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a b s t r a c t

This work investigates a new micromechanical modeling of polycrystal plasticity, account-
ing slip bands for physical plastic heterogeneities considered as periodically distributed
within grains. These intra-granular plastic heterogeneities are modeled by parallel flat
ellipsoidal sub-domains, each of them may have a distinct uniform plastic slip. To capture
the morphology of slip bands occurring in plastically deforming polycrystals, these inter-
acting sub-domains are considered as oblate spheroids periodically distributed and con-
strained by spherical grain boundaries. In this paper, we focus the study on the
influences of internal length scale parameters related to grain size, spatial period and thick-
ness of slip bands on the overall material’s behavior. In a first part, the Gibbs free energy
accounting for elastic interactions between plastic heterogeneities is calculated thanks to
the Green function’s method in the case of an isolated spherical grain with plastic strain
occurring only in slip bands embedded in an infinite elastic matrix. In a second part, the
influence of discrete periodic distributions of intra-granular slip bands on the polycrystal’s
behavior is investigated considering an aggregate with random crystallographic orienta-
tions. When the spatial period of slip bands is on the same order as the grain radius, the
polycrystal’s mechanical behavior is found strongly dependent on the ratio between the
spatial period of slip bands and the grain size, as well as the ratio between the slip band
thickness and the grain size, which cannot be captured by classic length scale independent
Eshelby-based micromechanics.

1. Introduction

The spatial heterogeneity of plastic flow was experimentally highlighted by Neuhäuser (1983). The observation of surface
reliefs of metals revealed that slip consists of discrete events localized along slip bands. The slip patterns emerging at the
surface can be observed during tensile or compression tests on single and polycrystals with large as well as fine grains
for a variety of metals using experimental techniques such as optical micrography, EBSD or AFM as reported by Hirth
(1972); Margolin and Stanescu (1975); Villechaise et al. (2002) and Fréchard et al. (2006). From Neuhäuser (1983), observed
slip line patterns (e.g. in pure fcc crystals) are more or less ‘‘homogeneous” after the onset of plasticity (stage I for single
crystals) and gradually slip bands occur (under a more localized plastic deformation especially from the stage II of single
crystals).

Scale transition models for polycrystals, such as classic self-consistent schemes for linear or non-linear behaviors (Hill,
1965; Hutchinson, 1976; Berveiller and Zaoui, 1979; Weng, 1980; Molinari et al., 1987; Lebensohn and Tomé, 1993;
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Gilormini, 1995; Li and Weng, 1997; Masson et al., 2000; Paquin et al., 2001; Sabar et al., 2002; Molinari, 2002; Berbenni et al.,
2004; Pierard and Doghri, 2006; Berbenni et al., 2007; Mercier and Molinari, 2009), are based on a good description of both the
grain behavior and the mechanical interactions between grains. These models are successful to describe macroscopic stress–
strain responses, internal stresses, crystallographic texture evolution under different loading paths, but do not capture inter-
nal length effects inherent to the induced intra-granular microstructure, especially its influence on the grain size effect (Arm-
strong et al., 1962). This crucial shortcoming is due, at least partly, to the fact that a mean-field approximation neglects the
strong inhomogeneity of intra-granular plastic slip and especially its discrete nature under slip bands constrained by grain
boundaries.

Other modeling techniques like full discrete dislocation dynamics simulations (Kubin et al., 1992; VanderGiessen and
Needleman, 1995; Verdier et al., 1998; Schwarz, 1999) are currently achieved to predict internal length effects (Cleveringa
et al., 1998; Groh et al., 2005; Espinosa et al., 2005; Lefebvre et al., 2007; Balint et al., 2008) but the simulations become
quickly time consuming for polycrystals. Generalized continuum theories are more tractable for engineering applications
but need the introduction of new degrees of freedom like in strain gradient plasticity (Aifantis, 1987; Fleck and Hutchinson,
1997; Acharya and Bassani, 2000; Cheong et al., 2005; Aifantis and Willis, 2005) or in Cosserat media (Forest et al., 2000;
Forest and Sedlacek, 2003). Another interesting investigation developed by Acharya and co-workers (Acharya, 2001; Acharya
and Roy, 2006) is a continuum dislocation field theory based on non-linear dislocation transport which accounts for phe-
nomenologically short range dislocation interactions. Using a statistical mechanics framework, Groma et al. (2003) and Zai-
ser and Aifantis (2006) predicted a size-dependent local back-stress but took partly into account the short range interactions
between dislocations through spatial correlations as indicated by Roy et al. (2008).

In a previous paper (Berbenni et al., 2008), intra-granular plastic slip heterogeneities have been first modeled by peri-
odic distributions of circular glide dislocation loops for a grain embedded in an infinite elastic matrix. The mechanical
fields as well as the elastic energy have been computed using a Fourier Transform method. A strong discrepancy of inter-
nal stresses with the classic solution (Eshelby, 1957) has been found especially in a region close to the grain boundary.
Furthermore, an internal length effect has been reported regarding the elastic energy which scales with the inverse of
the grain size when the spatial period of loops is kept constant. Even though this modeling accounts for the discrete nat-
ure of slip through the Burgers vectors and distributions of equally-spaced loops, the number of loops to describe slip
bands may become prohibitive. In the present study, slip bands are modeled by oblate spheroids with uniform (i.e. aver-
aged) plastic slip inside them. Thus, compared to discrete distributions of dislocation loops, each oblate spheroid may rep-
resent numerous dislocations by averaging their Burgers vectors. In addition, their thickness constitutes a new internal
length parameter. In this paper, we determine how internal lengths, related to the initial granular microstructure and
the induced intra-granular discrete slips, play a key role on the overall mechanical behavior of polycrystals. For this pur-
pose, we develop a new micromechanical approach accounting for discrete periodic slip band distribution. Periodic con-
figurations (Fig. 1) appear to be the simplest way as a starting point to explore the impact of the induced intra-granular
microstructure on the strain-hardening of polycrystals. The plastic deformation is thus characterized by three physical
internal parameters: (i) the spatial period of slip bands (denoted h), (ii) the thickness of the bands (denoted c), and,
(iii) the slip amplitudes inside bands.
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Fig. 1. Distribution of slip bands with individual volumes VI and spatial period h constrained by a spherical grain with radius R. The plastic strain in each
band is due to slip in the direction of Burgers vector b in the single slip plane of unit normal n. The grain is embedded in an infinite elastic matrix.



In Section 2, we present the general theory based on the Green’s function method by starting from the field equations and
the thermodynamics related to a single grain containing periodic distributions of slip bands embedded in an infinite elastic
matrix. Numerical results are presented on the influences of non-dimensional internal lengths (i.e. the ratios of slip band
spacing and thickness with grain size) on internal Gibbs free energy. In Section 3, the case of polycrystalline aggregates con-
taining grains only deforming in single slip in the form of slip bands is investigated. To retrieve the macroscopic behavior of
the polycrystal, a simple scale transition scheme based on the diluted Eshelby’s formalism is used in a first attempt, since we
only consider the initial stage of deformation. Let us note that in this paper, we do not focus the study on a homogenization
problem but on the influence of the collective behavior of defects (dislocations) which can be represented by intra-granular
(plastic) slip bands in an elastic continuum. The results focus on the strain-hardening of polycrystals with random crystal-
lographic orientations during uniaxial tensile deformation. The stress–strain curves for various periodic distributions of in-
tra-granular slip bands (i.e. h

R) and slip band thicknesses (i.e. c
R) are analyzed. We find that accounting for the discrete

distribution of plastic deformation results in an additional strain hardening with respect to the classic Eshelby’s formalism.
Moreover, non-dimensional internal parameters of the microstructure (h

R and c
R) appear to have strong influences on the

strain-hardening of polycrystals when the spatial period of slip bands is on the same order as the grain radius. For such slip
band configurations, an increase of h

R, or, a decrease of c
R, leads to an increase of the polycrystal’s flow stress.

