
HAL Id: hal-02455932
https://hal.science/hal-02455932

Submitted on 27 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal and spatial high-resolution climate data from
1961 to 2100 for the German National Forest Inventory

(NFI)
Helge Dietrich, Thilo Wolf, Tobias Kawohl, Jan Wehberg, Gerald Kändler,

Tobias Mette, Arno Röder, Jürgen Böhner

To cite this version:
Helge Dietrich, Thilo Wolf, Tobias Kawohl, Jan Wehberg, Gerald Kändler, et al.. Temporal and
spatial high-resolution climate data from 1961 to 2100 for the German National Forest Inventory
(NFI). Annals of Forest Science, 2019, 76 (1), pp.6. �10.1007/s13595-018-0788-5�. �hal-02455932�

https://hal.science/hal-02455932
https://hal.archives-ouvertes.fr


DATA PAPER

Temporal and spatial high-resolution climate data from 1961
to 2100 for the German National Forest Inventory (NFI)

Helge Dietrich1
& Thilo Wolf2 & Tobias Kawohl1 & Jan Wehberg1

& Gerald Kändler2 & Tobias Mette3
& Arno Röder2 &

Jürgen Böhner1

Received: 17 November 2017 /Accepted: 4 December 2018 /Published online: 23 January 2019
# The Author(s) 2019

Keywords Climate data Europe . Germany

Helge Dietrich, Thilo Wolf, Tobias Kawohl, and Jan Wehberg were
shared first author to the study and to the manuscript

Arno Röder and Jürgen Böhner were shared last author to the supervision
and to the manuscript

Handling Editor: Erwin Dreyer

Keymessage The “NFI 2012 environmental data base climate” is part of
the environmental database of the German National Forest Inventory. It
contains climate information for 26,450 inventory points generated from
gridded daily climate data for 1961–2100 at a spatial resolution of 250 m.
Grids are based on DWD-Observations and REMO EURO-CORDEX
climate projections. Access to the databases is provided via the URL:
https://doi.org/10.3220/DATA/20180823-102429. Associated metadata
are available at https://agroenvgeo.data.inra.fr/geonetwork/srv/fre/
catalog.search#/metadata/d0789030-c94e-4883-8d38-2a7332c98673.

This article is part of the topical collection on Environmental data for the
German NFI

Contribution of the co-authors Helge Dietrich, Tobias Kawohl, Jan
Wehberg: developing of the methods, data analysis and validation,
writing of the manuscript.
Thilo Wolf: aggregation of climate-specific values at the German NFI
plots, conceptual design and creation of the resulting databases, writing
of the manuscript.
Gerald Kändler: supervising the work.
Tobias Mette: coordination of the WP-KS-KW project.
Arno Röder: coordinating the module climate regionalization, writing of
the manuscript.
Jürgen Böhner: supervising the work, writing of the manuscript.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s13595-018-0788-5) contains supplementary
material, which is available to authorized users.

* Arno Röder
arno.roeder@forst.bwl.de

Helge Dietrich
helge.dietrich@uni-hamburg.de

Thilo Wolf
thilo.wolf@forst.bwl.de

Tobias Kawohl
tobias.kawohl@uni-hamburg.de

Jan Wehberg
jan.wehberg@uni-hamburg.de

Gerald Kändler
gerald.kaendler@forst.bwl.de

Tobias Mette
tobias.mette@lwf.bayern.de

Jürgen Böhner
juergen.boehner@uni-hamburg.de

Extended author information available on the last page of the article

Annals of Forest Science (2019) 76: 6
https://doi.org/10.1007/s13595-018-0788-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s13595-018-0788-5&domain=pdf
http://orcid.org/0000-0001-8030-8854
https://doi.org/10.3220/DATA/20180823-102429
https://agroenvgeo.data.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/d0789030-c94e-4883-8d38-2a7332c98673
https://agroenvgeo.data.inra.fr/geonetwork/srv/fre/catalog.search#/metadata/d0789030-c94e-4883-8d38-2a7332c98673
https://doi.org/10.1007/s13595-018-0788-5
mailto:arno.roeder@forst.bwl.de


