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ABSTRACT

We address the problem of filtering out localized time-
frequency components in signals. The problem is formulated
as a minimization of a suitable quadratic form, that involves a
data fidelity term on the short-time Fourier transform outside
the support of the undesired component, and an energy pe-
nalization term inside the support. The minimization yields a
linear system whose solution can be expressed in closed form
using Gabor multipliers. We provide an analysis of the solu-
tion and its approximation by truncated eigenvalue expansion,
and illustrate its performance on synthetic mixtures of audio
signals. The proposed approach outperforms approaches that
are routinely used in applications.

Index Terms— Time frequency filtering, Gabor trans-
form, Gabor multipliers.

1. INTRODUCTION

Processing signals whose frequency content changes over
time is widely addressed using time-frequency (TF) represen-
tations [1], mainly the short-time Fourier transform (STFT)
and its discrete counterpart the Gabor transform [2] for nu-
merical calculations. Audio source separation is an active
research field where such representations are processed [3].

A key challenge is that of filtering out localized TF com-
ponents. Methods based on ridge extraction, reassignment
and synchrosqueezing [4, 5, 6] model and subtract the com-
ponents. One may also consider the distribution of zeros in
the TF place to locate and remove components [7]. How-
ever, those methods are designed to preserve the quality of
the residual signal. Another strategy consists in inpainting
the spectrogram coefficients related to the removed compo-
nents, using nonnegative matrix factorization [8, 9] or linear
interpolation with random phases [10]. The resulting spectro-
grams suffer from being inconsistent [11], which often cannot
be fixed by phase reconstruction methods [12].

In this paper, we investigate a non-parametric approach to
filtering out a localized TF components by reconstructing a
signal with STFT coefficients that both fit the original signal
outside the TF support of the filtered components and by pe-
nalizing the energy inside their TF support. In section 2, we
propose a simple and generic formulation of the optimization

problem. The signal itself is directly reconstructed, avoid-
ing any consistency issue. We show in section 3 that the so-
lution is obtained in closed form. It involves the so-called
Gabor multipliers [13, 14] and their spectral decomposition,
which are computed independently of the hyperparameters
so that they can be tuned in a computationally-efficient way.
Numerical experiments proposed in section 4 reveal the de-
tailed behavior of the methods, including the TF localization
of the Gabor multipliers’ eigenvectors, and the quality of re-
constructed target and interference sources.

2. PROBLEM STATEMENT

Let T denote a generic time-frequency transform, mapping
any x ∈ CL to T x ∈ l2(Λ), Λ being the discrete time-
frequency domain. Our goal is to filter out signal compo-
nents located in a given region of the TF plane, in the fol-
lowing setting: we assume that the observed signal x0 is of
the form x0 = xref + xper, i.e. the sum of a target signal
xref , and a perturbation xper. While no assumption is made
on the target signal, we assume further that the STFT of xper

is strongly concentrated in a known region Ω ⊂ Λ. We denote
by Ω = Λ\Ω the complement region. Estimating xref from
the observation x0 and from the knowledge of support Ω is
a specific denoising or source separation problem which we
formulate as

x∗ = argmin
x∈CL

‖T x− T x0‖2Ω + λ‖T x‖2Ω. (1)

where ‖y‖2Ω :=
∑
k∈Ω |y[k]|2 and λ > 0. The first term of

the objective function in (1) is a data fidelity term that en-
forces the STFT of the estimated signal to fit that of the ob-
servation outside Ω. The second term controls its energy in
Ω, and the regularization parameter λ controls the trade-off
between the two terms.

