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Abstract – Squeeze film dampers (SFD) are used to reduce dynamical loads in rotating machinery or to
improve their performances in numerous industrial applications. The present paper considers the response
of a dual shaft system with a SFD mounted on one of its bearings. The study is concerned with the overall
system’s dynamics in presence of a sealed SFD bearing with a lateral feeding groove and more specifically
with the characterization of such damper in operational conditions. The design characteristics of the SFD
are based on the linear approximation and the optimization w.r.t. sensitivity of appropriate eigenmodes
of a numerical model of the dual shaft test rig. In order to gain more insight into the SFD operation, the
experimental kinematic and pressure measurements data are processed within a numerical model of the
fluid film using the short bearing approximation of the Reynolds equation and taking into account the
flow into the groove. The work holds for low Reynolds number and completely sealed SFD were vapour
cavitation is completely absent.

Key words: Rotor dynamics / multi-shaft / critical speed / squeeze film damper / experiment

Résumé – Estimation du coefficient d’amortissement d’un squeeze-film opérant dans un
système bi-rotor. Les amortisseurs à film écrasé (ou SFD pour squeeze-film damper) sont employés afin
de réduire les sollicitations ou d’améliorer la stabilité des machines tournantes dans différents domaines
industriels. La présente étude concerne le comportement d’un système bi-rotor en présence d’un SFD ins-
tallé sur l’un des paliers. On s’intéresse à la dynamique d’ensemble en présence d’un SFD étanche muni
d’une gorge d’alimentation latérale et plus particulièrement à la caractérisation d’un tel palier en fonction-
nement. Les paramètres de l’amortisseur SFD ont été définis à partir de sa caractéristique théorique et de
la courbe de sensibilité à l’amortissement d’un modèle numérique du bi-rotor. Afin de valider l’efficacité du
film amortisseur sur la dynamique d’ensemble du système, les données expérimentales au niveau du palier
sont injectées dans le modèle numérique de palier basé sur l’approxmation palier court de l’équation de
Reynolds avec une prise en compte de l’écoulement dans la gorge d’alimentation. L’étude suppose que le
nombre de Reynolds est faible et que le SFD complètement étanche est exempt de cavitation de vapeur.

Mots clés : Dynamique des machines tournantes / multi-rotors / vitesse critique / amortisseur à film
écrasé / expérience

1 Introduction

Modern trends of development in turbomachinery are
to increase the power/weight ratio, especially in air-
craft engines. This brings about higher loads in struc-
tural parts and a necessity to develop vibration reduc-
tion methods but also to increase systems’ stability. One
of technological solution providing a dissipation source

a Corresponding author: mikhail.guskov@paris.ensam.fr

on the statoric part of a rotating machine is to use a
squeeze film damper (SFD). The SFD technology is devel-
oped since several decades [1–4]. It involves several phys-
ical phenomena (Poiseuille flow, cavitation, thermal ef-
fects, inertia effects, boundary conditions) affecting the
device’s operational dissipation properties. Several SFD
models are available nowadays for the engineering design
and characterization, allowing different complexity lev-
els [4, 5]. However, it is crucial to control the adjustment
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Nomenclature

C radial clearance of the SFD, m;

Cg radial depth of the groove, m;

Cv SFD viscous damping coefficient, N.s.m−1;

Cvr, Cvt estimated viscous damping coefficient, N.s.m−1;

dθ infinitely small increment of the variable θ, rad;

DH hydraulic diameter, m;

(e, φ) polar coordinates of point O′; m, rad;

fr, ft radial and tangential component of SFD force, N;

gr, gt radial and tangential component of the groove force, N;

h(θ) squeeze-film thickness, m;

HP high pressure (rotor);

i index for pressure signals;

i imaginary unit;

L axial length of SFD, m;

Lg axial length of the groove, m;

LP low pressure (rotor);

LVDT linear variable differential transformer;

O center of the SFD outer ring;

(O; X, Y , Z) Cartesian frame attached to the SFD outer ring;

O′ center of the SFD inner ring;

p(θ, z) pressure distribution in the film land, bar;

pi pressure simulated at location Pri, bar;

pg(θ) pressure distribution in the groove, bar;

