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A B S T R A C T

This study aims at improving a coupling strategy between Smoothed Particle
Hydrodynamics (SPH) with Finite Element (FE) methods in order to model
violent Fluid-Structure Interaction (FSI) problems. An analysis of the SPH-
FE coupling from the energetic point of view is carried out. The purpose of
this work is to quantify the loss/gain in energy at the fluid-structure interface,
within the fluid, and within the structure. Interface energy is especially com-
pared to other energy components, highlighting the importance of this term.
Different structure models are considered. Additionally, few proposals are
made for improving the quality and efficiency of the coupling strategy. Inves-
tigations are performed on 2D simulations of both academic and experimental
test cases.

c© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Coupled fluid-structure interaction effects need to be predicted and possibly mitigated in a wide range of applica-
tions: aerospace, nuclear and ocean engineering, biomechanics, car industry. Different methods have been developed
in order to model coupled phenomena for which strong reciprocal effects occur. The present paper focuses on SPH-FE
coupling strategy to model violent fluid-structure interactions involving complex free surface flows with deformable
structures. On the solid side, a classical FE method [6] is used. On the fluid side, the SPH method is used to easily
consider complex free surface flows. This method has been introduced at the end of the 70’s by Gingold and Mon-
aghan [18] and Lucy [28]. The meshless and Lagrangian features of SPH naturally solve the problem of fluid/solid
grid compatibility. Neither contact algorithms between fluid and solid nor free surface tracking are needed. This
property results in a significantly reduced complexity of the fluid-structure interface treatment. Another advantage of
SPH resides in its compressible feature, allowing for considering actual compressible effects when needed and also
permitting the incompressible fluid assumption (weakly-compressible approach). Note also that this coupling strategy
leads to a purely Lagrangian description in both media.
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Various SPH-FE coupling methods have already been proposed since the 90’s (see for instance Johnson [21]
and Attaway et al. [5]). Most popular strategies are based on a master-slave coupling, in which contact forces are
used to couple SPH particles and Finite Element meshes [19, 45, 8]. Each method has its own specificity (see for
instance [12] where FE nodes are considered as SPH particles). Fourey et al. [16, 17], Yang et al. [43, 44] and
more recently Li et al. [23, 25] showed the interest of SPH-FE coupling for complex FSI problem modelling without
contact algorithms. Nevertheless some problems still persist. Coupling methods need to be improved regarding the
computation speed [32], but also regarding the robustness [17]. Indeed, high frequency fluid loads tend to destabilize
the solution. Therefore, sufficient dissipation of high frequencies should be added in the structure to stabilize the
coupling. Furthermore some improvements are needed to build more robust strategies regarding a better load transfer
from the fluid to the solid.

In this work, we analyse an SPH-FE coupling method from the energetic point of view. According to Farhat and
Lesoinne [15] and Piperno et al. [37, 38] energy conservation and information transfers are primordial for coupling
performances, accuracy and stability. In their work on coupling algorithms, Michler et al. and Degroote et al.
[31, 13] underlined that partitioned algorithms do not permit the exact satisfaction of interface conditions, contrary to
monolithic schemes. Any fluid-structure interaction model displays losses or gains of energy at the interface between
fluid and deformable body. In their work, Li et al. [23, 24, 25] proposed a coupling strategy imposing an energy
conservation at the interface. Conversely, Fourey et al. [16, 17] did not impose such a condition but succeeded
in obtaining satisfactory results. Li et al. [25] did not make a coupling energy estimation analysis. We consider
that energy losses or gains should still be estimated in respect to other dissipative energies, to better understand the
importance of enforcing conservation at the interface. Ensuring the rightful energy exchanges between the solid and
the fluid is fundamental to build a correct model for fluid-structure interactions. Therefore the energy conservation
properties of our SPH-FE coupling strategy are investigated. We first quantify the interface energy by following the
same process as the one in Antuono et al. [4]. Interface coupling energy is then compared to other energy components,
especially with the numerical dissipation due to the stabilization of the SPH scheme and with the total fluid energy.
Influence of various coupling parameters are also investigated. Finally various techniques for the determination of
pressure loads on the deformable body are proposed and discussed.

This paper is organized as follows : section 2 presents energy considerations for SPH-FE coupling strategies. It
also provides a definition of the interface coupling energy. Then section 3 introduces an energy balance for SPH
models. In section 4 an energetic analysis of our present coupling strategy is performed on an academic test case from
Scolan [40] and an experimental one from Antoci [1]. Then section 5 proposes some improvements of the SPH-FE
coupling strategy proposed, through a new loading method. Numerical results are discussed in terms of robustness
and efficiency.

2. Energy considerations for SPH-FE coupling strategy

The discussion revolves around the coupling strategy adopted by Fourey et al. [17]. Classical partitioned ap-
proaches are used, aiming at developing a coupling strategy that is robust and compatible with any kind of SPH and
FE solvers.

2.1. Coupling strategy
The deformable body is modelled using the open-source generalist software Code Aster developed by EDF

(www.code-aster.org). The fluid part is modelled using the SPH-flow solver, jointly developed by the LHEEA Lab.
of Ecole Centrale Nantes and NEXTFLOW Software [36, 35]. As illustrated in Fig. (1), both SPH and FE solvers are
considered as black boxes exchanging fluid pressure loads and structure node positions and velocities with a dedicated
third program (coupling program) responsible for managing the data exchanges needed (MPI communications). This
strategy eases the interchangeability of solvers and avoid any specific hard-coding. As a result, and contrary to Li et
al. [24] or Yang et al. [43, 44] for instance, each solver can be easily modified and improved independently from
each other.

2.2. Treatment of deformable bodies
From the SPH algorithmic point of view, a deformable body at instant t is considered as a rigid wall, but with

specific local deformation velocities (and node positions) provided by the FE solver. It is possible to choose any
boundary method, ghost particle method [26, 10] or NFM [29, 30, 11]. No other treatment is prescribed to treat the
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deformable body interface. Especially, no contact algorithm dedicated to avoid material interpenetration is therefore
needed, contrary to [19] for instance. As proposed in [34], the pressure loads Pk applied to each FE structure mesh is
computed using the SPH fluid pressure solution averaged from the near face boundary area. More precisely, pressure
loads are defined as an average of all particles seen by the wet body panel (Fig. (2)) within a distance R from the
panel, where R is the kernel radius used is the SPH spatial operators:

Pk =
1

Na

Na∑
i=1

Pi, (1)

where Na is the number of particles within the averaging area.
The average pressure area is chosen as proportional to R for spatial convergence purposes, since R is a convergence

measure in the SPH method. As emphasized in [34], pressure averaging tends to smooth the irregularities near the
wet body panel, which is important in the present work as pressure load irregularities may be responsible for coupling
instabilities. A sufficient number of particles is necessary for each panel, of which the size has to be adapted in order
to capture the physical load variations. The influence of the number of particles per panel onto the coupling robustness
will not be investigated here, but it could be the purpose of a future work.