1 Background

Climate change affects the productivity (e.g., Boisvenue and
Running 2006) and carbon sequestration of forests (cf. Hui
et al. 2017). To model potential future site-specific forest pro-
ductivity, high quality data for both forest stands and climate
are required. So far, the available climate data meet the re-
quirements for forestry scientific questions only to a certain
degree. Existing datasets, such as the E-OBS gridded dataset
(Haylock et al. 2008), the WorldClim data (Hijmans et al.
2005), the grids of monthly aggregated climate data (e.g.,
DWD Climate Data Center—CDC 2016a), and the recently
published CHELSA data (Karger et al. 2017), achieve a spa-
tial resolution of 0.2° and 0.3° (lat./long.) or 1-km2 regular
grid. Due to the availability of high-resolution digital terrain
models for Germany via the German Federal Agency for
Cartography and Geodesy (Bundesamt für Kartographie und
Geodäsie BKG 2010), there is a suitable basis for a more
precise elaboration of terrain induced climatic effects, such
as cold air flows, respectively, accumulation. Not only long-
term changes in climatic conditions may cause physiological
stress to trees. Especially, weather extremes may generate ef-
fects even within short timescales. Therefore, the climate var-
iables influencing forest productivity are required in daily res-
olution, which is neither realized by WorldClim, CHELSA
nor in the DWD climate datasets. In the frame of the project
“Forest Productivity–Carbon Sequestration–Climate Change”
(WP-KS-KW) (Mette 2017), climate regionalization provides
the spatial and temporal requirements by resolving climate
information for Germany in a daily raster of 250 × 250 m for
the period 1961 to 2100. The “NFI 2012 environmental data
base climate” contains aggregated time series with spatial cli-
mate information for monthly and annual values, extreme val-
ue statistics, and specific characteristics for phenological
phases or specific periods in the above-mentioned timeframe
for the German National Forest Inventory (NFI) and the
National Forest Soil Inventory (NFSI).

2 Methods

2.1 Regionalization of historical daily station
observations

To obtain spatial high-resolution climate data for the period of
1961 to 2013, the historical daily observations of the National
German Weather Service (Deutscher Wetterdienst) (DWD
Climate Data Center—CDC 2016b), supplemented by weath-
er stations of the Global Surface Summary of the Day (GSOD)
(Menne et al. 2012) bordering Germany, were regionalized
applying geographically weighted regression (GWR) tech-
nique using different terrain parameters as predictors. Terrain
parameters are derived from a nationwide digital elevation

model with a horizontal resolution of 25 m (Bundesamt für
Kartographie und Geodäsie BKG 2010), resampled to a 250-
m grid, which provides the basis for the parameterization of
terrain effects.

The regionalization of station-based data comprised fol-
lowing meteorological variables: (a) global radiation (daily
sums for horizontal and inclined surfaces), (b) temperature
(daily mean, minimum, maximum), (c) vapor pressure deficit
(daily mean), (d) wind speed (daily mean), and (e) precipita-
tion (daily sums). In the following, we briefly introduce the
GWR principle and subsequently sketch variable-specific me-
thodical setups.

GWR belongs to the family of multivariate regression tech-
niques (Lloyd 2010) and serves to predict a target variable
based on predictor variables considering spatially variable lin-
ear relationships. Basic descriptions of GWR functionalities
can be found among others in Fotheringham et al. (1998) and
Fotheringham et al. (2002). For a systematic evaluation of al-
ternative spatialization methods proofing GWR to outperform
global spatialization approaches as well as local deterministic
and geostatistical interpolation methods, see Böhner and
Bechtel (2018). Further examples of GWR applications are
given in Duan and Li (2016) who used GWR to downscale
MODIS land surface temperatures in northern China. Li et al.
(2010b,) applied GWR for the regionalization of urban surface
temperatures. Brunsdon et al. (2001) investigated the hypso-
metric variation of precipitation in Great Britain. Sharma et al.
(2011) conducted a study focusing on the correlation of spatial
non-stationarities of precipitation and crop yields. Unlike glob-
al regression-based approaches, which only provide a single
regression equation to describe statistical relations between pre-
dictors and dependent variables, GWR integrates local regres-
sion analysis with inverse-distance weighting of input data.
Interpolated to the target grid resolution, the resulting grids of
regression parameters enable a non-stationary representation of
the target variable, accounting for spatially varying predictor-
predictand relationships even at topoclimatic scales (Brunsdon
et al. 2001; Fotheringham et al. 1998; Lin and Wen 2011). In
dependence on the spatial distribution and density of input data,
GWR moreover enables to define a search range and a specific
bandwidth of the Gaussian weighting scheme for the purpose
of optimizing the regionalization results (Böhner and Bechtel
2018). In this research, the bandwidth of the Gaussian kernel
and the search range was obtained through cross-validation. An
overview of GWR configurations (bandwidth, search range,
model resolution), terrain parameters used as predictors, and
the approximate number of underlying weather stations is sum-
marized in Table 1. The model resolution refers to the horizon-
tal discretization of the initial GWR grid network, which in-
tends to compromise between spatial detailedness and compu-
tational efficiency, elaborated through comprehensive perfor-
mance tests. Unless otherwise stated, model development, per-
formance tests, and the final implementation of the GWR were
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performed by the free and open source software SAGA GIS—
System for Automated Geoscientific Analysis (Conrad et al.
2015).