Here and throughout the paper, we will focus on the Ga-
bor transform although problem (1) can be solved in a more
general case. We first introduce some definitions and nota-
tions. Let a and b denote the time and frequency sampling
period, assumed to be divisors of L, and set N = L/a,
M = L/b. N and M are respectively the numbers of time
shifts and frequency shifts. The TF domain is the lattice



Λ = ZM × ZN . For a window function g ∈ RL, the
Gabor atom gmn at TF point (m,n) ∈ Λ is defined by
gmn[l] = g(l − na)e2iπmbl/M ,∀l ∈ ZL. The Gabor trans-
form Vgx ∈ CM×N of x is defined by

Vgx[m,n] = 〈x,gmn〉 =

L−1∑
l=0

x[l]g[l − na]e−2iπmbl/M .

Given the adjoint V∗g of Vg, also called synthesis operator,
the frame operator S = V∗gVg is bounded, self-adjoint and
semi-positive definite. If S > 0, S is invertible, which per-
mits to reconstruct any x ∈ CL from its Gabor coefficients.
Of particular interest are the so-called Parseval frames, for
which S = I , i.e., V∗g is a left inverse of Vg. For the sake of
simplicity, we focus on this case in this paper.

3. ANALYTICAL RESOLUTION

Using Gabor multipliers introduced in section 3.1, the analyt-
ical solution of problem (1) is established in section 3.2.

3.1. Gabor multipliers

Gabor multipliers are linear operators on CL defined by
pointwise multiplication with a TF transfer function called a
Gabor mask, in the Gabor coefficients domain. Denoting by
m the Gabor mask, we will also denote for simplicity by m
the operator of pointwise multiplication by m.

Definition 3.1 The Gabor multiplier associated to (g,Λ)
with mask m is defined by Mm = V∗gmVg, i.e.,

Mmx =
∑
m,n

m[m,n]〈x,gm,n〉gm,n .

Gabor multipliers have been studied extensively (see [15,
16] and references therein). We recall below some important
properties that will be of interest in the sequel.

Properties 3.1

(i) If m is real-valued then Mm is self-adjoint. Then there
is an orthonormal basis of CL formed by Mm eigen-
vectors.

(ii) The Gabor multiplier generated by m ≡ 1 is a multiple
of the identity operator if and only if (g,Λ) generates a
tight Gabor frame.

(iii) If m ∈ CM×N , then Mm defines a bounded operator
with operator norm ‖Mm‖op ≤ C‖m‖∞, whereC is a
constant. In particular, if g and Λ generate a Parseval
frame, then ‖Mm‖op ≤ ‖m‖∞.

3.2. Analytical solution

Let f(x) = ‖Vgx − Vgx0‖2Ω + λ‖Vgx‖2Ω be the objective
function in (1) for T = Vg. f is a quadratic form and there-
fore its minimization results in a linear system. For simplicity,
we denote by MΩ and MΩ the multipliers associated with the
indicator functions 1Ω and 1Ω considered as Gabor masks.
We obtain

5f(x) = 2(MΩ + λMΩ)x− 2MΩx0 .

Since V∗gVg = I , we have MΩ = I −MΩ and then MΩ̄ +
λMΩ = [I + (λ − 1)MΩ]. According to property 3.1 (iii) ,
(MΩ + λMΩ) is invertible if 0 < λ < 2. Then:

5f(x∗) = 0 ⇐⇒ x∗λ = (MΩ + λMΩ)−1MΩx0.

As the mask is real valued and using properties 3.1(i) and
3.1(iii), there is an unitary matrix U and a diagonal matrix
D = diag(σ1, ..., σL), σ1 ≥ · · · ≥ σL such that MΩ =
UDU−1. Setting γl = λσl

1−(1−λ)σl
, we then have:

x∗λ = x0 − U diag (γ1, . . . , γL)U−1x0 . (2)

While the above L × L matrices can be very large, the
Gabor multipliers under consideration act on much lower di-
mensional subspaces. The eigenvalues σl being sorted in de-
creasing order, sequence {γl, l = 1, · · ·L} is decreasing too,
which can be used for truncation purpose. Let be x∗K be the
solution obtained when only the K < L largest eigenvalues
are retained, i.e. x∗K = U1:K diag (γ1:K)U−1

1:Kx0. The trun-
cation error is controled by

‖x∗λ − x∗K‖ = ‖ diag(0, · · · 0, γK+1, · · · , γL)U−1x0‖CL

≤ γK+1‖U−1x0‖CL ≤ γK+1‖x0‖ (3)

4. EXPERIMENTS

We illustrate the approach on a synthetic mixture of two real
audio signals. We first describe the signals, before analyzing
the action of Gabor multipliers and discussing results.