Fig. 1. SPH-FE coupling strategy. Example involving 8 cores and 4 cores respectively for
SPH and FE solvers. A single core is dedicated to the coupling management (coupling
program).

Fig. 2. Averaged pressure calculation on a wet
body panel k.

2.3. Coupling algorithm
A Conventional Parallel Staggered (CPS) procedure is used in this study (see Fig. (3)). The scheme is described

in Farhat et al. [15] for mesh-based methods. The CPS algorithm has been shown to be less stable than a classical
sequential procedure [17]. The alternating operation of a sequential algorithm introduces a shift of the solution to
improve the stability. The sequential procedure also corresponds to the algorithm that best fits with the implicit
nature of the FE solver. Indeed the CPS algorithm makes the assumptions that the fluid loading F f luid/body does
not vary between two instants (i.e. Fn+1

f luid/body ≈ Fn
f luid/body). Such an approximation is acceptable since the weakly

compressible approach imposes very small time steps. Furthermore a parallel procedure mitigates the CPU costs. The
computation time of fluid and solid solvers are overlapped by a synchronous updating (i.e. are not added together).

To maintain the coupling stability using parallel procedures Fourey et al. [17] propose to add some diffusion in
the FE time integration scheme. Here we focus on two classical implicit schemes, Newmark and Hilber-Hughes-
Taylor (HHT) [20]. The latter one is less diffusive but it reduces high frequency oscillations without affecting the low
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frequency domain. In both schemes the diffusion is controlled by a parameter αs ∈ [−0.3, 0], αs = −0.3 corresponding
to the maximal diffusion. The numerical diffusion is actually needed to stabilized the solution when the structure is
subjected to high frequency loads. This is particularly relevant for coupling with the SPH method which is usually
responsible for acoustic pressure waves due to its weakly-compressible nature, which can affect the coupling stability.

In practice the time step is the same for fluid and solid solvers. As the maximum fluid time step allowed is expected
to be smaller than the solid one, SPH-Flow imposes its time steps to Code Aster. This condition is always satisfied
using an explicit resolution in the fluid and an implicit one in the solid. The fluid solver sends its time step value and
pressure loads to the FE solver and receives the body node positions and velocities. Each solver then simultaneously
evolves from tn to tn+1.

Fig. 3. CPS coupling algorithm

Recently Li et al. [24] proposed a specific coupling strategy enforcing energy conservation at the interface.
This technique is strongly intricated with the FE model, and therefore implies hard-coding within the solid solver.
Conversely, the weak-coupling strategy retained in this study is flexible, easy to implement and compatible with any
kind of SPH schemes and boundary condition treatment. The solid solver is considered as a ”black box” receiving
fluid loads and returning updated solid positions and velocities, so that any FE software can actually be used. No
additional CPU time is introduced as no interface treatment is required.

2.4. Coupling algorithm

Antuono et al. proposed a study related to energy conservation in the SPH method [4], in the absence of solid
bodies and for the δ-SPH scheme. Their work analyses the contribution of this term from the continuity equation,
highlighting that the diffusive term is generally small and linked to the excitation of spurious high-frequency acoustic
waves. Then Cercos-Pita et al. [9] performed this investigation in presence of rigid body interactions, highlighting
that imposing boundary conditions using ghost particles introduces some extra-terms in the energy equations. These
extra-terms are actually related to the fluid-structure interactions.

Here energy conservation properties are analysed by considering the case of a fluid interacting with a deformable
body through SPH-FE coupling. The energy terms are expressed for two SPH schemes, with a particular focus on
internal and boundary energies. The analysis start with the δ-SPH method [3, 4], before making its analogy with
the Riemann-SPH [41, 22] scheme actually used throughout this paper. An energy balance over the entire domain is
considered (fluid + solid), as the global domain must ensure the conservation of energy (Fig. (4)). In the absence of
outer contributions, several sources of energy creation or dissipation exist. The first source comes from the inside of
each sub-domain. It corresponds to numerical diffusions and can be expressed as an internal irreversible energy. The
second source of dissipation / creation comes from the treatment of the fluid structure interface.

Determining the numerical diffusion in the SPH method is relatively straightforward, contrary to the FE method
which requires to compare the energy at time t to its initial value. Note that the numerical diffusion in each subdomain
is negligible in comparison with other terms (at least for sufficiently converged solutions in these cases). In the
following simulations, the numerical diffusion within the fluid is expected to be higher than within the solid. Indeed
conservation properties are significantly better in the FE method than in the SPH one.
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Fig. 4. Energy balance over the global domain

The second source of dissipation/creation is more subtle, as emphasized in this work. From the FE point of view
the interface definition is quite obvious, as it corresponds to the wet surface of the deformable solid (Fig. (5)) that is
loaded with the fluid pressure. The energy mathcalE f luid/body transferred at the interface follows:

dE f luid/body

dt
= −

∑
k∈B

PkS k ~nk. ~Vk, (2)

where B is the set of wet faces of surface S k, ~nk the local normal, ~vk the local velocity and Pk is the fluid pressure
applied on S k (Fig. (2)).

However, to define the exact location of the interface is not obvious from the SPH method point of view. In a
first approach, one can consider that it coincides with the wet surface (i.e. with the FE faces). Under this assumption
the energy transmitted at the interface could be the same from SPH (Ebody/ f luid) and FE (E f luid/body) point of views.
Nevertheless, the spatial operators of SPH make that the deformable body does not coincide exactly with the area
of application of solid forces on the fluid. This area is located in the near boundary region (Fig. (5)). In a second
approach (more Hamiltonian) the interface could be considered as the whole set of particles contributing to solid
boundary conditions (i.e. the particles having a support kernel truncated by a FE face). It is then possible to compute
the power actually transmitted from the deformable solid to each fluid particle.