2.2 Meteorological variables

2.2.1 Solar radiation

Shortwave solar radiation is the primary climatic factor enter-
ing the energy budget and thus a major determinant of energy
exchange and plant physiological processes. The observation-
al database, however, was quite sparse with only 20 weather
stations with long-term records of global radiation. Against
this background, daily radiation values (global radiation and
topographic radiation) were estimated using the semi-
empirical method proposed by Allen et al. (1998). In this
approach, the extraterrestrial solar radiation (at the top of at-
mosphere) is computed as a function of the geographical lat-
itude, determining the astronomical day length and the diurnal
course of the sun’s altitude and azimuth angle for each day of
the year, while the strength of atmospheric extinction process-
es and the radiation income at the earth’s surface is estimated
as an empirical function of the relative daily sunshine duration
(i.e., the ratio between observed and astronomically possible
sunshine hours). Relative sunshine duration was computed for
220 to 299 weather stations with daily sunshine observations,
depending on station availability, interpolated to the target
grid resolution using B-spline interpolation. For the delinea-
tion of topographic solar radiation from global radiation in
consideration of the local terrain geometry and shadowing
effects of the terrain, see Böhner and Bechtel (2018).

2.2.2 Temperature

Regional temperature variations are commonly strongly cor-
related with altitude, reflecting the close dependence of envi-
ronmental lapse rates on the circulation mode and thus on the
state and stratification of the troposphere. At the topoclimatic
scale, however, the differential heating of slopes as well as the
nocturnal cold air formation and cold air flow alters the

tropospheric stratification and leads to distinct distribution
patterns of temperature in the near surface layer, particularly
in case of inversions. To account for both effects, temperatures
(minimum, maximum, and mean daily temperatures) were
regionalized via GWR considering elevation and the terrain
exposure index (TEI) as predictors. The TEI is a complex-
analytic DEM-based terrain parameter, which indicates the
degree, to which a particular location is sheltered from advec-
tion flows and is thus particularly suitable to indicate terrain
settings frequently exposed to cold air flow and cold air accu-
mulation (e.g., valleys, terrain sinks, mountain-rimmed ba-
sins). For a comprehensive formal description and
meteorological justification of the TEI, see Böhner and
Bechtel (2018) and Böhner and Antonic (2009).

2.2.3 Vapor pressure deficit

Given that the vapor pressure is determined by temperature,
the vapor pressure deficit was simply estimated from the va-
por pressure (computed for gridded daily mean temperatures
using the Magnus equation (cf. Zmarsly et al. 2007) and the
relative vapor pressure deficit of the weather station network,
interpolated to the target grid resolution via B-spline interpo-
lation. This rather simple approach was chosen to prevent
from competing surface parameterizations in the regionaliza-
tion scheme, given that the regionalization of temperatures
already considered the TEI and the altitude as predictors.

2.2.4 Wind speed

To avoid inconsistencies due to the strongly varying data cov-
erage over time, the estimation of daily wind speeds consid-
ered both, available daily observations from 49 to 181 stations
as well as average monthly wind climatologies from Böhner
(2004). The gridded 250 × 250-m resolution datasets for 10
and 2 m above ground were performed according to the sta-
tistical SWM (Statistisches Windfeldmodell, cf. Gerth and
Christoffer 1994) approach and accounted for terrain and land
use effects on the air flow through roughness parameterization
(Böhner 2004). The empirical database comprised of wind

Table 1 Attributes of GWR model setup and empirical input data

Predictand Predictor Model resolution (m) Search range Bandwidth (m) Number of stations

Precipitation Elevation 30,000 Global 40.000 ca. 4750

Mean temp. DEM/ terrain exposure index (TEI) 40,000 Global 75,000 ca. 650

Min temp. DEM/ terrain exposure index (TEI) 40,000 Global 75,000 ca. 650

Max temp. DEM/ terrain exposure index (TEI) 40,000 Global 75,000 ca. 650

Wind speed Leeward index 200,000 Global 100,000 49–181

Vapor pressure deficit Regionalized daily mean temp. 40,000 Global 75,000 ca. 520

Global radiation (sunshine duration) Method of Allen et al. (1998) None None None 220–299
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climatologies from 109 wind stations, standardized for differ-
ent roughness classes and height levels according to the Wind
Atlas approach (cf. Traub and Kruse 1996; Böhner 2004).

