carbonyl
concentration is given by.

DO
€1713tppp

[COlq, = (1)
where [CO],y is the average carbonyl concentration expressed in
mol kg, DO, is the 1713 cm~! peak absorbance, t is the sample
thickness (in cm), ppp is the polypropylene density (0.90 kg 1-1), and
1713 = 300 1 mol~! cm~! is molar absorptivity. The highest studied
average carbonyl concentration was fixed to [CO]qy = 0.3 mol kg~!
because the sample is highly brittle beyond this value [30].

2.7. Micro ATR-FTIR

The oxidation profiles were measured with a Perkin—Elmer
Spectrum SpotLight 300 ATR-FTIR microscope. The high refractive
index of the germanium crystal and an effective sample-crystal
contact together permit a 6 pm spatial resolution [31]. To acquire an
image, both the crystal and the attached sample are moved in the
plane of the sample while the infrared beam scans different parts of
the sample. Spectra were recorded in reflection mode with steps of
1.56 pum, which corresponds to the size of the image sample grid.
Micro ATR-FTIR spectra were collected using two scans per pixel in
a wavenumber range between 4000 and 750 cm™ L. Samples were
coated with MECAPREX MA2 epoxy resin to improve sample
handling and prevent the brittle oxidized layer from being torn off,
and then polished under water with polishing paper.

Multiple micro ATR-FTIR spectra were made in the transverse
direction of the resin-PP-resin samples. To obtain the oxidation
profiles, the integration of the absorption values at 1713 cm~! was
done along the sample thickness. The measured profiles were
corrected using a baseline between 1600 and 1850 cm™), then
treated to convert their values from absorbance to concentration
units. The relative optic densities were calculated as the ratio
between the corrected optic density values on the sample thickness
and the corrected absorbance value on the sample surface.



3. Results
3.1. Material morphology

To determine the morphology of the nanocomposite WAXS
analyses were performed. To assess if the proportion of ethylene in
the composite was relevant, presence of the beta phase peaks
corresponding to ethylene crystalline structures was verified. Only
the characteristic alpha phase peaks corresponding to crystalline PP
were present at 14.04° (Miller index 110) and 16.9° (Miller index
040). There was no peak at 16° corresponding to the beta phase,
meaning that the quantity of beta phase present in the composite
was under the sensitivity limit. A volumic crystallinity close to 0.5
was measured for both materials.

A second 26 angle scanning was performed in order to charac-
terize the morphological state in the clay nanocomposite material
by measuring the interlayer spacing of the clay before and after the
material processing. The spacing variation between clay layers
could be directly correlated to filler dispersion through the poly-
meric matrix. As shown in Fig. 1, the measured nanoclay basal
distance was dy = 2.7 nm and the distance measured after pro-
cessing was d = 3.1 nm. The difference found between initial and
final interlayer distances suggests an intercalated/exfoliated
morphology [4]. To qualitatively confirm this affirmation, a STEM
study was performed. Fig. 2 shows a STEM image at 120,000x
magnification: the dispersion degree of the clay was characteristic
of intercalation with some signs of exfoliation. Aggregates
composed of 8 clay sheets, in average, are clearly distinguishable at
500,000x magnification (Fig. 3).

Based on both WAXS and STEM results, we conclude that the
nanocomposite has an intercalated/exfoliated morphology, which
corresponds to the most common mixture state reached in mate-
rials prepared by the melt intercalation method [32]. Fully exfoli-
ated morphology could be obtained when the nanocomposite was
obtained by in situ intercalative polymerization or by intercalation
of polymer or pre-polymer from solution methods [17,33].