In the whole paper, we use the following conventions: Latin indices take their values in the set f1;2;3g, and the Einstein
summation convention is used. Bold symbols indicate either tensors or vectors. We also use ‘‘:” for contracted product be-
tween tensors and ‘‘.” for simple product.

2. Discrete distribution of intra-granular plastic heterogeneities: fields equations and applications

Fields equations and thermodynamics are used here to calculate the Gibbs free energy w and the internal stress field s of
static configurations of slip heterogeneities in an infinite elastic medium related to a single grain. The discrepancies with the
classic Eshelby’s inclusion scheme are highlighted.

2.1. Field equations and thermodynamics

We consider a spherical inclusion with volume Vg embedded in an infinite medium denoted VðV � VgÞ. The matrix sur-
rounding the inclusion is assumed to be purely elastic whereas inside the inclusion a plastic strain field is prescribed. We
impose on the boundary @V of the medium surface tractions td ¼ R:n and we assume that there is no volume force. Under
these conditions, the medium undergoes a displacement field uðrÞ, related to the strain tensor eðrÞ in the small perturbation
hypothesis by:

eðrÞ ¼ 1
2
ðruðrÞþtruðrÞÞ: ð1Þ

This compatible strain splits into an elastic strain eeðrÞ and a plastic strain epðrÞ so that eðrÞ ¼ eeðrÞ þ epðrÞ. The Cauchy stress
field rðrÞ satisfies:

div rðrÞ ¼ 0 in V ;

td ¼ rðrÞ:nðrÞ ¼ R:nðrÞ on @V :

�
ð2Þ

The linear and homogeneous elastic behavior is described by the Hooke’s law:

rðrÞ ¼ C : eeðrÞ; ð3Þ

where C denotes the elastic moduli with classic symmetry properties: Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij.
The Helmholtz free energy / per unit volume, for a system with volume V, under isotherm and quasistatic conditions, is

assumed here to be only equal to the elastic energy We ¼ 1
2 r : ðe� epÞ per unit volume:

/ ¼ 1
V

Z
V

We dV : ð4Þ

Then, / reduces to:

/ ¼ 1
2V

Z
V
rijðrÞeijðrÞdV � 1

2V

Z
V
rijðrÞep

ijðrÞdV : ð5Þ

So / depends on the boundary conditions and on the incompatible field epðrÞ.
Under the assumption of macro-homogeneous conditions, the overall strain and stress are respectively given by

E ¼ 1
V

R
V eðrÞdV and R ¼ 1

V

R
V rðrÞdV . Because of homogeneous elasticity, E ¼ Ee þ Ep, where Ee ¼ 1

V

R
V eeðrÞdV and

Ep ¼ 1
V

R
V epðrÞdV are respectively the overall elastic and plastic strains. Furthermore, Eq. (5) can be simplified by using inte-

grations by parts and the macroscopic Hooke’s law given by:

Rij ¼ CijklE
e
kl: ð6Þ



This leads to:

/ðEij; ep
ijÞ ¼

1
2

CijklðEkl � Ep
klÞEij �

1
2V

Z
V
rijðrÞep

ijðrÞdV : ð7Þ

The Legendre transform of the Helmholtz free energy gives the Gibbs free energy per unit volume:

wðRij; ep
ijÞ ¼ �/ðEij; ep

ijÞ þ RijEij ¼
1
2

RijEij þ
1

2V

Z
V
rijðrÞep

ijðrÞdV : ð8Þ

By using the macroscopic relation Eij ¼ SijklRkl þ Ep
ij in Eq. (8), we get:

wðRij; ep
ijÞ ¼

1
2

RijSijklRkl þ
1
2

RijE
p
ij þ

1
2V

Z
V
rijðrÞep

ijðrÞdV ; ð9Þ

where S ¼ C�1 denotes the elastic compliances. Now, we assume that the local stress rðrÞ can be expressed through the mac-
roscopic stress R and a fluctuation sðrÞ corresponding to the internal stresses such that:

rijðrÞ ¼ Rij þ sijðrÞ: ð10Þ

Hence, we deduce from Eq. (9):

wðRij; ep
ijÞ ¼

1
2

RijSijklRkl þ RijE
p
ij þ

1
2V

Z
V
sijðrÞep

ijðrÞdV : ð11Þ

According to this last equation, the Gibbs free energy per unit volume depends on the boundary conditions and on the pre-
scribed plastic strain field epðrÞ through Ep and through a volume integral containing internal stresses sðrÞ. For an infinite
medium, the field equations can be solved using the Green’s function technique through the modified Green’s tensor
Cðr � r0Þ introduced by Kröner (1989) so that the strain field reads (Berveiller et al., 1987):

eijðrÞ ¼ Eij þ
Z

V
Cijklðr � r0ÞCklpqðep

pqðr0Þ � Ep
pqÞdV 0; ð12Þ

where Cðr � r0Þ is deduced from the ordinary symmetric Green’s tensor GðrÞ by:

Cijklðr � r0Þ ¼ �1
2
ðGik;jlðr � r0Þ þ Gjk;ilðr � r0ÞÞ: ð13Þ

According to Kröner (1989), this last tensor can be expressed through a local part Cl
ijklðr � r0Þ and a non-local one Cnl

ijklðr � r0Þ
scaling with 1

kr�r0k3 such that:

Cijklðr � r0Þ ¼ Cl
ijklðr � r0Þdðr � r0Þ þ Cnl

ijklðr � r0Þ: ð14Þ

In Eq. (13), GðrÞ solves the Navier equation:

CpqklGki;lqðr � r0Þ þ dipdðr � r0Þ ¼ 0
limkr�r0k!1Gkmðr � r0Þ ¼ 0:

�
ð15Þ

Introducing Eq. (12) in the local Hooke’s law rðrÞ ¼ C : ðeðrÞ � epðrÞÞ yields:

rijðrÞ ¼ �Cijklðep
klðrÞ � EklÞ þ Cijkl

Z
V
Cklmnðr � r0ÞCmnpqðep

pqðr0Þ � Ep
pqÞdV 0: ð16Þ

Then, we introduce the macroscopic Hooke’s law (Eq. (6)) in Eq. (10), so that:

sijðrÞ ¼ rijðrÞ � CijklE
e
kl: ð17Þ

Thus, using Eq. (16) in the last equation yields:

sijðrÞ ¼ �Cijklðep
klðrÞ � Ep

klÞ þ Cijkl

Z
V
Cklmnðr � r0ÞCmnpqðep

pqðr0Þ � Ep
pqÞdV 0: ð18Þ

Hence

sijðrÞ ¼
Z

V
lijpqðr � r0Þðep

pqðr0Þ � Ep
pqÞdV 0; ð19Þ

where

lijpqðr � r0Þ ¼ �Cijpqdðr � r0Þ þ CijklCklmnðr � r0ÞCmnpq: ð20Þ

From Eq. (19), it is easy to determine the internal stress field generated by plastic fields.
Replacing sðrÞ in Eq. (11) by Eq. (19) gives the expression for the Gibbs free energy per unit volume as a function of R and

epðrÞ:



wðRij; ep
ijÞ ¼

1
2

RijSijklRkl þ RijE
p
ij þ

1
2V

Z
V

Z
V

lijpqðr � r0Þðep
pqðr0Þ � Ep

pqÞdV 0
� �

ep
ijðrÞdV : ð21Þ

Both Eqs. (19) and (21) indicate the complexity of interactions between plastic heterogeneities.