The fluid-structure interface treatment is therefore quite subtle as the energy transmitted through the interface
should be computed on different locations. Moreover this energy does not depend exclusively on pressure forces but
also on other fluid characteristics as discussed further. At convergence the SPH and FE interface energies should tend
to be the same:

Ebody/ f uid ≈ E f luid/body, (3)

otherwise an interface coupling energy EInter f ace can be defined as:

EInter f ace = Ebody/ f uid − E f luid/body. (4)
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Fig. 5. Fluid-structure interface from the solid (left) and fluid (right) point of views.

3. Energy balance in δ-SPH and Riemann-SPH schemes

A weakly-compressible and inviscid fluid is considered in this study. Navier-Stokes equations are therefore re-
duced to the following Euler equations (written in a moving Lagrangian referential):

d~x
dt

= ~v, (5)

dρ
dt

= −ρ~∇.~v, (6)

d~v
dt

= ~g −
~∇P
ρ
, (7)

where ~x, ~v, ρ and P are respectively the position, velocity, density and pressure. This system is closed using the
following equation of state:

P =
ρ0C2

0

7

( ρρ0

)7

− 1

 , (8)

where ρ0 and C0 are respectively the reference density and speed of sound.
The time advance is performed explicitly using a 4th Runge-Kutta scheme. The time step should therefore respect

the following CFL condition:

∆t < CFL
R

Co
, (9)

where R is the kernel radius and CFL is the Courant number taken as CFL = 0.375. This feature leads classically
to very small time steps. For cases involving violent fluid-structure interaction problems, we usually expect the fluid
time step to remain smaller than the solid one.

The energy balance for two SPH schemes is provided in this section, with emphasis on irreversible internal and
boundary energies. The contributions of each energy term will be expressed independently of each other. We start
with the delta-SPH method, before its analogy with a Riemann-SPH scheme which is then used throughout this study.
This section proposes a methodology to estimate all energy components using the discrete equations. The total energy
can be expressed as the sum of three terms: potential, kinetic and internal energies.

ETOT = EP + EK + EI . (10)
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3.1. δ-SPH scheme

The SPH method discretises the fluid with a set of particles. As proposed by Antuono et al. [3], the set of discrete
equations for a particle i is defined as:

d~xi

dt
= ~vi, (11)

dρi

dt
= −ρi

N∑
j=1

(~v j − ~vi). ~∇iWi jω j +

N∑
j=1

~ψi j. ~∇iWi jω j, (12)

ρi
d~vi

dt
= ρi~fi −

N∑
j=1

(Pi + P j) ~∇iWi jω j +

N∑
j=1

Πi j ~∇iWi jω j, (13)

with

Πi j = αδhC0ρ0
~xi j. ~vi j∥∥∥ ~xi j

∥∥∥2 and ~ψi j = 2δδhC0

[
(ρ j − ρi) −

1
2

(~∇RLρi + ~∇RLρ j). ~xi j

]
~xi j∥∥∥ ~xi j

∥∥∥2 , (14)

where ρi,ωi,~xi and ~vi are respectively the density, volume, position and velocity of the particle i. Here ~xi j = ~xi − ~x j

and ~vi j = ~vi − ~v j. Furthermore coefficients δδ and αδ control the order of magnitude of the diffusive and viscous terms
respectively. W is a Wendland kernel function [42], h the smoothing length and N represents the number of neighbour
particles in the compact support of W.~∇RL is the renormalized gradient operator [39]. Here the only volumic force is
the gravity: ~fi = ~gi.

Free-slip boundary conditions are considered throughout this study. Effects of structure deformations onto the fluid
are imposed through the boundary conditions exclusively, so that they represent a key point in the proposed coupling
strategy. Boundary conditions are imposed through the use of ghost particles [26, 10]. These particles are used to
complete the kernel support of a particle located near a boundary, in order to enforce the kinematic and dynamic
boundary conditions. Theoretically, the ghost particle pressure should take into account the local body acceleration
[7? ]:

∂P
∂n

= ρ

d~Vwall

dt
.~n − ~g.~n + (~Vwall − ~V).

dn
dt

 , (15)

where ~n and ~Vwall are respectively the local normal and the velocity of the wall. Nevertheless for the following appli-
cations considered in this work, we suppose that the contributions d~Vwall

dt .~n and (~Vwall − ~V) dn
dt are negligible compared

to other components. As a result, the ghost particle pressure PG(i) and velocity ~vG(i) are defined as:

PG(i) = Pi − ρi(~gi.~n)
[
(~xi − ~xG(i)).~n

]
, (16)

~vG(i) = ~vi + 2(~Vwall.~n − ~Vi.~n)~n. (17)

For complex geometries, the creation of ghost particles is not straightforward and results in a possibly large
algorithmic complexity. We refer the reader to [33] for more details on this particular point.

3.1.1. Potential energy
The variation of potential energy is classically defined as:

dEP

dt
= −

NFP∑
i=1

ρiωi~vi.~gi, (18)

where NFP is the total number of particles in the fluid domain.
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3.1.2. Kinetic energy
The variation of kinetic energy per unit mass Em

K is expressed as:

ρ
dEm

K

dt
= ρ~V .~g − ~V ~gradP + ~V . ~divτ. (19)

The right hand side terms in Eq. (19) correspond respectively to the power of volumetric forces, the power of
pressure forces and the power of viscous constraints. In this study an inviscid fluid is considered (i.e. τ = 0). The
variation of internal energy per unit mass therefore writes:

ρ
dEm

K

dt
= ρ~V .~g − ~V ~gradP. (20)

The δ-SPH scheme assumes a constant mass for each particle i (i.e. dmi
dt = 0) with mi = ωiρi. In these conditions

the variation of global kinetic energy within the whole domain writes:

dEK

dt
=

NFP∑
i=1

ρiωi~vi.~gi −

NFP∑
i=1

N∑
j=1

(Pi + P j)~vi. ~∇iWi jωiω j +

NFP∑
i=1

N∑
j=1

Πi j~vi. ~∇iWi jωiω j, (21)

where the artificial viscosity is considered as a pressure-like term Πi =
Πi j

2 . Note that this equation can directly be
obtained by multiplying the momentum equation by the velocity and then by summing over the fluid particles.