3.2. Oxygen permeability

We were able to measure the oxygen permeability twice for the
pure polypropylene and three times for the nanocomposite, only at
room temperature. The mean values were 2.28 x 107" m? s~ Pa~!
and 117 x 1077 m? s=! Pa~! respectively. We observed a small,
although statistically insignificant, difference, due to the low

16 000 -
d=2.7nm
[ ]
12000 - ¢ “
3 . e *MMT-O
E ..' . oNC
= i L]
g 8000 : S
ot
Q A ‘
4000 -
0
0

Fig. 1. Differences of count numbers in WAXS tests between pure polypropylene and
composite samples.

Fig. 2. High magnification STEM image of a film cross section: nanoclay dispersion.
120,000 X photograph.

number of tests. Similar results were recently published for a clay-
nanoreinforced polypropylene system which had oxygen perme-
ability improvements between 10 and 40% [34]. Then, due to the
small difference between the oxygen permeabilities of pure PP and
nanoreinforced PP, the measurement dispersion and the unknown
influence of temperature, we applied an inverse method to deter-
mine the oxygen diffusion coefficient at 100 °C. This issue is widely
discussed in Section 4.3.

3.3. Characterization of the oxidation process

IR spectra in the carbonyl region of the matrix (Fig. 4a) and
nanocomposite (Fig. 4b) at various oxidation times at 100 °C reveal
the growth of oxidation products. One notices that an extra peak at
1740 cm™! is initially present in the nanocomposite spectra.

It can be attributed to the presence of saturated aliphatic esters
and y-lactones (1735—1750 cm™!) due to the organic modification
of the montmorillonite.

The thermo-oxidation kinetics were studied at 60, 80 and 100 °C
by following the carbonyl appearance as a function of time for the
polypropylene and the nanocomposite (Fig. 5). We note that the
resulting curves have the typical shape for a given temperature
regardless of polymer identity; that is, all curves display an
induction stage followed by a short period during which oxidation

Fig. 3. High magnification STEM image of a film cross section: nanoclay dispersion.
500,000 X photograph.
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Fig. 4. Evolution of the carbonyl group concentration at 1713 cm~' and temperature fixed at 100 °C. a) polypropylene, b) nanocomposite.

is strongly auto-accelerated and a steady-state period in which the
oxidation rate is almost constant. The induction time (t;) is
commonly used to characterize the oxidation rate. The t; value was
experimentally determined by the point at which the straight line
corresponding to the steady-state crossed the t-axis.

Induction time values for both polymers at the three defined
temperatures are included in Table 1. It appears that the induction
time values obtained for the nanocomposite are lower for all
exposure temperatures, indicating that the nanocomposite is
slightly more easily oxidized. The potential causes of this behavior
are discussed below.

In the first approach, it was necessary to assess the significance
of the induction time difference between both polymers. For this
purpose, we plotted in an Arrhenius diagram the induction times of
polypropylene and the nanocomposite with compiled literature
data (Fig. 6) [35—51]. From this coarse grain point of view, it clearly
appears that this difference observed in Table 1 between pure and
nanocomposites is not very significant since all induction period
values are within the scatter of points corresponding to induction
period values reported in the literature. As a result, the nano-
composite can be considered as a pure polypropylene for its
oxidation behavior according to this approach. Lastly, we concluded
also that the nanofiller has no influence on the activation energy, its
average value being close to 116 k] mol~.

However, the fact that smaller induction times were systemat-
ically found for the nanoreinforced materials led us to investigate
possible causes to explain the difference between both polymers
under study. To explore this divergence more precisely, the
carbonyl concentration was plotted as a function of time in a linear
scale for an exposure temperature of 100 °C (Fig. 7). It is noteworthy
that if the nanocomposite exhibits a lower induction period as we
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Fig. 5. Kinetic curves of carbonyl build up at 60, 80 and 100 °C for a) pure poly-
propylene, and b) nanocomposite.

have seen before, the nanocomposite also exhibits a lower oxida-
tion rate in the steady-state.