2.2. Modeling slip bands by periodic oblate spheroids constrained by a spherical grain boundary

Now, we consider that plastic deformation is distributed along slip bands inside an individual grain. Due to curved grain
boundaries, we assume that the slip bands are described by oblate spheroids (Fig. 2) which are considered periodic, with a
characteristic period h, inside a spherical grain of radius R and volume Vg (Fig. 1). Moreover, the use of oblate spheroids al-
lows to take advantage of the Eshelby’s properties for ellipsoidal inclusions (Eshelby, 1957). We use the following terminol-
ogy: the length of the largest half axis of oblate spheroid (denoted by ‘a’ in Fig. 2) is called the oblate radius or the slip band
radius, and the length of the smallest half axis of oblate spheroid (denoted by ‘c’ in Fig. 2) is called the oblate thickness or the
slip band thickness for the sake of simplicity.

We consider a single slip system with unit vector m in the slip direction and unit vector n normal to the slip plane. Thus,
this static configuration implies that all the slip bands I with volume VI are coplanar and elongated in the slip plane with the
smallest half axis c in the direction of n.

Hence, two major non-dimensional internal length scale parameters inherent to the microstructure are introduced. The
first one is h

R which characterizes the spatial distribution of slip bands. In this study, these ones are considered equally spaced
for the sake of simplicity. The second one is c

R which dictates the morphology of slip bands, i.e. their aspect ratio. As a con-
sequence, the volume fraction of slip bands inside the grain depends on both parameters.

The associated plastic strain is defined through the Schmid tensor Rij ¼ 1
2 ðminj þmjniÞ and the slip cðrÞ by:

ep
ijðrÞ ¼ RijcðrÞ; ð22Þ

where

cðrÞ ¼
X

I

cIhIðrÞ ¼
cI if r 2 VI;

0 if r R VI;

�
ð23Þ

and where hIðrÞ is the characteristic function. It depends on the location of the slip band I, on the volume VI , and, on the fact
that the bands are constrained by the grain boundary. Hence, Eq. (22) reads:

ep
ijðrÞ ¼

X
I

epI
ij hIðrÞ; ð24Þ

where epI
ij ¼ RijcI is the plastic strain in the Ith slip band. So, the average plastic strain over the grain is:

ep
ij

g ¼
X

I

f IepI
ij ; ð25Þ

where f I ¼ VI
Vg

is the volume fraction of the Ith slip band in the grain.
The macroscopic strain is deduced from Eq. (24) by:

Ep
ij ¼

1
V

Z
V
ep

ijðrÞdV ¼ f g
X

I

f IepI
ij ¼ f gep

ij
g ; ð26Þ

where f g ¼ Vg

V is the grain volume fraction. Since the plastic strain is concentrated in a grain of volume Vg embedded in an
infinite volume V, we get f g � 1. Thus, we can neglect Ep

ij with respect to epI
ij for the computation of internal stresses in Eqs.

(19) and (21).
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Fig. 2. A slip band is represented by an oblate spheroid with half axes ða; a; cÞ.



Now, if we use Eq. (24) in Eq. (19), the internal stresses simplify into:

sijðrÞ ¼
X

I

lI
ijpqðrÞepI

pq; ð27Þ

with

lI
ijpqðrÞ ¼ �Cijpqh

IðrÞ þ Cijkl

Z
VI

Cklmnðr � r0ÞdV 0
� �

Cmnpq: ð28Þ

Then, the average internal stress over a given slip band N is:

�sN
ij ¼

1
VN

Z
VN

sijðrÞdV ¼
X

I

LNI
ijpqe

pI
pq; ð29Þ

with LNI ¼ 1
VN

R
VN

lIðrÞdV . For convenience, we define the interaction tensor of oblate spheroids I over N by:

TNI
klmn ¼

1
VN

Z
VN

Z
VI

Cklmnðr � r0ÞdV 0 dV : ð30Þ

In the particular case where I ¼ N;TNN is related to the elastic Eshelby’s tensor Sesh;N by:

Sesh;N
klpq ¼ TNN

klmnCmnpq: ð31Þ

The expression of LNI then simplifies to:

LNN
ijpq ¼ �CijklðIklpq � Sesh;N

klpq Þ ð32Þ
LNI

ijpq ¼ CijklT
NI
klmnCmnpq; if N–I: ð33Þ

Consequently, we get:

�sN
ij ¼ �Cijkl½Iklpq � Sesh;N

klpq �epN
pq þ

X
I

I–N

CijklT
NI
klmnCmnpqepI

pq: ð34Þ

Now, using Eqs. (24) and (26) in Eq. (21), we deduce the expression of the Gibbs free energy per unit volume:

wðRij; ep
ijÞ ¼

1
2

RijSijklRkl þ f gRijep
ij

g þWinternal; ð35Þ

where Winternal is the internal part of wðRij; ep
ijÞ:

Winternal ¼ 1
2

f g
X

N

X
I

f NepN
ij LNI

ijpqe
pI
pq: ð36Þ

Actually, Winternal can be decomposed into a first part due to the self-energies of slip bands Wself , and, a second part due to inter-
action energies between the different slip bands Winter such that Winternal ¼Wself þWinter . The expression of Wself

reads:

Wself ¼ 1
2

f g
X

N

f NepN
ij LNN

ijpqe
pN
pq ; ð37Þ

and, the expression of Winter between the different slip bands I and N ðI–NÞ is:

Winter ¼ 1
2

f g
X

N

X
I

I–N

f NepN
ij LNI

ijpqe
pI
pq: ð38Þ

It is noteworthy that the expression for the average internal stress over a given slip band N (Eq. (29)) can be retrieved
from the Gibbs free energy per unit volume (Eqs. (35) and (36)) by computing the driving force associated with the plastif-
ication process ðepN

ij Þ inside the band N denoted FN
ij (e.g., see Rice (1975); Maugin and Muschik (1994)). It writes FN

ij ¼
@w

@epN
ij

so

that �sN
ij ¼ 1

f g f N FN
ij � Rij.

For comparison, let us consider now the application of the classic Eshelby’s method to the spherical grain of radius R
embedded in an infinite medium of volume V. Furthermore, a single slip system is considered like previously and character-
ized by the unit vector normal to the slip plane n and the unit vector along the slip direction m. Then, the plastic strain com-
ponents are uniform in the grain and are defined as:

ep
ijðrÞ ¼

ep0
ij if krk 6 R

0 if krk > R;

(
ð39Þ



where ep0
ij ¼ Rijc, and c constitutes a uniform plastic shear produced by slip bands inside the grain. Thus, the internal stresses

for interior points to the grain, denoted s0
ij, are uniform and depend on ep0

ij and elastic properties. It comes directly from Eshel-
by (1957) (considering f g � 1):

s0
ij ¼ �Cijkl½Iklpq � Sesh

klpq�ep0
pq; ð40Þ

where in the particular case of a spherical grain and isotropic elastic properties:

Sesh
kkkk ¼

7� 5m
15ð1� mÞ ; Sesh

kkpp
k–p

¼ 5m� 1
15ð1� mÞ ; Sesh

kpkp
k–p

¼ 4� 5m
15ð1� mÞ ; ð41Þ

where m is the elastic Poisson’s ratio.
In the Eshelby’s uniform plastic grain representation, the internal part of the Gibbs free energy per unit volume simply

yields according to Mura (1987):

Winternal0 ¼ �1
2

f gep0
ij CijklðIklpq � Sesh

klpqÞep0
pq: ð42Þ

Let us remark that Eqs. (40) and (42) can be respectively deduced from Eqs. (34) and (37) considering the whole grain as a
single spherical plastic inclusion.

In order to exhibit the internal length scale effects of the microstructure at a given macroscopic stress, we will compare
the results at same Ep, so that the Gibbs free energy only depends on the variations of the internal energy Winternal (see Eq.
(35)).