Pri ith pressure sensor;

Pg feeding pressure of the SFD, bar;

Pi pressure measured at location Pri, bar;

ql local flow out of the SFD land to the groove, m2.s−1;

Qg circumferential flow distribution in the groove, m3.s−1;

R SFD journal radius, m;

SLVDT LVDT sensor sensitivity, mm.V−1;

SFD squeeze-film damper;

t time, s;

T temperature measured at the SFD outer ring, ◦C;

V1, V2, V10, V20 voltage signal returned by the instrumentation of the LVDT sensors, Volt;

(Xe, Ye) position of the point O′ in (O; X, Y , Z), m;

(Ẋe, Ẏe) velocity of the point O′ in (O; X, Y , Z), m.s−1;

ε eccentricity ratio of the journal (= e/C);

η constant speed ratio between rotation speed of LP and HP;

γ updating parameter of the hydraulic diameter;

μ dynamic viscosity of the SFD fluid, Pa.s;

θ circumferential angular coordinate on the inner ring, rad;

θ̂ circumferential angular coordinate on the outer ring, rad;

τHP period of revolution of the HP rotor, s;

φ attitude angle of the journal, rad;

ω spin rate, rad.s−1;

i index for pressure measurment locations.

of the SFD bearings mechanical impedance to the global
vibration response of the dynamical system. An extensive
general historic overview of the development and usage of
squeeze-film devices is given in [6].

Some turbomachinery equipments are characterized
by a high pressure variation, which justifies the use of sev-
eral spools, each having its rotor spinning at the optimal

rate. Some of them have an intershaft bearings in order
to reduce the stator weight. This design solution leads to
a dynamic coupling of the spools so that the unbalance
of each rotor involves a global response of the structure.

Several studies of SFD-equipped machines in multi-
shaft context exist. In 1991, El-Shafei [7] studied theoret-
ically an intershaft SFD and has come to the conclusion



Fig. 1. CAD overall view of the dual shaft test rig. Elements: Di – discs, Bi – bearings.

Fig. 2. Global test rig view.

that it becomes unstable when the regime exceeds the
critical speed w.r.t. the rotor the SFD is mounted on. In
2007, Gupta et al. [8] presented a numerical and experi-
mental study of a small-scale dual-shaft test bench with
an inter-shaft SFD. It has been observed that an optimal
value of clearance can be determined in order to suppress
a given eigenmode of the structure. In 2008, Defaye [4] ex-
plored several inter-shaft squeeze film configurations. In
2009, Delgado et al. [9] have studied the characteristics of
a SFD test rig undergoing multi-frequency, non-circular
motions.

The present study’s subject is a dual shaft test rig
designed at École Centrale de Lyon [10–12]. One of its
bearings is equipped with an SFD. This machine features
multiple critical speeds with respect to each rotor in its
operational range.

The article is composed as follows. Firstly, an overall
description of the test rig is provided and its dynami-
cal behavior is presented. Secondly, the introduction of
SFD is considered and the squeeze film forces modeling
approach is shown. Finally, the measurements results are
presented and analyzed.

2 Test rig description

The rig comprises two rotors 1.7 and 1 m long and
weighing 120 and 60 kg respectively, as shown in Figure 1.
These two rotors are supported by 5 rolling element bear-
ings including one intershaft bearing and three flexibly
supported bearings. The SFD is installed at the bearing
B5. The flexible bearings supports at B1, B3, B5 are con-
stituted each one of four elastic beams as seen in Figures 1
and 2. In the particular case of B5 the beams play the role
of a centralising spring which prevents the journal from

rotating as well. The rig’s overall architecture is analogous
to that of some dual shaft turbofan aircraft engines hav-
ing a low pressure spool (LP, rotor 1) and a high pressure
one (HP, rotor 2). Each rotor is driven by its own electric
motor, their rotations are decoupled due to the intershaft
bearing B4. A particularity of the rig is that the parts rep-
resenting the casing are relatively stiff: see the pedestals
(in blue) in Figures 1 and 2 to which flexible bearing
supports are clamped. Then, the transverse vibrations of
the two rotors are essentially coupled by the intershaft
bearing B4. The ratio between the rotation speeds of the
shafts is kept constant and equals η = 2.778. The rotors
can operate in co-rotating and counter-rotating mode.