3.4. Experimental measurement of the oxidation profiles

Fig. 8a and b show carbonyl profiles for the pure and nano-
composite polypropylene, respectively. On the y axis were plotted
the relative absorbances that are the ratio between the absorbance
on each point at 1713 cm ™! and the absorbance on the surface of the
sample at 1713 cm™ . Such values were corrected by multiplying
each absorbance value by the ratio between the absorbance value
on the sample surface for [CO]4 = 0.3 mol kg~ obtained from the
simulation and the experimental absorbance value on the sample
surface at [COJgy = 0.3 mol kg~!. The simulation values were
previously corrected by adding the carbonyl concentration
measured in transmission mode at time zero before starting the
aging process.

It clearly appears that for both materials (Fig. 8) the thickness of
the oxidized layer is close to 15 um, which means that the oxidation
is heterogeneous after the end of the induction period and that the
oxidation kinetics are oxygen diffusion limited. To our knowledge,
it is the first time that an oxidation profile for PP was measured
with such accuracy.

By comparing Fig. 8a and b, it appeared that for the same
[COJay = 0.3 mol kg~ ! for instance, the nanocomposite showed
a thickness of oxidized layer (TOL) close to 10 um whereas the pure
PP TOL is around 17 pm. Such a difference could be related to the
oxygen diffusion. To explore the influence of the oxygen diffusion
coefficient on the shape of the oxidation profiles, and especially on
the thickness of the oxidation layer, we used an analytical
approached which is discussed in Section 4.

4. Discussion

To model oxidation behavior of the clay reinforced material, it is
necessary to consider the montmorillonite dual influence on the
oxidation phenomena. First, the montmorillonite can modify the
oxidation mechanism. Second, montmorillonite can affect material
physical properties, in particular, the oxygen diffusion coefficient

Table 1
Oxidation induction times for the polypropylene and composite films.
T(°C) PP (h) tNC (h)
100 33 25
80 220 150
60 1580 1300
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and the reaction-diffusion coupling. Both chemical and physical
influences of montmorillonite are studied in this work. Section 4.1
presents the kinetic model used to simulate the oxidation behavior
of the nanocomposite. In Section 4.2, model parameters and
comparison between the model predictions and experimental
results are discussed. Section 4.3 is dedicated to the discussion of
the influence of oxygen diffusion coefficient variations on oxidation
profiles as a function of sample thickness.

4.1. Kinetic modelling

The Closed Loop Model (CLM) was used to model oxidation
kinetics [16]. The model is derived from a standard mechanistic
scheme in which oxidation results from a chain reaction initiated
by hydroperoxide decomposition. Alkyl (P") and peroxyl (PO,)
radicals are the chain carriers. The three possible terminations
between these radicals are taken into account. The predictive
power of this model is now well established [14—16].

For the general case where termination may occur by bimolec-
ular reactions, the closed-loop mechanistic scheme involves seven
elementary reactions:

Initiation
POOH — 2P’ + H,0 + P=0 Unimolecular (Ia)
2POOH — P’ + PO, + H,0 4+ P=0 Bimolecular (Ib)
047 * PP P
« NC ,
= Simulation PP [POOH],= 1.2 10 mol kg-! e /
= = Simulation PP [POOH],= 1.2 105 mol kg [ a
—.— Simulation NC [POCH],= 2.4 10 mol kgt~ * & /
0,3 —— Simulation NC[POOH],= 2.4 10 mol kg™, A .
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3 e
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Fig. 7. Comparison between experimental data and simulation kinetic curves at 100 °C
and [POOH], influence on kinetic curves: [POOH]gnc: 2.4 x 107> and 2.4 x 1074 mol
kg, [POOH]gpp: 1.2 x 10~* and 1.2 x 10> mol kg~

Propagation

P" + 0, PO, (11)

PO, + PH—POOH + P' (1)
Termination

P’ + P"—Inactive products (V)

P’ + PO, — Inactive products (V)

PO;, + PO, — Inactive products (V1)

A set of ordinary differential equations is derived from this
scheme; it expresses the concentration changes of the involved
reactive species. Equations (2)—(4) correspond to the alkyl radical
(P"), peroxyl radical (PO;), and hydroperoxide (POOH) concentra-
tions respectively, and kiy, k1, k2, k3, k4, ks, and ks are rate constants
for reactions (I)—(VI).