2.3. Application to an in situ grain with periodic slip band distribution

From the configuration depicted in Fig. 1, we consider a spherical grain with a periodic distribution of slip bands charac-
terized in the coordinates of the active slip system by the unit vector in slip direction m ¼ ð0;1;0Þ and the unit vector normal
to the slip plane n ¼ ð0;0;1Þ. Thus, the Schmid tensor Rij introduced in Section 2.2 has only two non-zero components:
R23 ¼ R32 ¼ 1

2. So, the plastic strain in the Ith slip band epI reduces to two non-zero components epI
23 ¼ epI

32 ¼ 1
2 cI . Then, both

non-zero components for epðrÞ and Ep are the {(2,3); (3,2)} components. We deduce from Eq. (24):

ep
23ðrÞ ¼ ep

32ðrÞ ¼
X

I

epI
23hIðrÞ; ð43Þ

and, from Eq. (26):

Ep
23 ¼ Ep

32 ¼ f g
X

I

f IepI
23: ð44Þ

We consider isotropic elastic properties characterized by Lamé elastic moduli (shear modulus l and k) so that
Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ.

For any ði; jÞ, Eq. (29) simplifies to:

�sN
ij ¼ 2

X
I

LNI
ij23e

pI
23: ð45Þ

When ði; jÞ R fð2;3Þ; ð3;2Þg; LNI
ij23 is deduced from Eqs. (32) and (33) as follows:

LNN
ij23 ¼ kdijS

esh;N
pp23 þ 2lSesh;N

ij23 ð46Þ
LNI

ij23 ¼ kldijðTNI
pp23 þ TNI

pp32Þ þ 2l2ðTNI
ij23 þ TNI

ij32Þ; if N–I: ð47Þ

We do not give more details on �sN
ij since only the components {(2,3); (3,2)} are needed to compute the resolved shear stress

in Section 3.1. (see Eq. (58)). These ones are obtained from Eq. (45) with:

LNN
2323 ¼ LNN

3223 ¼ �2l 1
2
� Sesh;N

2323

� �
ð48Þ

LNI
2323 ¼ LNI

3223 ¼ 2l2ðTNI
2323 þ TNI

2332Þ; if N–I; ð49Þ

deduced from Eqs. (32) and (33).
Now using Eqs. (43) and (44) in Eq. (35), we deduce the expression of the Gibbs free energy per unit volume:

wðRij; ep
ijÞ ¼

1
2

RijSijklRkl þ 2f gR23ep
23

g þWinternal; ð50Þ

with according to Eq. (36):



Winternal ¼ 2f g
X

N

X
I

f NepN
23LNI

2323e
pI
23: ð51Þ

Like in Section 2.2, we can write Winternal ¼Wself þWinter where Wself and Winter are obtained using respectively Eqs. (37) and (38):

Wself ¼ 2f g
X

N

f NLNN
2323ðe

pN
23Þ

2
; ð52Þ

and

Winter ¼ 2f g
X

I
I–N

f NepN
23LNI

2323e
pI
23: ð53Þ

The expression of Sesh;N
2323 for oblate spheroids is recalled in Appendix A, and, the expressions of TNI

2323 and TNI
2332 are computed in

Appendix B. Let us remark that only these components are needed for the calculations in the case of an in situ grain as re-
ported in this section as well as for polycrystalline aggregates in Section 3.

For comparison, we now consider the application of the classic Eshelby’s method with n ¼ ð0;0;1Þ and m ¼ ð0;1;0Þ. Then,
the only non-zero plastic strain components are like before shear components ep

23ðrÞ ¼ ep
32ðrÞ defined as:

ep
23ðrÞ ¼

ep0
23 if krk 6 R

0 if krk > R;

(
ð54Þ

where ep0
23 ¼ 1

2 c. In this mean field approximation, c constitutes a uniform plastic shear produced by slip bands inside the
grain. The internal stress for interior points to the grain s0

23 comes directly from Eq. (40):

s0
23 ¼ �2l 7� 5m

15ð1� mÞ e
p0
23: ð55Þ

The internal part of the Gibbs free energy per unit volume simply yields according to Eq. (42):

Winternal0 ¼ 1
V

8lpR3 7� 5m
45ðm� 1Þ ðe

p0
23Þ

2
: ð56Þ

In Fig. 3, we report the internal part of the Gibbs free energy per unit volume (Winternal in Eq. (50)) as a function of the number
of slip bands. It means that different ratios h

R are examined assuming that the slip bands are equally spaced and covers the
whole grain for a fixed c

R. In order to simplify the comparison with the Eshelby’s solution, we normalize the energies with

respect to 8plR3ðep
23

g Þ2

V , where ep
23

g is the volume average of ep
23ðrÞ in the grain as defined by Eq. (25) and taken equal to the plas-

tic strain ep0
23 introduced in the uniform plastic Eshelby’s inclusion (Eq. (54)). The normalized internal part of the Gibbs free

energy per unit volume for the Eshelby’s solution associated with a spherical inclusion gives the constant value 7�5m
45ðm�1Þ accord-
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ing to Eq. (56). We also report the normalized parts due to self (Eq. (52)) and interaction (Eq. (53)) energies as a function of
the number of slip bands to determine their respective influence on the total internal energy.

In these simulations, we chose m ¼ 0:3. Furthermore, the grain radius is set arbitrarily to R ¼ 1 lm and the thickness of
slip bands is chosen constant such that c

R ¼ 0:01. In order to compare the normalized internal part of the Gibbs free energy
per unit volume (denoted Winternal

N ) for the periodic distribution of slip bands with the Eshelby’s solution, the mean slip over
the grain is kept constant and set to cg ¼ 2ep

23
g ¼ 0:01.

We can notice that increasing the number of slip bands in the grain results in increasing the normalized internal Gibbs
energy which gets closer and closer to the Eshelby’s solution but does not converge towards it (Fig. 3). Let us note that using
thinner slip bands (i.e. lower values of c

R) does not ensure the convergence towards the Eshelby’s result as well. The main
reason is that the plastified volume of slip bands cannot fill up the whole grain, but only up to about 65% of the grain volume.
Thus, the contribution of the purely elastic regions between the slip bands still plays a role which explains the existing dif-
ference with the Eshelby’s result in the asymptotic behavior (i.e. for the largest possible number of slip bands). This result is
different from the one obtained by considering periodic distributions of glide loops (Berbenni et al., 2008) where increasing
the number of loops inside the grain leads to the convergence towards the Eshelby’s solution. This is essentially due to the
possibility to fill up the whole grain by the loops in the physical limit of mutual dislocation annihilation processes. Fig. 3 also
shows that decreasing the number of slip bands reduces the interaction energies but also increases the contribution of self-
energies, because the concentration of slip in each band is higher to maintain a constant average slip over the grain (low
volume fraction of slip bands). Conversely, when slip bands are numerous, the respective role of these energies switches.