The modal analysis of the rig yields 4 to 5 forward
critical speeds in the operation range (depending on co-
or counter rotation) [10, 11]. Owing to different rotation
speeds, unbalance of each rotor excite different amount
of eigenmodes: the HP rotor goes through 4 to 5 modes
while the LP rotor reaches only the first mode’s forward
critical speed.

By the following, two modes, namely the 1st and the
4th, will be considered, because they involve relatively
high amplitudes in the vicinity of the fifth bearing and
thus are primary target for an SFD at that location [12].

Global test rig view is given in Figure 2. The two
shafts, bearing supports and discs positions as well as
orbit measuring stations are shown.

3 Squeeze-film Damper description

3.1 Mechanical arrangement

The detail of the squeeze film damper is shown in
Figure 3 and a cross section of the bearing is seen in



Fig. 3. Close-up view of the SFD, axial cross-section.

Fig. 4. Schematic of the SFD – transverse cross-section.

Figure 4. The damper journal has a radius (R) equal to
92 mm and an axial length (L) equal to 26 mm. The
radial clearance (C) is 0.250 mm. The Cartesian frame
(O; X , Y , Z) is attached to the outer ring centered at
the point O. The position of O′, the inner ring (journal)
center is described by (Xe, Ye) or by polar coordinates
(e, φ) with e the distance between the two centers and φ
the angle between the X axis and the line of centers (O,
O′). The SFD is sealed by means of two split piston ring
seals. The film land (L) is delimited by one of them on
one side and by a circumferential lateral feeding groove
on the other side. The axial length of the groove (Lg) is
3.5 mm and its depth (Cg) is 3.8 mm. The fluid is dis-
charged through the two piston rings into two collecting
grooves at ambient pressure before being drained back
to the tank. The global flow through the SFD was esti-
mated using a flowmeter during operation and found to
be less than 0.4 L.min−1. The two o-rings seen in Figure 3
are used to avoid too much oil to get out of the collect-
ing grooves and are only slightly compressed. It has been
checked experimentally that they produce no significant
effect on the dynamic responses.

The fluid used is ESSO 2380 turbo oil the nominal
kinematic viscosity of which is 24 cSt at 40 ◦C and 5 cSt
at 100 ◦C and the density of which is 975 kg.m−3.

The mounting of two pressure sensors is shown in
Figure 3. They are radially positioned in order to min-
imize the local perturbation (estimated at about 10 μm)
brought to the geometry of the concave cylindrical outer
ring surface while preventing from any risk of contact with
the inner ring. A total of six strain gauge pressure sensors
are located as shown in Figure 5. The sensor Pr1 is located
facing the feeding groove, Pr2 and Pr5 are installed cir-
cumferentially 90◦ apart at the same axial location near
the piston ring seal, Pr3 and Pr6 are 180◦ apart in the
middle of the film land and Pr4 is at the same circumfer-
ential location than Pr2 near the feeding groove. The film
temperature is measured at two locations close to the film
land with thermocouples located in the outer ring. Posi-
tion of inlets and draining points are also indicated.

The journal orbital motion is measured by means of
two identical LVDT sensors with their core mounted on
the journal and the coil on the outer ring close to the
SFD film (see LVDT1 and LVDT2 in Fig. 4) mounted
90 degrees apart. The inner and outer rings of the SFD
are mechanically centered at rest. The eccentricity at rest
is verified by means of a depth gauge used at different
stations around the rings. As the signals from LVDT1 and
LVDT2 increase when the local film thickness at location
Pr5 (respectively Pr2) increase, the coordinates of O′ in
the (O; X , Y , Z) frame are derived from LVDT using the
following expressions:

Xe = (V1 − V10)SLVDT Ye = − (V2 − V20) SLVDT

(1)
where SLVDT is the sensor sensitivity, V1, V2, the voltage
signal returned by the instrumentation of the displace-
ment sensors and V10, V20 are values corresponding to the
bearing being centered (ε ≈ 0). The pressure measured at
location Pri will be written Pi.