40P — 244, [POOH) + kyy [POOHT ke, (P[0 + ks[O3 [PH
— 2ky[P']*~ ks [P'][PO}) )

AIP02) _ 1eb[POOH 2k, (P[0 — ka[PO3)(PH] — ks P'} PO
~ 2k, (PO} G
AIPOOH) _ 1y, POOH) 2y, [POOH+ k3 PO PH] (4)

The initial and boundary conditions input to solve the system of
differential equation were[PO,] = 0, [P'] = 0, [POOH] = [POOH],,
[PH] = [PH]y, [02] = [0y, where [PH], and [O,]; are the initial
concentrations of the [PH] and [O,] species respectively (see Table 3).

The oxygen diffusion effect could also be included in the CLM by
adding the oxygen diffusion term (Equation (5)). Do, is the coeffi-
cient of oxygen diffusion in the polymer. This coefficient is lower in
the nanocomposite than in the pure matrix.

2
% = Do, 662[222}> — ka[P'][02] + kg[PO5)? (5)

The CLM input is completed by adding an extra condition related
to the oxygen diffusion: at any time, [0y] = [0;]; for
x = —L/2andx = L/2, the origin of depth coordinates being taken
in the middle of the sample thickness.

Assuming that the source of the carbonyl group (CO) is the
decomposition of hydroperoxides, carbonyl concentration [CO]gy is
written as:

d[C0lg,

= [klu[POOH] +k1b[POOH]2] x [1 = Xc — MMT] x pp

(6)

where X_ is the crystallinity ratio of the sample expressed in volume
fraction (X; = 0.5), and MMT-O is the volume fraction of montmo-
rillonite equal to 0.08 in our case. Since oxidation occurs only in the
amorphous phase, the X, and MMT-O terms were included in
Equation (6) as correction factors related to the amorphous phase
fraction present in the polymer in which oxidation occurs. The
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Fig. 8. Relative optic density (OD) at 1713 cm™' of the experimental oxidation profiles at [CO],, = 0.1, 0.2 and 0.3 mol kg for a) pure polypropylene b) nanocomposite.

kinetic parameters’ values for pure polypropylene at 100 °C
reported by Richaud [52] are shown in Table 2.

4.2. Carbonyl build-up simulation

The initial hydroperoxide concentration [POOH]p can be
considered as the initial POOH concentration kinetically equivalent
to the concentration of all the radical sources initially present in the
material. Its value is generally lower than the sensitivity threshold
of available titration methods. It appears thus as an adjustable
parameter of the kinetic model. To illustrate the sensitivity of the
model to changes of this parameter, simulated carbonyl growth
curves are included in Fig. 7 adjusting [POOH], values for both pure
and reinforced polypropylene to fit experimental carbonyl growth
curves in Fig. 7. After optimization, we selected for the pure and
reinforced polypropylene [POOH]ppp = 1.2 x 10~% mol kg, and
[POOH]gne = 2.4 x 1074 mol kg™! respectively to achieve a good
agreement between the experimental and simulated CO values
(Table 3).

These results can be interpreted as follows: Montmorillonite
exerts a direct (catalytic effect by metallic impurities) or indirect
(thermomechanic history during processing) small influence on
nanocomposite pre-oxidation, leading to the reduction of the
induction time. A similar effect has been observed from the pres-
ence of residual Ziegler—Natta catalyst Titanium [53]. As a result,
the initial hydroperoxide concentration [POOH]p is slightly higher
in the nanocomposite than in the pure polymer, which explains the
observed difference in the oxidation behavior. It is noteworthy that
a slight catalytic effect of montmorillonite on PP photooxidation
was already reported in the case of intercalated and exfoliated
samples [10,54].