In the following, we explore the influence of the spatial period h between slip bands on Winternal
N for different numbers of

bands (from 3 to 99) and for a given grain radius R. Fig. 4 represents Winternal
N as a function of the non-dimensional internal

length scale parameter h
R when c

R is set to 0.01. We observe that for a given number of slip bands, Winternal
N reaches a maximum

for a critical value of h
R. Furthermore, as the number of bands is increased, this critical value decreases (but does not scale lin-

early with h
R), and, the corresponding maximum value for Winternal

N increases without reaching the Eshelby’s solution. These
simulations show that for a given number of equally-spaced bands in a grain, we can deduce an optimized configuration de-
fined by a critical value of h

R denoted by hopt

R and reported in Table 1. The existence of a maximum for Winternal
N depends on both

the spatial distribution and the morphology of slip bands which act simultaneously in a complex way. For high h
R values with

respect to hopt

R and in the case of a few slip bands, these ones are located far from each other, and, their morphologies are much
different from the middle to the top of the grain. Thus, the part of Winternal

N due to self-energies is mainly responsible for low
levels of Winternal

N . Conversely, for low h
R values with respect to hopt

R , the slip bands are close to each other and their volume frac-
tion in the grain becomes important which leads to low local slip in each band. In this case, the part of Winternal

N due to inter-
action energies is predominant and monitors a decrease of Winternal

N for low h
R. Finally, between these two states (low and high h

R),
the opposite contributions of the two parts due to self- and interaction-energies make occur a configuration of slip bands for
which Winternal

N is maximum. The influence of the second non-dimensional internal length scale parameter c
R is also explored in

Fig. 5. The number of slip bands is limited to nine because large values of c
R (up to 0.1) prevent from having more than nine

bands inside the grain. For the same number of slip bands spreading into the grain, we found that the larger c
R, the higher

Winternal
N . In addition, the corresponding values of hopt

R are increased as c
R increases (Table 1). Moreover, the effect of c

R becomes
less important as the number of slip bands increases. Indeed, in this case, the part of Winternal

N due to interaction energies also
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become predominant (see Fig. 3), and c
R has less influence on the part due to interaction energies than on the one due to self-

energies. From Fig. 5, the coupled effects of both non-dimensional internal length scale parameters are more pronounced for a
small number of slip bands.

3. Polycrystalline aggregates

In this section, we focus on the plastic behavior of polycrystalline metals assuming intra-granular single slip concentrated
into slip bands as described in Section 2. The Representative Volume Element (RVE) of the polycrystalline aggregate is con-
stituted of a large number of spherical grains. In order to simplify the description of the aggregate, we assume that all the
grains have a uniform size. First, we describe the constitutive equations for the single crystal behavior using rate dependent
crystal plasticity. Secondly, the scale transition rule to obtain the polycrystalline aggregate behavior is presented. Finally, the
numerical results on the overall plastic behavior as a function of the grain size are sketched.

3.1. Single crystal behavior

In a first attempt, we assume that in each grain g of the polycrystal, a single slip system is able to be active during the
whole plastification process. At the first loading step, we select the slip system having the largest resolved shear stress �sg

r

for all possible slip systems sðgÞ defined by �sg
r ¼MaxsðgÞðRsðgÞ

ij
�rij

gÞ, where �rg is the stress due to the concentration over the
grain of the applied stress. This last one is obtained by a scale transition rule as the one detailed in Section 3.2. Each RsðgÞ

denotes the Schmid tensor of the slip system sðgÞ. The average stress in the Ith slip band of the grain g is then given by
�rIðgÞ ¼ �rg þ �sIðgÞ, where �sIðgÞ is the intra-granular average internal stress on IðgÞ as calculated by Eq. (29). Then, during plastif-
ication, the evolution of the resolved shear stress in each slip band is given by:

�sIðgÞ
r ¼ Rg

ij
�rIðgÞ

ij ¼ Rg
ijð�r

g
ij þ �sIðgÞ

ij Þ; ð57Þ

where Rg is the Schmid tensor associated to the active slip system. This equation simplifies into the active slip system coor-
dinates. Let Q g be the rotation matrix from the active slip system coordinates to the crystal coordinates. For example, if we

Table 1
Numerical values for hopt

R at different c
R for numbers of slip bands inside the grain ranging from 3 to 99

c
R 0.001 0.01 0.1

3 bands 0.419 0.422 0.460
5 bands 0.296 0.298 0.322
9 bands 0.186 0.187 0.200
49 bands 0.039 0.039 /
99 bands 0.020 0.020 /
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consider a slip direction with unit vector m ¼ ð0;1;0Þ and a unit vector normal to the slip plane n ¼ ð0;0;1Þ, we get

eRg¼tQ g � Rg � Q g ¼
0 0 0
0 0 1

2
0 1

2 0

0@ 1A and then

�sIðgÞ
r ¼ eRg

ijð�erg
ij þ �esIðgÞ

ij Þ ¼ �erg
23 þ �esIðgÞ

23 ; ð58Þ

where �erg ¼ tQ g � �rg � Q g , �esIðgÞ ¼ tQ g � �sIðgÞ � Q g , and �esIðgÞ
23 is computed using Eqs. (45), (48) and (49) applied to this example. Fur-

thermore, the average resolved shear stress on the slip bands is then given by:

�sbðgÞ
r ¼ 1

f pðgÞ

X
IðgÞ

f IðgÞ�sIðgÞ
r ; ð59Þ

where f pðgÞ ¼
P

IðgÞf
IðgÞ is the total plastic volume fraction in the grain g.

In order to determine the evolution of plastic strain inside grains, we assume that slip rates in each slip band IðgÞ follow a
viscoplastic power law (e.g., see Pan and Rice (1983); Asaro and Needleman (1985)):

_cIðgÞ ¼ _c0 j�s
IðgÞ
r j

sIðgÞ
c

 !n

signð�sIðgÞ
r Þ; ð60Þ

where the exponent n and _c0 are the same for all grains. The exponent n characterizes the strain rate sensitivity of the mate-
rial (generally, n is relatively high for metals) and _c0 is a reference slip rate. Besides, sIðgÞ

c is a reference resolved shear stress in
each slip band IðgÞ. For the sake of simplicity, we will consider it as constant and the same for all grains such that sIðgÞ

c ¼ s0
c ,

even though it may depend on the evolution of the slip cIðgÞ due to strain-hardening mechanisms in slip bands (not detailed
here). Then, we can compute in each band IðgÞ the plastic slip cIðgÞðt þ DtÞ through a time integration scheme. So we get the
average slip in the plastic bands �cbðgÞ ¼ 1

f pðgÞ

P
IðgÞf

IðgÞcIðgÞ and in the grain �cg ¼
P

IðgÞf
IðgÞcIðgÞ.

Finally, we can compute the average plastic strain for the grain in the crystal coordinates as follows:

�epðgÞ
ij ¼ Rg

ij
�cg : ð61Þ

3.2. Scale transition from single crystal to polycrystal

To model the polycrystal’s behavior, we first consider a Representative Volume Element (RVE) constituted of N grains
with different crystallographic orientations. It is submitted to a macroscopic homogeneous stress denoted by bR in the global
coordinates. For each grain g with a given crystallographic orientation, we define by Pg the rotation matrix from the crystal
coordinates to the global coordinates. So we get Rg ¼ tPg � bR � Pg . Now, for each grain g, we perform the calculations in the
crystal coordinates. We express the average local stress in the grain by using the diluted Eshelby approximation for the sake
of simplicity, so that the interaction law (for homogeneous elasticity) yields:

�rg
ij ¼ Rg

ij � CijklðIklpq � Sesh
klpqÞ�epðgÞ

pq ; ð62Þ

where �epðgÞ is the average plastic strain on the grain and Sesh is the elastic Eshelby tensor for an ellipsoidal shaped grain
(Eshelby, 1957).

Since we have calculated the average plastic strain �epðgÞ in each grain g of the polycrystal in the previous section, we can
express it in the global coordinates �̂epðgÞ ¼ Pg � �epðgÞ � tPg , and the overall plastic strain can thus be deduced, from the average
relation:bEp ¼

X
g

fg
�̂epðgÞ; ð63Þ

where fg are the grain volume fractions. Thus, the overall total strain bE reads:bEij ¼ bEe
ij þ bEp

ij ¼ bSijkl
bRkl þ bEp

ij: ð64Þ

Let us remark that even though the interaction law based on the diluted Eshelby’s model is known to give a too stiff estima-
tion of the overall response and is only valid for very low level of plastification (generally the average plastic volume fraction
in the whole RVE does not exceed 15%), the present objective is to study qualitatively the impact of internal length param-
eters on the macroscopic strain hardening. We do not focus on the accurate description of inter-granular interactions.