3.1.3. Internal energy
The variation of internal energy per unit mass Em

I is expressed as:

dEM
I

dt
= −Pdiv~V + τ : D + r − div ~Q. (22)

where r is a heat source, ~Q a heat surface flux, τ : D the viscous dissipation, and −Pdiv~V a compressible power. In

this study both r and ~Q are assumed to be zero, and an inviscid fluid is considered (τ : D = 0). The variation of
internal energy within the whole domain therefore writes:

dEI

dt
= −

NFP∑
i=1

N∑
j=1

Pi(~v j − ~vi). ~∇iWi jωiω j +

NFP∑
i=1

N∑
j=1

Πi j(~v j − ~vi). ~∇iWi jωiω j. (23)

Let us focus on the first term of Eq. (23). Following [4] it is possible to distinguish two parts:

−

NFP∑
i=1

N∑
j=1

Pi(~v j − ~vi). ~∇iWi jωiω j =

NFP∑
i=1

ωi

ρi
Pi

dρi

dt︸         ︷︷         ︸
dEC

dt

−

NFP∑
i=1

N∑
j=1

Pi

ρi
~ψi j. ~∇iWi jωiω j︸                         ︷︷                         ︸
Pδ

, (24)

where Pδ represents the power associated to the diffusive term in the mass conservation equation:

Pδ =

NFP∑
i=1

N∑
j=1

Pi

ρi
~ψi j. ~∇iWi jωiω j, (25)

and EC is a reversible compressible energy due to the compressible feature of the SPH method:

dEC

dt
=

NFP∑
i=1

ωi

ρi
Pi

dρi

dt
, (26)

however in a weakly-compressible SPH method this energy is expected to remain rather small.
It is now possible to express the internal energy into two parts EI = EC + EV as:

dEV

dt
= −Pδ +

NFP∑
i=1

N∑
j=1

Πi j

2
(~v j − ~vi). ~∇iWi jωiω j. (27)

EV is an irreversible internal energy. It represents the energy lost to stabilize the SPH method. It does not affect
the consistency of the SPH scheme since it tends to vanish as the spatial resolution increases.
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3.1.4. Boundary energy
Considering solid boundaries, a certain amount of energy can be lost or gained by the fluid. This energy is called

Ebody/ f luid. Using the ghost particle method, [10], the variation of the total energy verifies:

dETOT

dt
=

d(EP + EK + EC + EV )
dt

=
dEbody/ f luid

dt
, (28)

so that

dEbody/ f luid

dt
= −

NFP∑
i=1

Ng∑
j=1

(Pi + P j)~vi. ~∇iWi jωiω j +

NFP∑
i=1

Ng∑
j=1

Πi j~vi. ~∇iWi jωiω j

−

NFP∑
i=1

Ng∑
j=1

Pi(~v j − ~vi). ~∇iWi jωiω j +

NFP∑
i=1

Ng∑
j=1

Πi j

2
(~v j − ~vi). ~∇iWi jωiω j

= −

NFP∑
i=1

Ng∑
j=1

(Pi~v j + P j~vi). ~∇iWi jωiω j +

NFP∑
i=1

Ng∑
j=1

Πi j

2
(~v j + ~vi). ~∇iWi jωiω j, (29)

where Ng is the number of ghost particles inside the kernel support.
Note that the wall velocity does not directly appear in this formulation: it is included within the ghost velocity ~v j

Using this approach, the transfer of energy from the solid to the fluid is estimated using all fluid particles having a
truncated kernel near the boundary. Furthermore, nothing formally imposes dEbody/ f luid

dt and dE f luid/body

dt to be equal. There
is indeed no direct correlation between Eq. (29) and Eq. (2). One can only expect that these two quantities are as
close as possible. Furthermore considering fixed and flat boundaries without gravity leads to Ebody/ f luid = 0. Indeed
ghost particles have the same pressure as their mother particles, and an opposite normal velocity. The conservation of
the total energy is therefore ensured: dETOT

dt = 0.

3.1.5. Summary
The energy components of the δ-SPH scheme have been presented separately in detail, highlighting the presence

of a boundary term which represents the power yielded or received through the solid boundaries. Different dissipative
contributions which take part in increasing the irreversible internal energy have also been outlined. This dissipative
energy is critical for the stability of SPH simulations.

3.2. Riemann-SPH scheme

The simulations discussed in the next sections are performed using a Riemann-SPH scheme [41]. Here, the
formulation proposed by Leduc et al. [22] is used, ensuring the local mass conservation. We show here that this
scheme is very close to the δ-SPH one. The Riemann scheme considered is defined by the following system:

d~xi

dt
= ~vi, (30)

dρi

dt
= ωi

N∑
j=1

2(~ve − ~vi). ~∇iWi jω j, (31)

dmi

dt
= 0, (32)

dmi~vi

dt
= ωiρi~g −

N∑
j=1

2Pe ~∇iWi jωiω j, (33)

where Pe and ~ve are the linearized Riemann problem solutions. Eq. (32) leads to:

dρi

dt
= −

ρi

ωi

dωi

dt
= −

N∑
j=1

2ρi(~ve − ~vi) ~∇iWi jω j. (34)
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These mass and momentum conservation equations are very similar to the ones in δ-SPH scheme Eq. (12) and
Eq. (13). Using:

~ψ
′

i j = −ρi(2~ve − ~vi − ~v j), (35)

Π
′

i j = (Pi + P j − 2Pe), (36)

the mass and momentum conservation equations write:

dρi

dt
= −ρi

N∑
j=1

(~v j − ~vi) ~∇iWi jω j +

N∑
j=1

~ψ
′

i j.
~∇iWi jω j, (37)

ρi
d~vi

dt
= ρi~gi −

N∑
j=1

(P j + Pi) ~∇iWi jω j +

N∑
j=1

Π
′

i j
~∇iWi jω j. (38)

The analogy with Eq. (27) and Eq. (29) for internal irreversible and boundary energies is proposed here as:

dEV

dt
= −Pδ′ +

NFP∑
i=1

N∑
j=1

Π
′

i j

2
(~v j − ~vi). ~∇iWi jωiω j, (39)

dEbody/ f luid

dt
= −

NFP∑
i=1

Ng∑
j=1

(Pi ~v j + P j~vi). ~∇iWi jωiω j +

NFP∑
i=1

Ng∑
j=1

Π
′

i j

2
(~v j + ~vi). ~∇iWi jωiω j. (40)

3.3. Summary
This section was dedicated to energy considerations inside SPH schemes. It is now possible to compute the energy

transferred at the solid interface (Ebody/ f luid). Consequently, EInter f ace can also be estimated for several test cases using
Eq. (4). This study aims at analysing the amount of energy introduced or dissipated compared to the other energy
components. Compared to the model proposed by Cercos-Pita et al. [9], all energy components are directly expressed
using their continuous formulations. This difference provides the addition of an extra boundary term E∂Ω

V in Eq. (23):

E∂Ω
V =

NFP∑
i=1

Ng∑
j=1

Πi j

2
(~v j − ~vi) ~∇iWi jωiω j. (41)

In [9], the dissipated energy from the pressure-like term Pi =
Πi j

2 does not involve the boundary conditions in
the internal energy equation. However the model consistency is ensured: at convergence this term tends to disappear
(Πi j → 0).