In view of differing measuring heights, in a first step, time
series of mean daily wind speeds were reduced to 2 m above
ground and a standard roughness length of 0.0148 m (FAO
reference surface, cf. Allen et al. 1998) according to the log-
arithmic wind profile law (Oke 2000), using CORINE based
roughness grids from Böhner (2004) created for the lowest
part of the inertial sublayer. After z-transformation of the time
series, the z values were regionalized via GWR again using the
TEI as predictor. Assuming daily wind speeds to be Rayleigh
distributed with a constant ratio of approximately 1.91 be-
tween mean and standard deviation (Shankar 2017), daily
mean wind speeds were finally simply delineated from the
monthly gridded wind climatologies via inverse z transforma-
tion applied to the long-term means.

2.2.5 Precipitation

Since precipitation is highly variable in space and time and
thus requires a regionalization strategy, which accounts for the
large spatial variability and is moreover robust against chang-
ing data densities over time, the estimation of daily precipita-
tion fields was performed in a two-step procedure. At first,
long-term 1961–1990 monthly means from the DWD rain
gauge network were regionalized using GWR with elevation
as predictor. The observational database comprised of consis-
tently processed precipitation climatologies from a total of
4752 stations (DWD 2017). The dataset constitutes the dens-
est available network of point source precipitation observa-
tions for Germany sufficiently representing the spatial varia-
tion pattern of precipitation. Based on all available daily time
series, daily precipitation fields were subsequently inferred
from relative daily precipitation rates (i.e., the ratios of daily
totals to long-term monthly means), which were interpolated
to the target grid resolution via B-spline and finally multiplied
with the respective monthly means.

2.3 Statistical and dynamical climate projections

To cover a range of potential future climate developments,
climate projections were performed for three Representative
Concentration Pathway (RCP) emission scenarios (RCP 2.6,
4.5 and 8.5; cf. IPCC 2014) using MPI-ESM (Max Planck
Institute for Meteorology—Earth System Model) simulations
as forcings. The state-of-the-art MPI-ESM contributed to the
Fifth Assessment Report (AR5) of the IPCC (2014) and con-
sists of the atmospheric General Circulation Model
ECHAM6, the land vegetation model JSBACH, the ocean
GCM MPIOM, and the ocean biogeochemistry model
HAMOCC. An overview of the modeling components is

given in Ilyina et al. (2013), Jungclaus et al. (2013), Reick
et al. (2013), Schneck et al. (2013), and Stevens et al. (2013).

MPI-ESM runs were performed within the frame of the
international Climate Model Intercomparison Project CMIP5
(Taylor et al. 2012; Hasson et al. 2016), projecting an area-
averaged twenty-first century warming for Germany from ap-
proximately 1.3 (RCP 2.6) to 3.9 K (RCP 8.5) and only minor
changes in precipitation of approximately + 2 (RCP 2.6) and
− 1% (RCP 8.5), quite in line with the majority of climate
change signals of the CMIP5 model ensemble (cf. IPCC
2014; Kovats et al. 2014). The gridmesh resolution of approx-
imately 1.9° of the ECHAM6 atmospheric General
Circulation Model (cf. Giorgetta et al. 2012), however, re-
mains far beyond the needs for climate impact analyses and
thus requires a suitable strategy for spatially refining limited
resolution model outputs, using dynamical or statistical down-
scaling (cf. Böhner and Bechtel 2018). In this research, both
basic approaches, dynamical and statistical downscaling, were
considered.

2.3.1 REMO

Climate projections based on dynamically downscaled MPI-
ESM simulations were generated for the environmental data-
base of the German NFI, using bias-corrected REMO
(Regional Climate Model) simulations. The internationally re-
nowned Limited-Area Model (LAM) REMO of the Max
Planck Institute for Meteorology, Hamburg, is a hydrostatic
(i.e., non-convection permitting) mesoscale climate model, ca-
pable of resolving mesoscale processes at a typical horizontal
discretization of about 50 to 10 km (Jacob et al. 2014). REMO
simulations were carried out in context of the Coordinated
Regional Climate Downscaling Experiment (CORDEX) of
the World Climate Research Program (WCRP). The coordinat-
ed framework enabled a systematic evaluation of different
modeling initiatives, proofing the principle validity of REMO
simulations (Jacob et al. 2012; Kotlarski et al. 2014). REMO
projections for the twenty-first century (since 2006) were per-
formed in a nested approach, spatially refining the forcing
ECHAM6 modeling results for RCP 2.6, 4.5 and 8.5 down to
a horizontal grid mesh resolution of approximately 12 km2