3.3. Results and discussion on polycrystalline aggregates

In this section, we consider a RVE constituted of 100 spherical grains with random crystallographic orientations. As an
illustration, we choose isotropic elastic constants. Young modulus E and Poisson’s ratio m are reported in Table 2. In



Eq. (60), we set the different materials parameters _c0;n and s0
c to realistic values for fcc metals, as given in Table 2. In

order to simplify the description of the aggregate, we assume that the grain size distribution is uniform. For all the grains,
the intra-granular microstructure (periodic distribution of slip bands) is characterized by a single slip system with a given
spatial period and same numbers of bands. For each number of slip bands, and for a given c

R, we use the values of hopt

R , ob-
tained in Section 2.3 through Figs. 4 and 5, which maximize the internal part of the Gibbs free energy.

We report in Fig. 6 the influence of hopt

R on the overall tensile stress–strain response with c
R set to 0.01. First, we observe

that the polycrystal’s hardening is stronger for large hopt

R , namely when the plastic deformation is concentrated in a few slip
bands. Indeed, there is an important decrease of the hardening rate from 1 to 3 slip bands. Second, we can notice that
considering such periodic distributions of slip bands makes the associated tensile curve converge towards a limit one.
For low hopt

R values corresponding to high numbers of slip bands, the curves superimpose. In comparison, the tensile re-
sponse obtained with the classic Eshelby’s model for homogeneous plastic grains leads to a much lower hardening. This
is due to the fact that in the mean field approach, only inter-granular accommodations operate whereas for the intra-gran-
ular microstructure described in Section 2, a new source of internal stresses occurs (see Eq. (57)). Furthermore, at the on-
set of plasticity, the overall plastic behavior is mainly dictated by the progressive activation of slip systems inside grains
following the assumptions described in Section 3.1 (for each grain, the single slip system with the highest Schmid factor is
activated). Then, after the very low strain regime (i.e. Ep

11 > 10�7), the evolution of slip inside bands becomes significant as
well as the effect of hopt

R on the overall strain-hardening. Fig. 7 represents the combined effects of hopt

R and c
R on the overall

stress–strain response of the polycrystal. We find that the larger c
R, the lower the macroscopic flow stress. This softening

effect can be linked to the results obtained in Section 2.3 through Fig. 5 for large c
R. We also find that the effect of c

R on the
macroscopic flow stress is more pronounced in the case of 1 band. Conversely, this one gets lower as hopt

R decreases (Fig. 7).
These results show that the strain-hardening of the polycrystal is strongly affected by the discrete nature of slip (through
h
R) and by the morphology of slip bands (through c

R). When h
R is low, the intra-granular discrete distribution of slip bands has

less impact on the mechanical behavior (Fig. 6).
Experimental studies of slip band distributions during tensile tests have been recently reported in single crystals (Zaiser,

2006; Schwerdtfeger et al., 2007). Such issues still have to be investigated in the case of polycrystals due to a complex inter-
nal length scale effect associated with the presence of grain boundaries. Both experimental and theoretical works are now
needed in order to relate in a more accurate manner slip line patterns with grain size and plastic deformation evolution. The
current limitations of the present approach lie in: (i) the assumption of periodicity for the intra-granular distribution of slip
bands, and, (ii) the relative simplicity of single slip configurations. However, our main objective clearly remains to break
through the classic mean field Eshelby’s approach by first assuming simple intra-granular configurations observed for slip
bands.

Table 2
Materials parameters introduced for the simulations of the initial plastic stage of deformation for nickel

Parameters E ðGPaÞ m _c0 ðs�1Þ n s0
c ðMPaÞ

Values 214 0.3 10�2 100 5
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R on the macroscopic tensile stress–strain responses (points) for a polycrystal constituted of 100 randomly
oriented spherical grains with c

R ¼ 0:01. The particular case of 1 slip band is also reported (inverse triangles). Comparison with the stress–strain response
given by the classic Eshelby’s model (dashed line).



4. Conclusions and perspectives

Throughout this paper, intra-granular plastic slip heterogeneities such as slip bands occurring in the micro-plastic regime
of polycrystalline metals are modeled by discrete periodic distributions of coplanar flat ellipsoidal plastic inclusions (oblate
spheroids). First of all, we considered the field equations and the thermodynamics framework associated with an isolated
in situ plastic grain embedded in an infinite elastic matrix. Two types of slip configurations are studied in the grain of spher-
ical shape assuming single slip. The first type of configuration corresponds to the classic plastic Eshelby’s inclusion where
slip is supposed uniform over the grain. The second type of configurations takes into account intra-granular slip bands con-
strained by the spherical grain boundary and represented by a periodic distribution of coplanar oblate spheroids. Then, in
addition to the grain size, the microstructure is characterized by the spatial period of slip bands (denoted h) and the thick-
ness of the bands (denoted c). In Section 2, we investigated the role of both non-dimensional internal length scale parameters
of the microstructure h

R and c
R on the normalized internal part of the Gibbs free energy per unit volume (denoted Winternal

N ) in
the case of an in situ grain. For a given number of slip bands inside the grain, we found there exists a critical value h

R which
maximizes Winternal

N . This critical value also depends on c
R. Moreover, the role of both internal length scale parameters on

Winternal
N is all the more pronounced as the slip is localized. In Section 3, the theory is applied to polycrystalline aggregates

where low volume fractions of grains undergo plastification, i.e. at the onset of plasticity. In this case, the inter-granular
accommodation rule is supposed to follow a simple diluted Eshelby’s model and the two aforementioned intra-granular slip
configurations are considered in each grain for comparisons. The Representative Volume Element of the polycrystal is given
by a set of 100 random crystallographic orientations and the texture development is disregarded. In each grain, crystal plas-
ticity is restricted to the most active slip system and two hypotheses are used for intra-granular slip as previously. It is either
uniform (classic Eshelby’s mean field approach) or localized in periodic slip bands represented by coplanar oblate spheroids.
We found that both aforementioned non-dimensional internal parameters have strong influences on the flow stress of poly-
crystals when the spatial period of slip bands is on the same order as the grain radius. For such slip band configurations, an
increase of h

R, or, a decrease of c
R, leads to an increase of the polycrystal’s strain-hardening. For a given metallic polycrystal, the

knowledge of slip band spatial distribution and slip band heights will be the next steps to investigate in order to improve the
description of intra-granular slip.
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Appendix A. Eshelby’s tensor for an oblate spheroid

In the present study, intra-granular slip bands are modeled by oblate spheroids with half axes ða; a; cÞ with a > c. Their
volume is given by Voblate ¼ 4

3 pa2c.
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In this case, the Eshelby tensor reads (Eshelby, 1957; Mura, 1987):

Sesh
2323 ¼

a2 þ c2

16pð1� mÞ I23 þ
1� 2m

16pð1� mÞ ðI2 þ I3Þ; ðA:1Þ

where

I2 ¼ 2pf
ð1�f2Þ3=2 ½arccosðfÞ � f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
�;

I3 ¼ 4p� 2I2;

I23 ¼ I2�I3
c2�a2 ¼ 3I2�4p

a2ðf2�1Þ :

ðA:2Þ

with f ¼ c
a. Hence, if we introduce these last expressions in Eq. (A.1), we obtain:

Sesh
2323 ¼

1
16pð1� mÞ

1þ f2

1� f2 ð4p� 3I2Þ þ ð1� 2mÞð4p� I2Þ
" #

;

¼ 1
16pð1� mÞ

1þ f2

1� f2 þ ð1� 2mÞ
!