4. Energetic study of a SPH-FE coupling strategy

Two bi-dimensional test cases are considered here to analyse the energetic properties of the SPH-FE coupling
strategy proposed. The influence of the dissipation parameter αs inside the FE time integrator schemes (Newmark
and HHT) is also investigated.

4.1. Deformable beam impact
The first test case proposed is a violent free surface impact of a deformable beam structure driven at high velocity

[40], as illustrated in Fig. (6).
Tab. (1) summarizes the material characteristics and the simulation parameters used. The beam is made of

aluminium and impacts the free surface initially at rest with an inclination angle β = 10 degrees. The motion is
imposed at the two extremities with a downwards vertical velocity Vd = 30 m.s−1. The three markers a, b and c
correspond to pressure probes. The structure mesh is composed of 4 width-wise and 40 length-wise elements. The
tank is taken as sufficiently large to avoid acoustic wave reflection onto the deformable body. In order to limit the
number of particles involved in this test case a varying spatial resolution is used by concentrating the finest resolution
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in the impact area as proposed in [34], see Fig. (6). Note that all the equations proposed in the present paper and
related to energy always imply reciprocal interactions between particles i and j, so that the scheme is intrinsically
conservative. This fact still holds when using variable kernel radii (so that the energy conservation is guaranteed also
in this particular case) since the discrete approximation of a function and its gradient is performed using a symmetric
form by replacing R with Ri j =

Ri+R j

2 in ~∇W(~xi − ~x j,R).

L 0.6 m
e 0.04 m

Young Modulus E 67.5 GPa
Poisson Coefficient ν 0.34

ρbeam 2700 kg.m−3

ρwater 1000 kg.m−3

C0 1500 m.s−1

CFL number 0.375
R/∆xS PH 3.0

Table 1. Physical and numerical parameters for the deformable beam impact.

Fig. 6. Deformable beam impact configuration.

Fig. (7) provides the midpoint displacement time history of the beam for different spatial resolutions in the fluid.
For ∆xS PH = 1 mm in the impact area, results are close to the semi-analytical solution provided in [40], obtained
by combining the hydrodynamic Wagner model and a linear model of elasticity for thin shells. Good agreements
are also found with results from [25] which enforced energy conservation at the fluid-structure interface. The beam
deformation increases in the first instants, in accordance with the increase in pressure. It is nevertheless noted that
the deformation of the plate in its midpoint finally appears slightly lower in the case of SPH-FE coupling than in the
semi-analytical case. This semi-analytical model does not consider the free surface jet at the beam extremity. It can
also be explained by an underestimation of the fluid pressure in the near body area according to Fig. (9). Nevertheless,
note that the peak occurrence is correctly captured for ∆xS PH = 1 mm, as well as the pressure decrease after the peak.
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Moreover, a good agreement is observed for the vertical force applied onto the deformable structure for ∆xS PH = 1
mm (see Fig. (8)).

Fig. 7. Time history of the midpoint relative displacement for dif-
ferent spatial resolutions in the fluid, Newmark scheme with αs =

-0.3.

Fig. 8. Time history of vertical force on the deformable beam for
different spatial resolutions in the fluid, Newmark scheme with αs =

-0.3.

Fig. 9. Time history of the pressure probes on the deformable beam for different spatial resolutions in the fluid, Newmark scheme with αs
= -0.3.

From the energetic point of view, an energy transfer occurs from the deformable beam to the water (Fig. (10)).
This energy results in fluid particle motions, visible through an increase of mechanical energy EM (EM = EP+EK).
Water particles are propelled out of the beam extremity as a high-speed free surface jet (visible in Fig. (6)). EC

converges quickly (see Fig. (11)). The compressible nature of the SPH scheme is used to correctly model this
impact case. The fluid is first highly pressurized and then depressurized in the jet. The maximal velocity reaches
300 m.s−1, corresponding to a Mach number of 0.2. C0 has therefore to be chosen as equal to the actual water sound
speed. This is necessary to correctly estimate the part of the energy transferred from the deformable beam which
is converted into compressible energy ( dEC

dt > 0) instead of mechanical energy, before being released at the end of
the simulation ( dEC

dt < 0). The compressible effects are not of major importance but cannot be neglected, so that
an incompressible method would miss a part of the flow physics. Note that a significant amount of energy is also
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Fig. 10. Time history of EM (lines) and Ebody/ f luid (dashed lines) of
the water for different spatial resolutions in the fluid, Newmark
scheme with αs = -0.3.

Fig. 11. Time history of EV (dashed lines) and EC (lines) of the water
for different spatial resolutions in the fluid, Newmark scheme with
αs = -0.3.

dissipated to maintain the stability in the SPH fluid domain. According to the consistency property it decreases as
the spatial resolution increases. However it tends to mask the capture of compressible effects, even with the finest
spatial resolution. Nevertheless, in this configuration EC +EV is about 10% of EM . The energy errors from EV remain
therefore acceptable using ∆xS PH = 1 mm.

Concerning the coupling interface energy, Fig. (12) shows that the fluid receives less energy with the ghost particle
method (Ebody/ f luid) than the energy lost by the aluminium beam through pressure forces (E f luid/body). Following Eq.
(4), EInter f ace is negative. Note that dEbody/ f luid

dt is strictly equal to dETOT
dt according to Eq. (28). Fig. (13) shows the

energy variation in the global domain ∆EF+S = (ETOT + ES ) − (E0
TOT + E0

S ) compared to the energy yielded from
the outside EOutside, where ES is the solid total energy deduced from Code Aster outputs. EOutside corresponds to the
energy brought to impose a constant velocity (30 m.s−1) on the beam, which is estimated using the FE solver outputs.
The global system loses energy through the fluid-structure interface. This phenomenon can lead to severe problems.
Indeed, the accumulation of energy errors can modify the accuracy and the stability of the solution. Note that Fig.
(12) and Fig. (13) are very similar. This was expected since EOutside mostly depends on the energy recovered by the
water from the FE point of view (i.e. E f luid/body) in order to maintain a constant velocity (30 m.s−1) on the beam.
Furthermore, ∆EF+S represents the energy variation in the global domain, which mainly corresponds to the fluid
energy variation (i.e. Ebody/ f luid). Only a small part is taken over by the beam principally through elastic energy. Note
that E f luid/body displays a lower convergence rate than Ebody/ f luid, so that E f luid/body requires a higher spatial resolution
to converge. However the adopted spatial resolution is sufficiently high to correctly simulate this deformable beam
impact (Fig. (8)). Furthermore, the consistency of our model seems ensured as both E f luid/body and Ebody/ f luid tend to
converge towards the same value.