4 Experimental results

4.1 Overall dual shaft test rig dynamics

The dynamic behavior of the dual-rotor system in each
one of its different configurations (with or without SFD)
is characterized by means of its unbalanced responses for
known unbalance mass added to the disks.

The response linearity w.r.t. unbalance is checked and
it is possible to identify the system damping in that con-
figuration.

As presented in [12], the introduction of the damper
at bearing B5, represented by a viscous damper of coef-
ficient Cv, has a major influence on the modes targeted
during the design, that is to say the modes #1 and #4. In
particular, the sensitivity of the mode #1 response w.r.t.
unbalance added on HP rotor was reduced by 2 to 3 de-
pending on co- or counter-rotating operation. The fourth
mode shape has undergone a slight evolution. This change
is accompanied by a frequency shift of the peak and an



Fig. 5. Instrumentation map of the SFD.

increase in response magnitude. The latter could be in-
terpreted as the locking of bearing 5 by an impedance
exceeding its optimum value.

The damper viscous coefficient Cv identification is
done by comparing experimental measurements with nu-
merical simulation of responses obtained with differ-
ent values of this parameter. The best values for the
damper viscous coefficient are comprised between 60 and
80 kN s.m−1, see Figure 6.

We note that these values are significantly different de-
spite the nearly linear behavior of the whole system and
that the second value is relatively high. Several hypoth-
esis could be tested in order to try to analyze this, such
as for instance, the presence of an auxiliary unwanted in-
teraction between journal and bearing support in SFD
(possibly involving piston ring seal) or small discrepan-
cies between numerical model and actual structure which
could influence results identification.

4.2 Qualitative analysis of experimental data
in the SFD

Two different running conditions are also analyzed
herein. The 1st one corresponds to the first critical speed
at a frequency of 28.7 Hz (corresponding to ≈10 Hz for
the LP rotor) and the second one to the 4th critical speed
at 77.6 Hz (≈28 Hz for the LP rotor). The two rotors are
co-rotative and running counter clockwise in the (O; X ,
Y , Z) frame of Figure 4.

Figure 7 shows the dynamic part of the pressure is
sensors at Pr1 to Pr6, with respect to time (s) at the first
critical speed together with the displacement measured
by the LVDT sensors. Relatively low maxima of pressure
(approximately 0.5 bar) are observed. Note that in ac-
cordance with the literature e.g. [13,14], for an open and
a partially sealed SFDs respectively, it is observed that
the groove pressure (at Pr1) may have significant varia-
tions. Given the pressure sensors disposition, the order
of time arrival of maxima agrees with a precession from
Pr2 to Pr5, the latter lagging a fourth of the HP period

(τHP = 0.035 ms) which is in accordance with the fact
that the main excitation is introduced by the HP rotor
exciting a forward mode. One can check that P5 and P1

are in phase as for P2 and P4 which are at a same cir-
cumferential locations. Also, P5 and P2 have nearly the
same amplitude whereas P4 which is closer to the groove
has lower level. P6 has the same amplitude as P3 and ap-
pears delayed by half a period of HP. Interestingly, some
higher frequency components are detected in pressure sig-
nals (and almost undetectable by displacement sensors)
which effect may be attributed to the roller or ball bear-
ings. Apart this the dynamic pressure signals are close to
sinusoid.

The journal orbit w.r.t. the outer ring during six rev-
olutions of the HP rotor can be seen in Figure 8, repre-
sented in the (O, X , Y ) plane. This is close to a circle with
a radius on the order of 20 μm (represented in the same
diagram) which corresponds to a small eccentricity ratio
of ε = 0.08. The orbit is not periodic due to the presence
of two main frequencies not integer-related which depend
on the two rotational speeds (LP & HP) as the two ro-
tors provide excitation by their unbalances. This orbit is
described by the coordinates (Xe(t), Ye(t)) of the journal
which are used for calculating the pressure distribution
as it is shown below.