(Kotlarski et al. 2014; Pfeifer et al. 2015).
In order to capture the intrinsic variability of REMO sim-

ulations, we waived for additional downscaling applications
and limited the further processing of REMO outputs to bias
corrections. Comprehensive tests of different bias correction
methods were conducted (Sachindra et al. 2014; Wetterhall
et al. 2012), based on REMO 1971–2000 control run data
and respective regionalized climate data of the observational
network. Performance tests of alternative approaches were
initially carried out on a subset of approximately 2500 paired
(i.e., observational vs. modeled) time series for all target var-
iables, proofing the rather simple direct method of Wetterhall
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et al. (2012) to be suitable for radiation and temperature cor-
rections, particularly in view of the relatively low model
biases. Correction terms for modeled radiation data consid-
ered the coefficients of long-term 1971–2000 monthly means
of observational and modeled data, showing a general tenden-
cy of slight overestimation of solar radiation simulated with
REMO. For the interval-scaled temperature variables (min,
mean, max), model biases were taken as the 1971–2000 mean
monthly differences between observational data and REMO
control run, revealing mainly slight warm biases of REMO
(i.e., a model overestimation) particularly in spring (April,
May, June). The correction terms for radiation and tempera-
ture were consistently applied to the daily resolution scenario
projections.

To prevent from competing bias corrections, the vapor
pressure deficits of the projection period were directly estimat-
ed by multiplying REMO modeled relative moisture deficits
with the vapor pressure determined from bias corrected daily
mean temperatures again using theMagnus equation (Zmarsly
et al. 2007). Tests based on paired time series from the control
period 1971–2000 proofed a sufficient accuracy of the simple
procedure, whereas separate bias corrections of the modeled
vapor pressure deficits partly produced non-plausibly results
(e.g., negative values) when applied to the projections.

Bias corrections of wind speed and precipitation were per-
formed using the correction method proposed by Sachindra
et al. (2014). In this approach, at first, modeled daily time
series of the control period and the projection period were z-
transformed based on its monthly means and standard devia-
tions of the control period. In a second step, inverse z-trans-
formation of obtained z values was performed but this time
applied to the monthly means and standard deviations of the
observed data. In the result, the method corrects both the av-
erage bias and the eventually biased standard deviation of
modeled data, resulting in identical statistical parameters
(means, standard deviation) of observed and bias corrected
time series for the control period. Moreover, as compared to
more complex bias correction methods, such as the quantile
method (Maraun 2013), frequently applied to precipitation
data (Maraun 2013; Li et al. 2010a), the approach is compu-
tational efficient, prevents from producing non-plausible out-
liers in the projections, and was found to sufficiently capture
the typically right-skewed statistical distribution of wind and
precipitation series. Corrections of precipitation projections
adjusted the moist bias of REMO, which was particularly
distinct in February, whereas the standard deviations of the
control run were principally in good agreement with the
observations.

Table 2 Monthly and annual statistics of area-averaged daily temperature series for regionalized observations (Obs.) and REMO EURO-CORDEX
projections (RCPs) of the period 2006–2013. Daily mean (DM), standard deviation (SD), skewness (Skew), minimum (Min), and maximum (Max)

Obs. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [°C] 0.4 0.6 4.0 9.4 13.1 16.2 18.5 17.4 13.9 9.3 5.3 1.6 9.1

SD [°C] 4.5 4.2 3.9 3.8 3.2 3.2 3.2 2.5 2.8 3.4 3.3 4.0 3.5

Skew 0.1 − 0.7 − 0.3 0.0 0.0 0.0 0.2 0.3 0.2 − 0.1 − 0.2 − 0.6 − 0.1
Min [°C] − 9.5 − 13.6 − 5.1 − 0.3 6.1 8.0 12.2 10.7 8.4 0.5 − 4.2 − 13.0 − 13.6
Max [°C] 10.6 8.8 12.4 17.9 20.3 25.0 26.4 25.5 20.3 17.5 13.1 11.6 26.4

RCP 2.6 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [°C] − 0.7 − 1.0 2.3 6.0 11.5 14.9 17.4 17.9 12.5 9.0 4.6 1.1 8.0

SD [°C] 3.9 3.0 3.7 3.3 3.4 2.8 2.4 2.9 2.9 2.9 3.3 3.3 3.2

Skew − 0.4 − 0.2 − 0.2 0.2 0.3 0.7 0.4 0.2 0.4 0.0 − 0.3 − 0.1 0.1

Min [°C] − 13.0 − 10.7 − 6.1 − 1.7 4.9 9.6 12.9 12.3 5.4 0.6 − 3.5 − 7.3 − 13.0
Max [°C] 8.8 7.1 10.7 15.9 20.1 22.8 24.8 24.9 20.6 15.7 13.1 9.1 24.9

RCP 4.5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [°C] 0.0 1.1 3.9 7.1 12.9 15.3 18.4 17.8 14.1 9.1 4.9 1.9 8.9