Strong variations of EInter f ace occur during the impact, as visible in Fig. (14). From t = 0 ms to t = 1.5 ms,
EInter f ace represents more than 20% of ETOT . At the beginning of the impact errors are close to be equal to ETOT for
∆xS PH = 1 mm. For coarser fluid spatial resolutions, the maximum ratio is lower because ETOT is higher. However,
Fig. (12) shows that the total energy is very small at this stage (order of 104 J) compared to the following (order of
105 J). The simulation remains therefore acceptable despite of these important errors, at least for the highest spatial
resolution. ∆xS PH = 1 mm is clearly just sufficient, coarser resolutions are not acceptable. For the finest resolution,
the energy ratio quickly decreases under 0.1 after t = 1.5 ms. It finally converges towards a value close to 7% of ETOT .
At this time EInter f ace has the same energy level as EV (see Fig. (15)). Fig. (15) shows that varying the parameter αs

in the FE time integrator scheme has no influence on the solution for αs < -0.05 with the Newmark scheme. However
in practice αs ≤ -0.1 is needed for stability purposes using the HHT scheme. Instabilities appear for lower values of
αs, [17], leading to divergences of EInter f ace.

Fig. (16) compares the vertical force time histories for HHT and Newmark schemes for different values of the
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Fig. 12. Time history of E f luid/body (lines) and Ebody/ f luid (dashed
lines) for different spatial resolutions in the fluid, Newmark scheme
with αs = -0.3.

Fig. 13. Time history of ∆EF+S (lines) and EOutside (dashed lines) for
different spatial resolutions in the fluid, Newmark scheme with αs =

-0.3.

Fig. 14. Time history of ratio between EInter f ace and ETOT for differ-
ent stabilization coefficients.

Fig. 15. Time history of ratio between EInter f ace and EV for different
stabilization coefficients, ∆xS PH = 1 mm.

dissipation parameter αs. High frequency oscillations are observed for low dissipation values in the HHT scheme,
although the energy evolution matches with the coupling stability criterion described in [17].

Fig. (17) confirms the above statements, by presenting snapshots of the computed solution at various instants
with different FE time integrator schemes. These snapshots are plotted with pressure and Von Mises stress contours
respectively for the fluid and the structure. Strong non physical perturbations are observed in the pressure field for
HHT with αs = −0.05 (especially after t = 2 ms), leading to strong vertical oscillations as visible in Fig. (16). In this
configuration, increasing the stabilization parameter αs helps in maintaining a stable coupling.

4.2. Dam-break flow trough an elastic gate

A case involving relatively low dynamics is considered here. The fluid initially at rest is contained within a rigid
tank closed using an elastic gate on the left side. At t = 0 s the elastic gate is released to let the water escape. This
test case has been first introduced by Antoci [1], according to the configuration presented in Fig. (18) and Tab. (2). In
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Fig. 16. Time history of the vertical force on the beam for different stabilization coefficients, ∆xS PH = 1 mm.

their study, Antoci [2] used a monolithic approach with a SPH-SPH coupling to model this FSI problem and proposed
some comparisons with their experimental data.

In the present work, fluid particles are distributed uniformly, and finite elements are used to model the elastic gate.
The FE mesh is composed of 4 width-wise and 40 length-wise elements. The behaviour of rubber is considered as
incompressible with a Poisson coefficient close to 0.5, and the non-linear strain-stress curve obtained experimentally
is used to characterize its behaviour (Fig. (19)).

L 79 mm
H 0.14 m
e 5 mm
l 0.1 m

Poisson Coefficient ≈ 0.5
ρrubber 1100 kg.m−3

ρwater 1000 kg.m−3

g 9.81 m.s−2

∆XFE 1.25 mm
∆YFE 1.975 mm

R/∆xS PH 4.0
C0 30 m.s−1

CFL number 0.375

Table 2. Physical and numerical parameters of the Antoci dam break.

Fig. (20) compares the experimental and numerical time histories of the gate tip displacements for a stabilization
coefficient αs = −0.3 in the Newmark scheme. Numerical results are in good agreement with the experiments from
[2], even with the coarsest resolution (∆xS PH = 1 mm). In particular, the global trend of the gate deformation time
history is correctly captured. A small offset can be noticed but it tends to decrease as the spatial resolution increases.
The abrupt decrease of the displacement observed experimentally from instant t = 0.32 s is not reproduced using
our coupling, but it can be attributed to a leakage of fluid between the tank and the gate visible on the experimental
snapshots. Numerical results are also in good agreement with [25], where the energy conservation is enforced at the
interface. The differences observed can be explained by small discordances in the rubber material law.

From the energetic point of view, the water transfers its energy to the gate which is converted into elastic energy
(Fig. (21)). The flow is purely incompressible (EC is negligible). In the simulation, the initial water potential energy
is thus mainly converted into kinetic energy (Fig. (22)), but a small part is lost through the boundary conditions (Fig.
(23)). Note that ES , EP and EK are already converged with the coarsest fluid spatial resolution. The energy lost
through fluid boundary conditions (exactly equal to the variations of ETOT ) is lower than the energy provided to the
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Fig. 17. Pressure field comparisons between different stabilization coefficients (rows) for different instants (columns), ∆xS PH = 1 mm.

elastic gate by pressure forces (see Fig. (23)). Consequently, an unexpected additional energy is introduced at the
body interface. EInter f ace is therefore positive and the total energy is slightly increased. Fig. (24) shows the energy

variation of the global domain EF+S−E
0
F+S

E0
F+S

which increases while no energy is introduced from the outside. However

the consistency of our model seems ensured since EF+S−E
0
F+S

E0
F+S

tends towards zero as the spatial resolution increases.
Fig. (25) shows the ratio between EInter f ace and ETOT with different solid time integration schemes (Newmark and

HHT). As proved in [17], a small dissipation modifies the coupling stability, so that some instabilities tend to appear
at low dissipation levels in the solid. For HHT coefficient αs = -0.1, EInter f ace increases much faster than for higher
stabilization levels. Fig. (26) shows the displacement of the gate tip for various values of the stabilization parameter
and confirms that the displacement is strongly erroneous with the HHT scheme using αs = -0.1. Instabilities in the
structure solution lead to high frequency displacements of the interface, and are responsible for non physical acoustic
waves within the fluid (Fig. (27)).