In the case of the 4th critical speed, all signals mea-
sured in the SFD (Fig. 9) contain one main frequency
component at ≈78 Hz, superimposed with a lower one at
28 Hz and again some higher frequency components that
can be distinguished particularly on the pressure signals.
The trajectory is shown on (Fig. 10) and compared to a
circle with a radius e = 45 μm (ε ≈ 0.18). Considering
the pressure responses, globally speaking and not aston-
ishingly given the rotating speed and the amplitude of
displacements, levels about six times higher (up to 3 bar)
are observed compared to the first case (for nearly the
same temperature conditions and therfore the same fluid
viscosity). Although, it should be reminded that the am-
plitude of the dynamic pressure is still significantly lower
than the static feeding pressure (Pg = 6 bar) limiting this
way any cavitation effect. Again, a fluctuation is observed
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Fig. 6. Numerical and experimental unbalance response plot
in view of estimation of apparent Cv at the middle of LP shaft.

in the groove, with an amplitude of 1.5 bar (at sensor Pr1)
in that case. Note that the shape of the pressure is dif-
ferent than in the first case and a spectral analysis would
have shown that the signals contain more harmonics of
HP rotor than in the first case. This shows the impor-
tance of the frequency span of the pressure sensors as e
increases in order to catch most of the spectral content.
Considering the axial pressure distribution, sensors Pr2
and Pr5 have the highest levels, Pr3, Pr6 have interme-
diate levels and Pr4 has lower levels, which is consistent
with the parabolic axial pressure shape of a short SFD.

Once these checks insuring the measured data consis-
tency have been carried out, a more quantitative analysis
is performed using a numerical model which is presented
below.

4.3 Simulation of the pressure in the film land

A physical model which was used for the SFD de-
sign [12] is employed for analyzing the measurements.
Further, this one will be used to estimate the SFD forces
by interpolating the measured dynamic pressure over the
whole film land, integrating. The estimated damping co-
efficient can then be estimated and compared to those
identified in the overall dynamic study. The SFD model
is based on the well known Reynolds equation with the
short length bearing approximation [2]. It is generally ad-
mitted [2,3] that the short bearing assumption, that is ne-
glecting the circumferantial flow in the SFD, is valid for an
open ended SFD with L/2R ≤ 0.25. In our case, we should
consider that we have L/2R ≈ 0.28 which is about the
required condition. Further, a check performed by means
of the bidimentionnal Reynolds equation [3] (without the
groove) solved by the finite difference method have shown
that the short length assumption itself leads in our case to
an over-estimation of about 3% to 4% (increasing with ε)
on the SFD tangential force.

Also, note that the use of the short length bearing
approximation seems reasonable since the oil of the SFD
land is discharged in a relatively deep groove (Cg/C =
15) at z = L (while it isn’t the case at z = 0 where
the end is pratically closed by the ring seal). One can
notice that the assumptions on the boundary conditions
agree with the recorded pressure oscillation magnitudes
alongside the sensors distribution: the dynamic pressure
decreases from the seal (see Pr2, Pr5 near z = 0) to the
groove (see Pr4 near z = L). Moreover, this axial variation
is more than 5 times stronger than the circumferential
one. The flow through the piston rings will be neglected as
justified before and with the assumption for no cavitation
the pressure inside the film land will be given by:

p(θ, z) =
6μ

h3

∂h

∂t

(
z2 − L2

)
+ pg(θ) (2)

where θ is the circumferential coordinate as shown in Fig-
ure 4 with its origin at the line joining the centers of the
bearing and of the journal, μ the dynamic viscosity, pg is
the pressure in the groove limiting the film land at z = L,
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h = C(1 + ε cos θ) the film local thickness which can be
obtained alternately using the displacements of the jour-
nal centre, at the particular sensors locations by:

h
(
θ̂i

)
= C + Xe cos θ̂i + Ye sin θ̂i i = 1, ..., 6 (3)

where θ̂i are the circumferential coordinates of the pres-
sure sensors Pri (i = 1, ..., 6). It is assumed that the film
thickness is constant over the axial coordinate Z. Note
that the influence of the supply mecanism in the groove
which would have added a term linearly varying with dis-
tance from the groove in (3) is neglected given the very
small flow through the ring seals at the end of the SFD.