4.1. Experimental setting

The sounds were provided by ANSYS VRXPERIENCE
Sound Analysis and Specification1. The target signal xref

is a car engine sound and the perturbation signal xper is a
birdsong. Both signals have been sampled at fs = 8000 Hz
and are L = 8192 samples long. The Gabor transform for
each of these signals is calculated with a Hann window of
length 128, the time-frequency lattice parameters are set to
a = 32 and b = 512, generating a 256× 256 TF matrix. The
observation is a linear combinations of these two signals, as
shown in Fig. 1. The spectrograms of the engine sound and
birdsong are displayed in the first row of Fig. 4.

1https://www.ansys.com/fr-fr/products/systems/ansys-vrxperience/sound



The goal is to filter out the birdsong. To this end, a mask
m was constructed as the indicator function of a region Ω
matching the six high frequency components as shown in
Fig. 1. The mask is constructed from spectrograms of both
sources as:

mij =

{
1 if |Vgxper(i, j)| < 2|Vgxref(i, j)|.
0 else
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Fig. 1. Sum of an engine’s sound and a birdsong: observa-
tions (left) and binary mask (right).

The closed-form solution (2) depends on the regulariza-
tion parameter 0 < λ < 2, which is adjusted using the fol-
lowing strategy. We choose the optimal λ as the value for
which the energy of the reconstructed signal ‖Vgx∗λ‖2Ω within
the region Ω matches the energy E = ‖Vgx0‖2Ω′ in another
region Ω′ similar to and disjoint from Ω. Ω′ is grossly chosen
by hand here and this process may be automated if needed.
Such tuning of λ is computationally efficient: since the spec-
tral decomposition of the Gabor multiplier does not depend
on λ, testing each value of λ mainly requires the truncated
matrix-vector multiplications to build x∗K and the computa-
tion of its Gabor transform.

4.2. Gabor multiplier’s spectral decomposition

The Gabor multiplier eigenvalues σl and coefficients γl are
shown in Fig. 2. Only the first 4000, which are above nu-
merical accuracy, are displayed. γ values below 10−5 were
truncated, leading to a K = 1 696-dimensional subspace.
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Fig. 2. Gabor multiplier’s eigenvalues σl and coefficients γl.

Interestingly, the spectral decomposition of the Gabor
multiplier MΩ tends to separate contributions from the vari-
ous connected components. For example, we display in Fig. 3

the spectrograms of the 100th and 1500th eigenvectors, to-
gether with the time and spectral representations. The first
one appears to be sharply localized in the region of one of
the component, while the other one is closer to its bound-
ary. This is in agreement with the usual behavior of Gabor
multiplier eigenfunctions. However we find quite interesting
the fact that multipliers associated with disconnected regions
tend to generate eigenfunctions localized in the connected
components.
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Fig. 3. Waveform, spectrogram and spectrum of the 100th
(left) and 1500th (right) eigenvectors of the Gabor multiplier.

4.3. Comparative reconstruction results

We compare here results obtained with the proposed ap-
proach, hereafter termed RedEnerg, with results obtained
using two approaches commonly used in industrial applica-
tions:

• ZerVal (zero values): set to zero coefficients within the
region Ω before inverting the Gabor transform, i.e. ap-
ply the Gabor multiplier MΩ.