All other cases plotted in Fig. (25) show negligible energy errors (less than 1%) when compared to ETOT . Nev-
ertheless, as shown in Fig. (28) EInter f ace still displays strong errors with respect to EV even using the finest spatial
resolution. At the beginning of the simulation, errors are close to be equal to 18 times EV (see Fig. (29)). However,
EV is very small at this stage (order of 10−3 J) compared to the following (order of 10−2 J). Then this ratio quickly
decreases under the value 2 for t > 0.15 s. These simulations therefore remain acceptable although large apparent
errors appear at the first instants. Furthermore, EInter f ace tends to diverge for low numerical diffusion levels while
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Fig. 18. Antoci [1] dam-break configuration.

using the HHT scheme.

5. Coupling improvements

5.1. Fluid-structure loading
The previous section emphasized the non conservation of interface energy and outlined the need for improving the

coupling scheme proposed. A correction criterion or a new loading method is needed to overcome these limitations
and to improve the coupling robustness and accuracy. For algorithmic simplicity and genericity purposes, we chose
to avoid any hard-coding within the FE solver. The improvements proposed address exclusively fluid pressure loads
provided to the FE solver and interface energy conservation.

5.1.1. Force conservative formulation
Our first approach consisted in determining fluid pressure loads as an average of neighborhood pressure performed

through Eq. (1). The second approach proposed here resides in ensuring reciprocal forces between fluid and solid
media. This is achieved through the summation of ghost particle interactions with fluid particles, as proposed for
instance in [14] and [7, 27] for rigid bodies. The force can be expressed as:

~F f luid/body = − ~Fbody/ f luid = −

NFP∑
i=1

Ng∑
j=1

[−Pi − P j + Π
′

i j]~∇iωiω j, (42)

Obviously in the case of a deformable body this force should be decomposed on each panel k, so that:

~F f luid/body =

Np∑
k=1

~Fk
f luid/body, (43)

with

~Fk
f luid/body = −

Nk∑
i=1

NP∑
j=1

[−Pi − P j + Π
′

i j]~∇iωiω j, (44)
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Fig. 19. Strain-stress curve for the rubber used.

Fig. 20. Time history of the horizontal (top) and vertical (bottom)
displacements of the gate tip for different fluid resolutions compared
to experiments, Newmark scheme with αs = -0.3.

Fig. 21. Time history of solid total energy for different fluid spatial
resolutions, Newmark scheme with αs = -0.3.

Fig. 22. Time history of EM (dashed lines), EK (dotted lines) and EP
(lines) for different fluid spatial resolutions, Newmark scheme with
αs = -0.3.

where NP is the number of panels and Nk is the set of particles seen by the panel k (see Fig. (2)). As the calculation
of ghost interactions is needed anyway for imposing boundary conditions, pressure forces ~Fk

f luid/body are transferred
to the FE solver at the end of each first Runge-Kutta stage. Note that this improvement does not directly come from
the energy analysis. Nevertheless, it is closely linked to this analysis through the contributions of boundary forces in
the energy balance.

5.1.2. Energy conservative formulation
An energy conservative exchange at the interface is also considered. At each instant, it is possible to compute

the boundary energy Ebody/ f luid of the previous time step. A corrective coefficient ε can be introduced in the force
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Fig. 23. Time history of ratio between E f luid/body (dashed lines),
Ebody/ f luid (lines) for different fluid spatial resolutions, Newmark co-
efficient αs = -0.3.

Fig. 24. Time history of
EF+S −E

0
F+S

E0
F+S

for different fluid spatial resolu-

tions, Newmark scheme with αs = -0.3.

Fig. 25. Time history of ratio between EInter f ace and ETOT for different
stabilization coefficients, ∆xS PH = 0.25 mm.

Fig. 26. Time history of the horizontal (top curve) and vertical (bot-
tom curve) displacements of the gate tip for different stabilization co-
efficients, ∆xS PH = 0.25 mm.

~Fε
f luid/body calculation as:

~Fε
f luid/body = −(1 + ε)

Nk∑
i=1

Ng∑
j=1

[−Pi − P j + Π
′

i j]~∇iωiω j. (45)

The new variations of the boundary energy transmitted from the fluid to the body Eεf luid/body can be expressed as:

dEεf luid/body

dt
=

Np∑
k=1

−(1 + ε)
Nk∑
i=1

Ng∑
j=1

[−Pi − P j + Π
′

i j]~∇iωiω j.~vk

 = (1 + ε)
dE f luid/body

dt
. (46)

On the contrary the variation of Ebody/ f luid remains unchanged since it does not depend on ε. The coefficient ε is
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Fig. 27. Pressure field comparisons between different stabilization coefficients (rows) at different instants (columns), ∆xS PH = 0.25 mm.

chosen to impose the same evolution for E f luid/body and Ebody/ f luid leading to:

E f luid/body +
dEεf luid/body

dt
∆t = Ebody/ f luid +

dEbody/ f luid

dt
∆t, (47)

which means that

ε =
Ebody/ f luid − E f luid/body + ( dEbody/ f luid

dt −
dE f luid/body

dt )∆t
dE f luid/body

dt ∆t
. (48)

Usually, the rate of change of E f luid/body and Ebody/ f luid are similar so that ε remains small and does not need to
be limited. Nevertheless, in some cases the rate of change of E f luid/body can strongly differ from Ebody/ f luid, leading to
possibly large values of ε and resulting in a sudden change in the time evolution of F f luid/body. Numerical tests showed
that the value of ε should be limited as proposed in Eq. (49) to avoid such an effect and to preserve the stability of the
coupling.

−0.15 < ε < 0.15. (49)

5.2. Numerical validations
5.2.1. Deformable beam impact

The deformable beam impact is performed here with the above improvements and using the same spatial fluid
resolution ∆xS PH = 1 mm. In the last section coupling errors tended to be higher than 7% of ETOT using the averaging
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Fig. 28. Time history of ratio between EInter f ace and EV for different
stabilization coefficients, ∆xS PH = 0.25 mm.