The steady-state behavior is well simulated without parameter
modifications (Fig. 7). The disparity between PP and the nano-
composite is only due to the difference in the amorphous phase

concentration (see Equation (6)). We recall that in a closed-loop
process, the steady-state behavior is independent of the initiation
rate and the [POOH]y value. Experimental observations are thus in
good agreement with theoretical prediction.

4.3. Oxidation controlled by diffusion

When the oxidation process is controlled by oxygen diffusion,
oxidation rate and oxygen diffusion competition leads to an
oxidation profile formation. In other words, oxidation is likely
confined to a superficial layer when film thickness is higher than
20 pm as predicted by [15]. According to the measured oxidation
profiles (Fig. 8a and b), there is a difference between the thickness of
the pure polypropylene and the oxidized nanocomposite layer. In
that case, it should be possible to describe the oxidation behavior of
both materials using the oxygen diffusion coefficient as fitting
variable, which will be different for each material. Since permeation
tests displayed relatively high uncertainty, we decided to determine
the oxygen diffusion coefficients of pure and nanoreinforced poly-
propylene from the kinetic model, using an inverse method.

Fig. 9 illustrates the influence of oxygen diffusion coefficient
value on the oxidation profile shape at 100 °C and a [CO],y equal to
0.3 mol kg~ for the pure polypropylene. Several oxygen diffusion
coefficient values Dy, ranging from 2 x 107 m? s7! and
2.0 x 107" m? s~ ! were used in simulation. It is noticeable that for
such Dy, values, the profile shape radically changes: high Dy,
generates wide profiles, but for smaller values of Dy, the obtained
oxidation profiles are narrowed. It is clear that the kinetic model is
sensitive enough to discern small changes in Dy, and their influ-
ence on the shape of the oxidation profiles. In this way it was
possible to identify the oxygen coefficient value for each of the
materials, and Dp, = 2.0 x 10712 m? s~1 and 1.2 x 10712 m? 5!
were found for the polypropylene and the nanocomposite respec-
tively (Table 3).

Table 2

Kinetic constants of the kinetic closed loop model.
T (°C) kia (s kip (1 mol s~1) ko (1mol s 1) ks (1 mol s 1) k4 (1 mol s 1) ks (1 mol s 1) ke (1 mol s~ 1)
100 1.5 x 1077 1.0 x 1074 1.3 x 107 7.0 x 107! 1.0 x 10'° 2.6 x 10° 3.0 x 10°




Table 3
Material parameters for the kinetic closed loop model.

[PH]o [POOH], X. MMT-0 S, Do, at 100 °C
(molI"")  (mol 1) (molI-'Pa~') (m?s7!)
PP 20 12x10% 05 0 1.15 x 10~/ 2.0 x 1012
NC 20 24x10% 05 0.1 115 x 1077 12 x 10712
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Fig. 9. Influence of the oxygen diffusion coefficient Dy, variation on the simulated
carbonyl distribution in the thickness of 150 um-thick PP films at [CO],, = 0.3 mol kg,

Fig. 10 shows the theoretical and experimental oxidation
profiles in mol kg~! for three different exposure times, corre-
sponding to the average concentration in the whole thickness of the
film [COJqy = 0.1, 0.2, and 0.3 mol kg~ .. These concentrations were
measured in transmission mode using the Beer—Lambert law. The
integration values of [CO]qy along the 150 um-sample thickness
were taken from the y-axes of Fig. 10a and b. Experimental values
were treated using a single adjusting factor equal to the experi-
mental absorbance in the sample thickness to the simulated [CO],y,
on the sample surface for an average carbonyl concentration of
[COJay = 0.3 mol kg~ Fig. 10a and b display the last 20 ym (from the
surface) of pure and nanocomposite polypropylene cross sections,
respectively.