4p� 3
1þ f2

1� f2 þ ð1� 2mÞ
!

I2

" #
;

¼ 1
4ð1� mÞ 2

1
1� f2 � m
� �

� 2þ f2

1� f2 � m

!
f

ð1� f2Þ
arccosðfÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p � f

!" #
: ðA:3Þ

Appendix B. Pair interaction tensor for two coplanar oblate spheroids

The pair interaction tensor between two coplanar ellipsoidal inclusions (same directions for half axes), namely VI and VJ ,
as depicted in Fig. B.1 is defined by:

tIJ
klmj ¼ �

1
VI

Z
VI

Z
VJ

Gkm;ljðr � r0ÞdV 0 dV ; ðB:1Þ

where G denotes the Green tensor associated to the homogeneous (infinite) medium of moduli C which satisfies the follow-
ing equation:

3

2

1

Fig. B.1. Interaction between two coplanar ellipsoidal inclusions of volume VI and VJ with respective half axes aI ; bI ; cI and aJ ; bJ ; cJ . The separation distance
between the two ellipsoid centers is denoted h with h > cI þ cJ .



CijklGkm;ljðr � r0Þ þ dimdðr � r0Þ ¼ 0
limkr�r0k!1Gkmðr � r0Þ ¼ 0:

�
ðB:2Þ

The Green tensor Gkm can be computed using the Fourier integral technique (Mura, 1987):

Gkmðr � r0Þ ¼ 1
8p3

Z
Vn

gGkmðnÞeþin�ðr�r0Þ dVn; ðB:3Þ

where n is the vector of the Fourier space (i.e. conjugated of r) with components ðn1; n2; n3Þ and modulus knk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2 þ n2

3

q
.

In Eq. (B.3), gGkmðnÞ is the Fourier transform of GkmðrÞ.
The Fourier transform of Eq. (B.2) yields:

Cijkl
gGkmðnÞnlnj ¼ dim: ðB:4Þ

In the case of an homogeneous isotropic linear elastic medium as considered in the present study, C only depends on the
Lamé constants, i.e. k and l (shear modulus), so that gGkmðnÞ writes:

gGkmðnÞ ¼
1
l

dkm

n2 �
kþ l
kþ 2l

nknm

n4

� �
: ðB:5Þ

Following Berveiller et al. (1987), Eq. (B.3) can be used in Eq. (B.2):

tIJ
klmj ¼ �

1
8p3

1
VI

Z
VI

Z
VJ

Z
Vn

nlnj
gGkmðnÞeþin�ðr�r0Þ dVn dV 0 dV : ðB:6Þ

The mathematical integration can be performed applying the spherical coordinates such that dVn ¼ n2 sin hdhdudn, and:

n1 ¼ n sin h cos u ¼ nv1ðh;uÞ;
n2 ¼ n sin h sin u ¼ nv2ðh;uÞ;
n3 ¼ n cos h ¼ nv3ðhÞ;

8><>: ðB:7Þ

where n 2 ½0;1½; h 2 ½0;p�, and, / 2 ½0;2p½. After some derivations explicated in Berveiller et al. (1987), the following result is
obtained for the pair interaction tensor tIJ

klmj in the peculiar case of two coplanar ellipsoidal inclusions (Fig. B.1) with respec-
tive half axes denoted aI; bI; cI and aJ; bJ; cJ:

tIJ
klmj ¼

1
VI

2
p

aIbIcIaJbJcJ

Z 2p

0

Z p

0
vlðh;uÞvjðh;uÞn

2gGkmðnÞ
Fðh;uÞ sin h

½ða2
I v2

1 þ b2
I v2

2 þ c2
I v2

3Þða2
J v2

1 þ b2
J v2

2 þ c2
J v2

3Þ�
3
2

dhdu: ðB:8Þ

where n2gGkmðnÞ only depends on elastic constants k;l, and angles h;u as follows:.

n2gGkmðnÞ ¼
1
l

dkm �
kþ l
kþ 2l

vkðh;uÞvmðh;uÞ
� �

: ðB:9Þ

The scalar function Fðh;uÞ writes in this peculiar case following Berveiller et al. (1987):

Fðh;uÞ ¼ 1
24
ð�a3 þ 3va2 þ 3ua2 � 6uvaÞ

Z þ1

0

sinðakÞ
k

dkþ 1
24
ðb3 þ 3vb2 � 3ub2 � 6uvbÞ

Z þ1

0

sinðbkÞ
k

dk

þ 1
24
ðc3 þ 3vc2 � 3uc2 � 6uvcÞ

Z þ1

0

sinðckÞ
k

dkþ 1
24
ð�d3 þ 3vd2 þ 3ud2 � 6uvdÞ

Z þ1

0

sinðdkÞ
k

dk ðB:10Þ

with:

a ¼ aðh;uÞ ¼ uþ v�w;

b ¼ bðh;uÞ ¼ u� v�w;

c ¼ cðh;uÞ ¼ u� vþw;

d ¼ dðh;uÞ ¼ uþ vþw;

ðB:11Þ

and:

u ¼ uðh;uÞ ¼ ða2
I v2

1 þ b2
I v2

2 þ c2
I v2

3Þ
1
2;

v ¼ vðh;uÞ ¼ ða2
J v2

1 þ b2
J v2

2 þ c2
J v2

3Þ
1
2;

w ¼ wðhÞ ¼ hv3:

ðB:12Þ

The integrals in Eq. (B.10) are given by:Z þ1

0

sinðakÞ
k

dk ¼
þ p

2 if a > 0
� p

2 if a < 0

(
ðB:13Þ



Following Berveiller et al. (1987), it is also noteworthy that:

tJI
klmj ¼

VI

VJ
tIJ

klmj; ðB:14Þ

so that it is needed to compute tIJ
klmj.

From this point, we apply the last expression for tIJ
klmj to the case of the interaction between two coplanar oblate spheroids.

Thus, it is now assumed that aI ¼ bI and aI > cI for I (resp. aJ ¼ bJ and aJ > cJ for J) which simplifies tIJ
klmj. Actually, F is now

only dependent on h which will simplify the numerical integration. Furthermore, using Eq. (B.9) into the last expression for
tIJ

klmj yields:

tIJ
klmj ¼

3
2p2

1
l

a2
J cJ

�
Z 2p

0

Z p

0
vlðh;uÞvjðh;uÞ dkm �

kþ l
kþ 2l

vkðh;uÞvmðh;uÞ
� �

FðhÞ sin h

½ða2
I sin2 hþ c2

I cos2 hÞða2
J sin2 hþ c2

J cos2 hÞ�
3
2

dhdu;

ðB:15Þ

where now a; b; c; d (and so F) only depend on h through uðhÞ; vðhÞ and wðhÞ:

u ¼ ða2
I sin2 hþ c2

I cos2 hÞ
1
2;

v ¼ ða2
J sin2 hþ c2

J cos2 hÞ
1
2;

w ¼ h cos h:

ðB:16Þ

In Section 2.3, it appears necessary to compute the symmetric part of tIJ
klmj denoted TIJ

klmj ¼ 1
2 ðt

IJ
klmj þ tIJ

lkmjÞ. Furthermore, only
the components TIJ

2332ð¼ TIJ
3232Þ and TIJ

2323ð¼ TIJ
3223Þ are needed (see Section 2.3). Thus, we only compute tIJ

2332; t
IJ
2323 and tIJ

3232

since tIJ
3223 ¼ tIJ

2332 following the previous expression for tIJ
klmj.