SD [°C] 3.9 2.8 3.4 3.2 3.4 3.6 2.7 2.6 3.4 2.8 3.8 3.8 3.3

Skew − 0.6 − 0.1 − 0.1 − 0.1 0.2 0.4 0.4 0.4 0.4 0.5 − 0.4 − 0.4 0.1

Min [°C] − 12.2 − 7.9 − 4.0 − 0.8 6.0 8.9 12.4 12.1 7.2 2.2 − 4.3 − 8.4 − 12.2
Max [°C] 8.3 7.8 12.1 15.0 21.8 24.2 25.3 25.0 21.9 18.7 12.5 9.5 25.3

RCP 8.5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [°C] − 1.1 2.8 4.3 8.0 11.9 16.1 18.1 18.2 13.7 10.0 4.5 1.3 9.0

SD [°C] 4.2 2.6 3.1 3.3 3.1 3.0 3.0 2.8 2.9 3.2 3.5 3.4 3.2

Skew − 0.7 − 0.1 0.3 − 0.1 0.2 0.2 0.5 0.4 0.3 0.2 − 0.7 − 0.4 0.0

Min [°C] − 15.0 − 3.4 − 2.8 0.4 5.2 9.7 12.7 11.6 7.6 3.3 − 6.3 − 8.6 − 15.0
Max [°C] 7.4 8.8 12.3 16.7 20.0 23.5 26.8 26.0 21.1 17.4 11.6 9.0 26.8
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Bias corrections had been consistently applied to the
REMO projection period 2006–2100, allowing to directly
comparing modeling results with regionalized observations
for the 8-year overlap period 2006–2013. Tables 2 and 3 show
monthly and annual statistics of daily temperature and precip-
itation series computed as areal means over the Germanmodel
domain. In comparison with observational statistics, the first
three moments (mean, standard deviation, skewness) as well
as the minimum and maximum values of the RCP scenarios
are principally plausible. Basic variation characteristics, such
as the strongly right skewed distribution of precipitation
throughout all months, the rather symmetric distribution of
temperatures, and the standard deviations for both temperature
and precipitation are largely in line with the observational
data. Only the simulated temperature ranges and extremes
on average are slightly lower than observed. However, con-
sidering that the temperature variability in the period 2006–
2013 was slightly higher than in the climate normal period
1971–2000, this finding does not generally indicate an under-
estimation of temperature variability in the modeling results.
Keeping in mind that scenario simulations are projections and
no predictions, and, of course cannot expected to synchro-
nously reproduce specific seasonal features of observed vari-
ations (e.g., the relatively dry and warm April conditions

during 2006–2013 as compared to 1971–2000 Climate
Normals), modeling results prove suitable for representing
plausible future climate pathways. Examples for long-term
changes in temperature and precipitation over the German
model domain, depicting REMO-based modeling results for
the moderate RCP 2.6 scenario and the extreme-end warming
RCP 8.5 scenario are shown in Figs. 1 and 2. Tables 4 and 5
summarize areal averaged mid-century (2041–2050) and end-
century (2091–2100) temperature and precipitation projec-
tions for the three RCP scenarios.

2.3.2 STARS

In order to explore the impact of using different modeling
paradigms on the outcome of scenarios, dynamical
(REMO) simulations had been supplemented by purely
statistically generated projections for the near future peri-
od 2011–2050 using the Statistical Analogue Resampling
Scheme (STARS) from the Potsdam Institute for Climate
Impact Research (PIK). The STARS approach applies
block-bootstrapping techniques with heuristic rules to re-
combine observed time series according to a prescribed
temperature trend. The iterative procedure firstly
rearranges annual values and subsequently 12 day blocks

Table 3 Monthly and annual statistics of area-averaged daily precipitation series for regionalized observations (Obs.) and REMO EURO-CORDEX
projections (RCPs) of the period 2006–2013. Daily mean (DM), standard deviation (SD), skewness (Skew), minimum (Min), and maximum (Max)

Obs. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [mm] 2.1 1.7 1.7 1.3 2.7 2.6 2.9 3.0 2.1 1.9 2.1 2.4 2.2

SD [mm] 2.8 2.3 2.3 1.7 3.2 2.9 2.9 3.0 2.9 2.5 2.5 2.7 2.6

Skew 2.5 2.3 1.6 1.9 1.9 1.8 1.4 1.3 1.9 1.6 1.4 1.9 1.8

Min [mm] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max [mm] 20.0 15.6 11.3 9.2 16.7 16.3 15.0 15.3 15.3 11.7 12.2 16.0 20.0

RCP 2.6 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [mm] 1.5 1.2 1.9 2.3 2.2 3.3 2.3 2.1 2.5 1.9 2.6 2.7 2.2

SD [mm] 2.1 1.6 2.2 2.2 2.1 2.9 2.7 2.3 2.8 2.7 3.0 2.9 2.5

Skew 3.0 2.2 1.9 1.3 1.3 1.4 2.2 1.6 1.7 2.6 2.4 1.7 1.9

Min [mm] 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Max [mm] 16.0 9.0 12.2 12.7 10.6 17.8 15.9 14.2 13.9 22.0 21.3 15.9 22.0