The local squeezing rate at a particular sensor location
is given by:

∂h

∂t
= Ẋe cos θ̂i + Ẏe sin θ̂i (4)

expressed by means of the journal centre velocity compo-
nents in the global frame (O; X , Y , Z).

Recall that the inputs of the model are the known geo-
metric parameters (D, L, C, Cg, Lg), the oil dynamic vis-
cosity (μ) which is obtained from the known relation μ(T )
given for the class of viscosity of the oil used and the
temperature which is measured during the test. A value
of T = 29 ◦C, measured during the run, was used in
the present study. The velocity of the journal centre is
obtained by numerical signal processing of the measured
displacements in order to compute Equation (4).

Finally, the so-called simulated pressures at the ith
location will be obtained by:

pi(t) = p
(
θ̂i − φ(t), Zi

)
(5)

where
φ = arg (Xe(t) + iYe(t)) (6)

is the attitude angle of the journal (with i the imaginary
number) and Zi the axial coordinate of the pressure sen-
sor.

Given Equations (1)−(4) and the measured displace-
ment together with all needed parameters, the pressure
at locations Pri will be simulated and then compared to
measured ones Pi(t) in the film land.

4.4 Representation of the pressure oscillations
in the groove

The pressure in the groove will be taken into account
in the simplest way by means of a model derived from the
Hagen-Poiseuille law [15]:

− 1
R

∂pg

∂θ
=

128μ

πD4
H

Qg (7)

where pg is the pressure at a given angular position θ in
the groove, DH is the hydraulic diameter:

DH = 2γ
CgLg

Cg + Lg
(8)
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where γ is an updating parameter which will be used to
match with the experimental data and Qg is the circum-
ferential flow rate in the groove. The squeezing effect in
the groove is neglected given that e/Cg � 1 in our case.
More advanced models for feeding grooves can be found
in [13,14] taking into account a more complex description
of the flow and inertia effect.

The local mass balance between the film land and the
groove is expressed as follows:

Qg (θ + dθ) − Qg(θ) + ql(θ)Rdθ = 0 (9)

where ql is the flow at the output of the SFD which is in
fact forced to the groove given the film land model and
which is given by:

ql(θ, z = L) = L
∂h

∂t
(θ) (10)

By integrating Equation (7) and using Equations (9)
and (10) and taking into account the condition of period-
icity around the circumference, the pressure in the groove
is obtained by:

pg(θ) =
128μLR2

πD4
H

(
ė(1 − cos θ) − eφ̇ sin θ

)
+ Pg (11)

4.5 Comparison of measured and simulated pressures
in SFD

Figure 11 shows the direct comparison of simu-
lated (pi(t)) and measured (Pi(t)) time history of pres-
sure for the case of the 1st critical speed over 6 periods
of revolution of the HP rotor (a normalized time t/τHP

is used). A rather fair correlation can be noticed in the
film land and in the groove despite the simplicity of the
model and of the determination of the input parameters
(taking the nominal viscosity law and the measured tem-
perature on the bearing). Only γ needed to be updated
to 0.85 (from its nominal value γ = 1) in order to fit the
pressure in the groove. Also, one could note that the am-
plitudes of oscillations of pressure at higher frequency are
reproduced. Some discrepancies can be noted at station
Pr4 where the level is very low and at Pr6.

A similar comparison is drawn for the case of the 4th
critical speed and is shown in Figure 12 where it can be
found that the correlation is very satisfactory too for Pr1,
Pr2, Pr3, Pr5 but that some discrepancies are noticed for
Pr4 and Pr6. The matching for the pressure inside the
groove is not as good as in the first case. The correcting
factor is set to γ = 0.7 (different from the first case) to
match the amplitude of the pressure but a slight phase
lag is seen which cannot be caught by the model.