We first have:

tIJ
2332 ¼ �

3
2p2

kþ l
lðkþ 2lÞ a

2
J cJ

Z 2p

0

Z p

0
v2

2ðh;uÞv2
3ðh;uÞ

FðhÞ sin h
u3ðhÞv3ðhÞ dhdu;

¼ � 3
4p2

kþ l
lðkþ 2lÞ a

2
J cJ

Z 2p

0
ð1� cos 2uÞdu

Z p

0
sin2 h cos2 h

FðhÞ sin h
u3ðhÞv3ðhÞ dh;

¼ � 3
2p

kþ l
lðkþ 2lÞ a

2
J cJ

Z p

0

sin2 h cos2 hFðhÞ sin h
u3ðhÞv3ðhÞ dh; ðB:17Þ

then, we get:

tIJ
2323 ¼

3
2p2

1
l

a2
J cJ

Z 2p

0

Z p

0
v2

3ðh;uÞ 1� kþ l
kþ 2l

v2
2ðh;uÞ

� �� �
FðhÞ sin h

u3ðhÞv3ðhÞ dhdu

¼ 3
p

1
l

a2
J cJ

Z p

0
cos2 h

FðhÞ sin h
u3ðhÞv3ðhÞ dhþ tIJ

2332: ðB:18Þ

and, afterwards:

tIJ
3232 ¼

3
2p2

1
l a2

J cJ

Z 2p

0
sin2 u

Z p

0
sin2 h

FðhÞ sin h
u3ðhÞv3ðhÞ dhduþ tIJ

2332 ¼
3

2p
1
l a2

J cJ

Z p

0
sin2 h

FðhÞ sin h
u3ðhÞv3ðhÞ dhþ tIJ

2332: ðB:19Þ

It is noteworthy that the three integrals for tIJ
2332, tIJ

2323 and tIJ
3232 become single integrals. In order to compute these integrals,

let us introduce the new variable x ¼ cos h, hence dx ¼ � sin hdh. Furthermore, we have:

u ¼ ða2
I þ ðc2

I � a2
I Þx2Þ

1
2;

v ¼ ða2
J þ ðc2

J � a2
J Þx2Þ

1
2;

w ¼ hx:

ðB:20Þ

Thus, we can notice the following properties:

að�xÞ ¼ uð�xÞ þ vð�xÞ �wð�xÞ ¼ uðxÞ þ vðxÞ þwðxÞ ¼ dðxÞ;
bð�xÞ ¼ uð�xÞ � vð�xÞ �wð�xÞ ¼ uðxÞ � vðxÞ þwðxÞ ¼ cðxÞ:

ðB:21Þ



Hence, we deduce that Fð�xÞ ¼ FðxÞ, which allows us to write:

tIJ
2332 ¼ 3

p
kþl

lðkþ2lÞ a
2
J cJ
R 1

0 x2ðx2 � 1Þ FðxÞ
u3ðxÞv3ðxÞ dx;

tIJ
2323 ¼ 6

p
1
l a2

J cJ
R 1

0 x2 FðxÞ
u3ðxÞv3ðxÞ dxþ tIJ

2332;

tIJ
3232 ¼ 3

p
1
l a2

J cJ
R 1

0 ð1� x2Þ FðxÞ
u3ðxÞv3ðxÞ dxþ tIJ

2332:

ðB:22Þ

Finally, TIJ
2332 and TIJ

2323 can be computed as:

TIJ
2332 ¼

1
2
ðtIJ

2332 þ tIJ
3232Þ ¼

3
p

1
l

a2
J cJ

Z 1

0
ðx2 � 1Þ FðxÞ

u3ðxÞv3ðxÞ
kþ l
kþ 2l

x2 � 1
2

� �
dx; ðB:23Þ

and

TIJ
2323 ¼

1
2
ðtIJ

2323 þ tIJ
3223Þ ¼

3
p

1
l

a2
J cJ

Z 1

0
x2 FðxÞ

u3ðxÞv3ðxÞ 1þ kþ l
kþ 2l

ðx2 � 1Þ
� �

dx; ðB:24Þ

Then, the interaction term TIJ
2323 þ TIJ

2332 in Eq. (49) (i.e. for I–J) is derived as:

TIJ
2323 þ TIJ

2332 ¼
6
p

1
l a2

J cJ

Z 1

0

FðxÞ
u3ðxÞv3ðxÞ

kþ l
kþ 2l x2ðx2 � 1Þ þ 1

4
ðx2 þ 1Þ

� �
dx: ðB:25Þ

Using Eq. (B.14) yields:

TJI
2323 þ TJI

2332 ¼
VI

VJ
ðTIJ

2323 þ TIJ
2332Þ: ðB:26Þ

We can compute TIJ
2323 þ TIJ

2332 with a Gauss–Legendre numerical integration scheme (Press et al., 2002) since no analytical
results is given in the literature from the author’s knowledge in the case of two oblate spheroids (i.e. with aI > cI).

The CPU times to compute the integration points and weights are performed once and are reported in Table B.1. These
CPU times are obtained on an intel Woodcrest 5160 (3 Ghz, �86-64) using the intel C++ compiler.

In order to determine the needed effective number of integration points, we compute the numerical relative error defined

by jTn�Tn¼10;00;00 j
jTn¼10;00;00 j

where Tn ¼ TIJ
2323 þ TIJ

2332 for a given number of integration points n, and, where Tn¼10;00;00 corresponds to

10,00,00 integration points. The results are reported in Table B.2. They are obtained considering the most critical morphol-
ogies for oblate spheroids in the simulations corresponding to cI

aI
� 1� 10�3. We observe that a good accuracy is obtained

from n ¼ 20;000 points which are used in all the simulations.
In order to check the relevancy of the numerical procedure, we compare the numerical results obtained for TIJ

2323 þ TIJ
2332

called Tn to the analytical solution reported by Berveiller et al. (1987), called Tanalytical, in the case of two spherical inclusions
of volumes VI and VJ with respective half axes aI ¼ bI ¼ cI and aJ ¼ bJ ¼ cJ . By denoting k2 ¼ ða2

I þ a2
J Þ=h2 where h is the sep-

aration distance between the centers of the two inclusions ðh > aI þ aJÞ, this solution writes (Berveiller et al., 1987):

TIJ
2323 þ TIJ

2332 ¼ Tanalytical ¼
1
6

a3
J

h3

1
lð1� mÞ 1þ m� 12

5
k2

� �
: ðB:27Þ

The relative errors defined as jTn�Tanalytical j
jTanalytical j

are reported as a function of the number of integration points in Table B.3.

Table B.3
Relative error for the numerical computation of TIJ

2323 þ TIJ
2332 in the case of two spherical inclusions with radii aI ¼ 0:1 lm and aJ ¼ 1 lm distant from

h ¼ 2:7 lm

Integration points 100 1000 10,000 20,000 50,000

Relative error ðh ¼ 2:7 lmÞ 0.12 1:07� 10�4 9:07� 10�6 1:98� 10�6 3:64� 10�7

Table B.1
CPU time (in seconds) to compute the Gauss integration weights and points (performed once)

Integration points 10 100 1000 10,000 20,000 50,000

CPU time (s) 	 0 	 0 0.02 2.29 8.36 43.66

Table B.2
Relative errors for the numerical computation of TIJ

2323 þ TIJ
2332 in the case of two oblate spheroids with radii aI ¼ aJ ¼ 100 lm and cI ¼ cJ ¼ 0:1 lm distant from

h ¼ 2:7 lm and h ¼ 20 lm

Integration points 100 1000 10,000 20,000 50,000

Relative error ðh ¼ 20 lmÞ 4:73� 10�2 6:06� 10�4 1:64� 10�6 4:83� 10�7 2:05� 10�7

Relative error (h ¼ 2:7 lm) 9.17 0.22 7:31� 10�5 4:15� 10�5 3:65� 10�5
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