3 -
a PP
DO;=2010" ms"

[CO),, =0.0mol kg™
[CO],, = 0.1 mol kg™’
[CO),, = 0.2 mol kg™’
[COls, = 0.3 mol kg’
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m'  — — Simulation [CO),, = 0.2 mol kg
------ Simulation [CQ],, = 0.3 mol kg™
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As shown in Fig. 10, a good agreement between simulation
and experimental data was obtained by using for pure poly-
propylene, Dg,pp: 2.0 x 10712 m?s~! and for nanocomposite,
Do,nc : 1.2 x 10712 m? s~1. Some noise was found in the profile
simulation of the nanocomposite; this is attributed to mixing
effects related to the clay dispersion in the matrix and to the quality
of the sample surface when the ATR testing was performed.

Since the TOL was 17 um for the PP and 10 um for the nano-
composite, it is important to point out that the TOL results from the
competition between the oxidation rate and O, diffusion (see
kinetic model where the differential equations included oxidation
and Fick O; diffusion). However, there is no theoretical reason to
assume that nanofillers increase the oxidation rate since this
property is linked to the propagation (k3) and termination (kg) steps
of the oxidation mechanism and the amorphous phase content.
This may be why nanofillers act only as “defects,” leading to
a decreased induction period (increase of [POOH]y in the modeling).
Furthermore, in Fig. 7, the experimental oxidation rate corre-
sponding to the slope of [CO]yy build-up after the induction period
measured on thin films (75 um) shows a decrease in the case of NC
compared to PP which is explained by the decrease of the amor-
phous phase content. At last, from the modeling point of view, an
oxidation rate increase (by increasing k3 for instance) does not
contribute to a good description of the oxidation profiles. As
a result, the simulated profile curves are unique for a good fit of all
experimental data (carbonyl build-up and profiles).

5. Conclusions

Thermal oxidation of pure polypropylene and its nanocomposite
was studied experimentally and simulated with a kinetic model.
The first objective of this study was to determine possible effects of
montmorillonite on the oxidation kinetic behavior of poly-
propylene at moderate temperatures. Slight differences between
induction times of polypropylene and its nanocomposite were
found. They can be attributed to a presumed catalytic effect of
montmorillonite impurities on PP oxidation or simply to a differ-
ence in thermomechanical histories between PP and the nano-
composite. From a modeling point of view, this effect can be taken

b 3]
NC
DO,= 1210 m%"
[CO),, = 0.0mol kg™’

25 4 * ;
* s [COJ,,=01molkg
K ®  [CO],,=02molkg"
‘s & [COl,,=03molkg’
24 % —--—-Simulation [CO],, = 0.0 mol kg
- ® . —— Simulation [CQJ,, = 0.1 mol kg
= a. — — Simulation [CO],, = 0.2 mol kg’
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Fig. 10. Theoretical and experimental oxidation profiles in pure and reinforced polypropylene films for [CO],, equal to 0.1, 0.2, 0.3 mol kg~': a) pure polypropylene, simulated with
Do,pp : 2.0 x 10712 m? s~1. b) Nanocomposite, simulated with Do,nc : 1.2 x 10712 m? s~1.



into account by increasing initial hydroperoxide concentration
[POOH]p. As a result, montmorillonite could be considered as a filler
which leads an oxidation rate increase only during the induction
period.

The second objective was to study the physical influence of
montmorillonite in polypropylene and its effect on oxidation
profiles. By using the ATR-FTIR microscope, evidence was obtained
that the oxidized layer thickness is close to 17 um for pure poly-
propylene and 10 pm for the nanocomposite for an exposure at
100 °C. This difference has been attributed to the decrease of the
oxygen diffusion coefficient by adding montmorillonite. This
hypothesis was examined by simulating carbonyl profiles. A good
agreement between experimental and simulated profiles was
obtained by using an oxygen diffusion coefficient value (Dy,) for
the nanocomposite 40% smaller than that for pure polypropylene.
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