RCP 4.5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [mm] 1.9 1.5 1.7 2.1 2.0 2.5 2.4 1.9 2.5 1.9 2.8 2.4 2.1

SD [mm] 2.1 1.9 2.1 2.4 2.2 2.6 2.6 2.1 3.1 2.4 3.2 2.7 2.5

Skew 1.7 2.2 2.0 2.1 1.4 1.3 1.9 1.6 1.7 2.0 2.5 1.6 1.8

Min [mm] 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

Max [mm] 11.8 11.1 12.4 14.9 10.3 11.9 16.6 11.8 17.5 13.8 23.5 13.9 23.5

RCP 8.5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

DM [mm] 1.5 1.2 2.3 2.0 2.3 2.9 2.3 2.1 2.4 1.8 2.6 2.1 2.1

SD [mm] 1.8 1.4 2.5 1.8 2.2 2.7 2.6 2.6 2.6 2.6 2.9 2.3 2.3

Skew 2.2 1.7 1.7 1.5 1.4 1.5 1.9 1.8 2.0 3.1 2.1 2.0 1.9

Min [mm] 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

Max [mm] 9.6 6.8 14.9 10.4 12.3 16.7 15.0 11.1 16.6 19.9 20.9 15.3 20.9
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in due consideration of the interannual variability and the
rank of the time intervals, until the artificial time series
fits a given temperature trend simulated by a numerical
climate model. Due to low computational demands,
STARS allows to generate large ensembles of statistical

realizations, each reproducing the forcing temperature
trend at a predefined deviation tolerance. To account for
large scale differences in climate projections, modeled
temperature signals are assigned to a limited number of
weather stations, considered as reference locations, which

Fig. 2 Average annual rainfall (1971–2000) based on regionalized in-situ
observations (left). Relative Change of annual precipitation (2071–2100
vs. 1971–2000) in the bias corrected REMO EURO-CORDEX RCP 2.6
scenario (middle) and RCP 8.5 scenario (right). Due to the low

precipitation amounts in continental eastern Germany, equal absolute
changes (in mm) result in higher relative changes (in %) than in rainy
areas

Fig. 1 Historical mean temperature (1971–2000) based on regionalized in-situ observations (left). Change of mean temperature (2071–2100 vs. 1971–
2000) in the bias corrected REMO EURO-CORDEX RCP 2.6 scenario (middle) and the RCP 8.5 scenario (right)
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are representative in terms of its climatic seasonality and
long-term observed temperature changes (Orlowsky et al.
2008; Lutz and Gerstengarbe 2014).

Following the procedure suggested by Orlowsky and Lutz
(2013), we applied K-means cluster analysis to the observa-
tional database of 75 weather stations, taking into account the
variables mean temperature, precipitation, standard deviation
of temperature, and precipitation as well as the difference be-
tween the first and the second half of the observation period
(cf. Orlowsky and Lutz 2013). In the result, the weather sta-
tions Schwerin and Fichtelberg had been detected as reference
locations, subsequently judging the block-bootstrapping

procedure of temperature time series of the period 1961–
2013. The forcing warming signals were taken from
ECHAM6 simulations of the period 2011–2050, ranging from
0.7 (Schwerin) and 0.8 K (Fichtelberg) in the moderate RCP
2.6 scenario to 1.3 (Schwerin) and 1.4 K (Fichtelberg) in the
extreme-end warming RCP 8.5 scenario. Using only two ref-
erence weather stations is assumed to be sufficient in view of
the quite low spatial differences of the ECHAM6 temperature
projections over Germany.

To prevent a disproportionately high resampling of warm
12 day blocks, which is required at the second resampling
level when enforcing a temperature increase beyond the

Table 5 STARS and bias corrected REMO EURO-CORDEX projections of precipitation change for Germany under Representative Concentration
Pathway (RCP) scenarios. Relative monthly and annual changes refer to area-averaged precipitation sums of the reference period 1971–2000

STARS 2041–2050 [%] REMO 2041–2050 [%] REMO 2091–2100 [%]

RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5

Jan 14.9 17.1 33.9 4.8 − 22.5 − 4.4 4.9 − 0.3 9.0

Feb − 7.3 31.9 2.9 − 12.8 3.1 14.4 15.7 7.6 19.7

Mar − 13.3 − 3.6 15.2 1.2 21.4 0.4 − 25.4 7.4 21.9

Apr − 3.0 − 14.4 − 10.5 11.1 − 6.2 45.0 14.7 13.2 45.7

May − 13.9 15.3 − 4.5 13.2 2.2 4.7 3.9 − 0.7 17.8

Jun − 15.3 − 13.7 − 23.4 11.9 − 0.2 8.5 10.4 − 8.1 − 0.6
Jul 8.6 6.7 − 0.7 4.6 − 9.0 − 2.9 − 14.7 − 21.2 − 29.7
Aug 5.7 7.7 6.3 − 16.3 − 23.2 − 15.1 − 10.4 − 9.8 0.1