4.6 Estimation of the SFD forces

The resulting force generated by the squeezing effect
in the half-short uncavitated SFD is deduced from the
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Fig. 11. Measured (solid line) and simulated (dashed line) dynamic pressure at 1st critical speed.
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Fig. 12. Measured (solid line) versus simulated dynamic pressure (dashed line) at 4th critical speed.

classical analytical solution for the short bearing [2]:

fr = −4 μ RL3

C3

π
(
1 + 2ε2

)
(1 − ε2)5/2

ė (12)

ft = −4 μ RL3

C3

π

(1 − ε2)3/2
eφ̇ (13)

where fr and ft are the radial and tangential components
of the resulting force from the film land along the ra-
dial and tangential directions respectively as shown in
Figure 4. The non-linear nature of the SFD is reflected by
terms figuring in the fraction in Equations (12) and (13)
including the variable ε which in our case represents about
3% of relative difference between tangential forces and
10% for radial forces if orbits with ε = 0.08 and ε = 0.16
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Fig. 13. Estimation of SFD force and damping coefficient at 1st critical speed.

are compared. This can be considered as a slight non-
linear effect.

The contribution of the groove is computed in the
same way as for the SFD, by integrating over the cir-
cumference leading to the analytical forms:

gr =
∫ Lg

0

∫ 2π

0

pg(θ) cos(θ)dzRdθ = −128 μ R3 L Lg

D4
H

ė

(14)

gt =
∫ Lg

0

∫ 2π

0

pg(θ) sin(θ)dzRdθ = −128 μ R3 L Lg

D4
H

eφ̇

(15)

where gt, and gr are the radial and tangential components
of the resulting force produced by the groove.

The contribution of the groove pressure is added
to the one resulting from the film land in order to
compute the net force produced by the damper. From
Equations (12)−(15) relating forces to velocity compo-
nents, so-called experimental instantaneous damping co-
efficients are estimated as follows:

Cvr(t) =
fr + gr

ė
Cvt(t) =

ft + gt

eφ̇
(16)

where Cvr and Cvt are computed by means of the radial
and respectively tangential components of the velocity de-
duced from the measurements:

ė = Ẋe cosφ + Ẏe sinφ eφ̇ = −Ẋe sinφ + Ẏe cosφ (17)

and of the SFD forces at instant times for which Equa-
tions (16) aren’t singular. Figures 13 and 14 show the

SFD forces ft, fr, the groove forces gt, gr as well as the
associated damping coefficients Cvt and Cvr obtained in
this way for the 1st and 4th critical speeds. Mean values
are taken over the shown 6 periods and are indicated be-
tween brackets in the diagrams. Results obtained for the
4th critical speed are found in Figures 14.

As orbits are close to circular one it is convenient to
use the radial and tangential coordinates for the inter-
pretation of SFD forces. In both cases, the radial compo-
nents have a mean value which is close to zero with some
oscillations also reflected on the damping coefficients. In
particular, a frequency component twice the HP rotor fre-
quency is observed which is probably associated to the
ellipticity of the trajectory more perceptible on the radial
component (see Cvr). A perfect centered circular orbit for
an uncavitated axisymmetric SFD following the Reynolds
equation would have given a zero radial force. Consistent
values are found for Cvt and Cvr the latter being smaller
according to Equations (12), (13) where exponents are
different (5/2 and 3/2).

When comparing the results from the two critical
speeds, the damping coefficients are higher for the 4th
one. This is consistent with the non-linear dependance
on ε discussed above although this can explain at most
3 percent of the difference between these estimates as
mentioned. The formulated model was able to explain the
observed SFD pressure data to a precision satisfactory for
engineering application and damping factor in two cases
with different kinematic conditions. As the matching be-
tween the model and the experimental pressure data is
better in the first case, the resulting identification of Cvt

is probably more accurate whereas more uncertainties
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Fig. 14. Estimation of SFD force and damping coefficient at 4th critical speed.

should be considered for the second case. In particular,
discrepancies have been noticed in term of amplitude and
phase on some of the Pri.