Fig. 29. Time history of EV for different fluid spatial resolutions

pressure technique (see Fig. (14)). Using the force conservative formulation, EInter f ace is still negative (the global
system still lose some energy through the fluid structure interface), but energy errors converge towards a value close to
2.8% of ETOT (see Fig. (30)). The accumulation of energy errors is therefore reduced thanks to the force conservation
formulation. Another advantage of this approach is to avoid any overestimation of forces in cases where only few
particles are located in the near panel area. Only ghost particle forces on the panel k are considered, and pressure
loads are therefore more accurate. As a consequence the ratio between EInter f ace and EV is also strongly decreased
(Fig. (30)), as it is now close to 0.4 instead of 1.4 in Fig. (15).

Fig. 30. Time history of ratios between EInter f ace and ETOT (left) and between EInter f ace and EV (right) for different stabilization coefficients,
force conservative formulation.

Fig. (31) presents the time history of the same energy ratios, but obtained this time with the energy conservative
formulation. Energy ratios converge towards zero at the end of the simulation and EInter f ace is not strictly equal to zero
due to the limitation imposed on the corrective coefficient ε. Nevertheless it quickly converges towards zero in all
cases, emphasizing the benefits of such improvements. Note also that the EInter f ace > 0 here, the corrective coefficient
εseems underestimated. Nevertheless the origin of this effect should be further investigated.
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Fig. 31. Time history of ratios between EInter f ace and ETOT (left) and between EInter f ace and EV (right) for different stabilization coefficients,
energy conservative formulation.

The robustness property of the SPH-FE coupling strategy is therefore strongly improved. Indeed the SPH-FE
coupling is more stable for lower dissipative coefficients αs in the HHT scheme: even HHT with αs = −0.05 provides
correct results, contrary to the first implementation. EInter f ace is no more affected by the dissipation in the structure
part. Varying the parameter αs does not have a significant influence on the solution behaviour. Instabilities which
appeared at low dissipation levels in the solid with the averaging pressure technique (Fig. (14) and Fig. (15)) are absent
here. The coupling is stable for any αs parameter values and whatever the time scheme used (HHT or Newmark).
High frequency oscillations vanished from the fluid force time history for low dissipation values in the HHT scheme
(see Fig. (32), where the results using the averaging pressure is recalled).

Fig. 32. Time history of vertical force on the deformable beam for different load formulations, HHT scheme with αs = −0.1.

Fig. (33) presents some snapshots of the computed solutions for the various formulations discussed in this paper.
These snapshots are plotted with pressure and Von Mises stress contours respectively for the fluid and the solid. Using
the averaging pressure procedure, the numerical diffusion introduced by the HHT is not sufficient. As a result the high
frequency displacement of the deformable body interface generates some acoustic waves in the fluid. Using the force
and energy conservation procedures proposed here, pressure loads are more accurate and regular. Less diffusion is
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therefore needed to obtain a robust coupling. The pressure field is slightly more regular with the energy conservation
procedure, especially at t = 2 ms as shown in Fig. (33).

Fig. 33. Pressure field comparison for different load formulations (columns) at different instants (lines), HHT scheme with αs = −0.05.

5.2.2. Dam-break flow through an elastic gate
The dam-break flow through an elastic gate is performed using a spatial resolution ∆xS PH = 0.25 mm in the

fluid. Here again, the accumulation of energy errors has been strongly reduced using the conservation improvements



24 Hermange C. et al. / Journal of Computational Physics (2018)

proposed (Fig. (34) and Fig. (35)). It is particularly visible on the ratio between EInter f ace and EV .

Fig. 34. Time history of ratios between EInter f ace and EV for different stabilization coefficients.

Fig. 35. Time history of ratios between EInter f ace and ETOT for different stabilization coefficients.

Both formulations increase the coupling robustness regarding the lowest dissipation levels in the FE time inte-
grator scheme. Numerical stability is maintained even at low stabilization coefficients (Fig. (36)). Force and energy
conservative formulations show good agreements with the experimental data, but also with the numerical results from
[25] which enforce energy conservation at the fluid-structure interface using a very different approach. This test cases
hows two main phases: from t = 0 s to t ≈ 0.14 s the fluid yields its energy to the elastic gate, Fig. (37) (i.e the elastic
gate is pushed). Then the solid gate gives back a part of its energy to the fluid from t ≈ 0:14 s to t = 0.4 s. Regarding
the force time history, both formulations provide slightly different results (see Fig. (38)). During the first phase, the
dynamics of the flow are the same. EInter f ace is very small and both formulations provide similar results. In the second
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phase, some differences appear as the gate comes back. Using the energy conservative formulation, the elastic gate
tends to come back more slowly (Fig. (37)), as the force is increased to be in energy agreement.

Fig. 36. Time history of horizontal (top) and vertical (bottom) dis-
placements of the gate tip for the different formulations proposed,
HHT scheme with αs = −0.1.

Fig. 37. Time history of horizontal (top) and vertical (bottom) dis-
placements of the gate tip for the different formulations proposed,
Newmark scheme with αs = −0.3.

Fig. 38. Time history of horizontal force on the elastic gate for the different formulations proposed, Newmark scheme with αs = −0.3.

Fig. (39) shows some snapshots of the computed solution for the different formulations proposed. It highlights
the benefits of the new loading formulations compare to the averaging pressure procedure. High frequency pressure
waves in the fluid domain are avoided thanks to the gain in accuracy on the pressure loads. Here again the last two
formulations provide very similar results.
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Fig. 39. Pressure field comparison for different load formulations (columns) at different instants (lines), HHT scheme with αs = −0.05.

6. Conclusion

The analysis of a SPH-FE coupling method has been provided from an energetic point of view with emphasis on
interface coupling energy. An energy balance study has been proposed for both δ-SPH and Riemann-SPH schemes,
highlighting the presence of a term representing the amount of energy dissipated or created at the fluid-structure
interface. Inaccurate fluid loading leads to an accumulation of energy errors which are responsible for coupling insta-
bilities. In this paper two different fluid loading procedures have been proposed to increase the conservation property
of the coupling. The energy errors have been decreased and the robustness properties of the coupling have been
improved. Only small differences were observed between the force and energy conservative formulations proposed.
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However the energy conservative procedure requires the energy term calculation for all particles, slightly increasing
the computational costs, so that the force conservative formulation could be preferred regarding the compromise be-
tween coupling accuracy, robustness and CPU time. Furthermore the proposed coupling method is relatively easy to
implement and can be used with any kind of SPH or FE method.
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