• RandVal (random values, as implemented in the com-
mercial software SAS [10]): estimate the Gabor coef-
ficient modulus within Ω by linear interpolation along
the frequency axis, then turn to complex coefficients by
generating random, uniformly distributed phases, be-
fore inverting the Gabor transform.

The spectrograms of the target signal and the perturba-
tion signal reconstructed by RedEnerg, ZerVal and RandVal
respectively are presented in Fig. 4. Regarding the engine
sound (left column), the spectrogram of the RedEnerg recon-
struction (Fig. 4, 2nd row) is visually very close to the orig-
inal, while significant differences can be seen with the out-
puts of ZerVal and RandVal (respectively 3d and 4th rows of
Fig. 4), where the birdsong is still present. Regarding the bird-
song (right column), RedEnerg also outperforms the other
two methods. Note that the birdsong reconstructions are of
poorer quality because the low frequency part of the chirps
was not included in the domain Ω.

Quantitative assessment of reconstruction quality for xref

was measured using a signal-to-noise ratio (SNR), SNR



values are displayed at the top of spectrograms in Fig. 4.
The evolution of SNR as a function of λ is displayed in
Fig 5, together with SNR values obtained with ZerVal and
RandVal. The plot shows that the SNR value for the optimal
λ value is significantly better than those obtained by ZerVal
and RandVal, which confirms the visual impression.
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(a) Original engine’s sound
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(b) Original birdsong

SNR = 17.54 dB
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(c) Engine: RedEnerg, λ = 0.1

SNR = 9.82 dB
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(d) Bird: RedEnerg, λ = 10

SNR = 13.85 dB
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(f) Bird: ZerVal

SNR = 13.61 dB
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(h) Bird: RandVal

Fig. 4. Spectrogram of the reconstructed signals. Left col-
umn: Engine’s sound. Right column: Birdsong.

The performance assessment of the proposed method is
confirmed when extending the same experiments to other
sounds, downloaded from Freesound2. Target sounds include
a car engine, a train and an airplane while 4 pertubation sig-
nals well located in the TF plane are used: some beeps, a
finger snap, clicks and another birdsong. For each mixture,

2https://freesound.org
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Fig. 5. SNR in decibels (dB) for the three solvers.

the SNRs calculated between engine sound and the signal
estimated by the three solvers are summarized in Table. 1 and
show the superiority of the proposed method.

From a computational viewpoint, all methods were imple-
mented in MATLAB on a macOS system with 2.3 GHz Intel
core i5. The most time-consuming part is the diagonaliza-
tion of the multiplier (about 306 seconds), which is done only
once. The computation of the solution then being very fast:
the adjustment of the regularization parameter λ, that involves
many evaluations of the solution, took about 114 seconds.

car train aircraft
RedEnerg 25.05 23.88 26.80

BeepsZerVal 24.23 16.52 24.73
RandVal 24.90 16.15 24.73

RedEnerg 18.88 22.49 20.72
Finger snapZerVal 17.18 20.70 16.59

RandVal 16.92 16.17 15.93
RedEnerg 21.67 20.97 17.96

ClicksZerVal 17.61 13.98 12.33
RandVal 10.57 5.60 11.07

RedEnerg 18.01 21.52 20.04
BirdsongZerVal 17.4 21.52 19.71

RandVal 17.13 21.28 19.56

Table 1. SNRs for several targets and perturbations.

5. CONCLUSION

We have addressed the problem of estimating a target signal,
with no assumption on its contents, when perturbated by an
additive signal that is well located in an region Ω of the TF
plane. We have proposed an optimization problem in which
the energy in Ω is controlled. It admits an analytical solution,
which provides the estimated signal directly, without suffer-
ing from TF consistency issues. The underlying Gabor mul-
tipliers eigenvectors show interesting localization properties
and the proposed method outperforms some industrial base-
line systems in terms of reconstruction SNR. Future direc-
tions may include the problem formulation with other penalty
terms in order to provide alternate ways to control the con-
tents of the masked TF regions.
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