Misalignment between the journal and the outer ring
due to imperfection in the initial centering process is a
possible direction of investigation which could explain
some discrepancies between model and experience pres-
sure responses although the actual kinematic is taken into
account in the model. Misalignment may impact signifi-
cantly the local film thickness (h) especially when the
eccentricity ratio gets higher. Also inertia effect could be
considered. As referred by [14], inertia effect can explain
phase shift of dynamic pressure compared to inertia-less
ones leading to centrifugal force. Further, inertia effect
can have an effect on the negative part of the dynamic
pressure resulting in an increase of the tangential force.
A more accurate identification of the SFD characteristics
could therefore be obtained by taking into account these
two phenomena. The influence of some other phenomena
such that the local flow through the split of the seal ring
as in [16] or the hydraulic coupling between the SFD and
the feeding system can be taken into account as in [3].

5 Synthesis and discussion

A synthesis of the identified damping characteristics
values from the two approaches, namely the overall dy-
namic and the SFD studies is addressed in this section.

First is to say that the results of the SFD study are
in good agreement with the rotor dynamic with a relative
difference of about 25% between the two approaches on

the estimated parameter Cv. Considering the Cvt’s, the
identified numerical values for these damping factors are
on the order of 77 000 Nm.s−1 for the 1st critical speed
and of 113 000 Nm.s−1 for the 4th one and should be
compared to those found in the overall dynamic study
which are respectively 60 000 Nm.s−1 and 90 000 Nm.s−1.
These latters are able to reproduce the frequency shift
and amplitudes observed during the rotor experiments at
the two modes frequencies.

These values are different from Reference [12] (respec-
tively 50 000 and 130000 Nm.s−1) because the model used
herein has been updated since. This illustrates how the
identification of the parameter is sensible to errors in the
overall dynamic model and this specially for the 4th mode
which point was adressed in the conclusion of [12]. In
both cases, the equivalent damping coefficient is greater
for the 4th critical speed which makes even consistant
the two kinds of results. Although, the Cv from the SFD
approach seems to be overestimated for the two critical
speeds.

One possible main reason, is that the pressure calcu-
lated in the groove is added (see Eq. (2)) and therefore
integrated over the film land. It is possible that the re-
sulting force is in this way overestimated. If the pressure
of the groove wasn’t summed in the SFD land and the
experimental pressure fitted again, then the damping co-
efficients would be lower (50 000 and 70000 Nm.s−1 re-
spectively for the two modes considered). Although, the
pressure field in this case wouldn’t be no more continu-
ous. This may suggest that the model for the groove and
its interaction with the film land should be improved to
be more realistic and to find a more accurate estimate.



Nevertheless, these different estimated values seem to
reduce the possibility of a significative interfering force
such that was suspected in [12]. The suggestion was that,
discrepancies between results coming from the two ap-
proaches could indicate that some interfering forces are
not taken into the model of the SFD which are present
during the test and after identified in the rotor study [12].
For instance, possible friction between the two rings of the
SFD and with seal rings being pressed against the wall of
their groove by film land pressure could result in a dissi-
pation force. Also, although the short bearing model was
able to fit the experimental data very fairly, its underly-
ing assumptions may introduce an error in the estimation
of the damping coefficient.

Misalignement, inertia effect, groove-SFD model have
been discussed above as possible improvements for force
identifications with the SFD model. Further improvement
in the rotor dynamic study can also be considered. For
instance, possible centrifugal forces due to inertia effect
identified with an improved SFD model could be intro-
duced in the rotor model and identified as well as for
viscous damping forces.

6 Conclusion

Numerical and experimental studies of a SFD
mounted on a dual shaft test rig have allowed to validate
a Reynolds-based model of the SFD flow with the feed-
ing groove contribution taken into account. These models
prove to be quite representative, to the point of yield-
ing a viscous damping coefficient in agreement with that
issued from the overall dynamic consideration. In spite
of its simplicity, the used SFD model is able to explain
the observed SFD dynamic pressure in the fluid and to
provide a satisfactory estimate of the damping factor at
two critical speeds corresponding to different kinematic
conditions of eccentricity and speed.
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rotors, Études numérique et expérimentale, Ph.D. thesis,
Ecole Centrale de Lyon, 2007

[12] M. Guskov, C. Gibert, L. Sanchez, F. Thouverez,
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