Sep 0.2 − 2.9 − 27.8 − 5.4 14.1 7.2 25.6 − 5.2 44.3

Oct 12.6 − 25.8 0.2 4.0 7.1 26.8 21.8 − 9.2 6.0

Nov − 4.3 9.1 − 20.7 3.5 − 6.6 16.7 27.9 32.1 16.3

Dec − 7.6 17.2 4.3 11.5 − 1.7 − 6.6 − 9.5 − 2.2 31.7

Year − 1.9 3.3 − 2.7 3.0 − 2.2 6.7 4.7 − 0.8 13.4

Table 4 STARS and bias
corrected REMO EURO-
CORDEX projections of
temperature change for Germany
under Representative
Concentration Pathway (RCP)
scenarios. Absolute monthly and
annual changes refer to area-
averaged Temperatures of the
reference period 1971–2000

STARS 2041–2050 [°C] REMO 2041–2050 [°C] REMO 2091–2100 [°C]

RCP
2.6

RCP
4.5

RCP
8.5

RCP
2.6

RCP
4.5

RCP
8.5

RCP
2.6

RCP
4.5

RCP
8.5

Jan 1.3 1.6 2.4 1.7 1.1 0.3 1.8 2.4 3.2

Feb 1.2 1.1 1.9 1.8 0.4 1.7 0.9 2.4 3.9

Mar 0.6 1.4 2.0 1.1 − 0.1 1.9 0.7 1.3 3.5

Apr 1.3 2.6 1.6 1.1 1.5 0.8 0.6 0.9 2.0

May 1.3 1.3 2.2 − 0.1 0.6 0.6 0.6 0.9 1.4

Jun 1.5 1.1 2.0 0.0 1.2 − 0.1 0.3 1.9 1.1

Jul 1.1 0.7 1.2 0.7 1.3 0.8 0.8 2.6 3.5

Aug 0.8 0.8 1.3 1.0 2.0 2.0 1.3 2.2 3.5

Sep 0.9 1.7 1.1 0.7 0.7 1.5 − 0.7 1.8 2.2

Oct 1.0 1.4 1.1 1.6 0.9 1.4 0.0 1.6 3.1

Nov 1.5 1.3 1.3 1.2 1.1 2.1 0.8 2.4 3.9

Dec 0.8 1.2 0.8 0.9 0.1 0.1 0.8 1.3 4.1

Year 1.0 1.3 1.5 1.0 0.9 1.1 0.7 1.8 2.9
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standard deviation of the underlying observational database
causing implausible scenario results (Wechsung and
Wechsung 2015), we limited the length of the projection pe-
riod to 40 years and refused for producing an additional tem-
poral overlap with observations. Referring to the STARS eval-
uation of Wechsung and Wechsung (2015), a statistical com-
parison between observations and model results as was done
for the REMO outcomes, however, is of rather limited value,
given that one evaluates statistics from recombined observa-
tional records against statistics from the same observational
database.

For each of the three RCP scenarios, we computed an en-
semble of 100 realizations, all fitting the prescribed tempera-
ture trend of the respective scenario at a deviation tolerance of
± 0.2 K. The STARS results for the mid-century decade 2041–
2050 presented in Tables 4 and 5 refer to the ensemble me-
dians (cf. Lutz et al. 2013). Although only these median real-
izations are maintained in “NFI 2012 environmental data base
climate” additional results of ensemble simulations can be
provided for particular inventory points on demand.

2.3.3 REMO vs. STARS

In general, dynamical downscaling is commonly consid-
ered advantageous in terms of physical consistency as
compared to statistical approaches, given that regional cli-
mate models, such as REMO, solve the same fundamental
differential equations of thermo- and hydrodynamics as the
driving global model and accordingly capture the large-
scale climate signal from the forcing model though altered
with respect to regional environmental features. In the re-
sult, dynamical downscaling performed with REMO pro-
vides fully distributed, spatial, and temporal coherent
fields of all relevant atmospheric variables for every model
internal time step over a long simulation period (Böhner
and Bechtel 2018). Statistical modeling approaches instead
are held to be more empirically robust than dynamical sim-
ulations. As these bottom-up approaches are explicitly de-
signed on the bases of observational data, empirical con-
gruence is forms inherent essential (Böhner and Bechtel
2018). This holds particularly true for STARS, where an
once defined temporal recombination scheme is identically
applied to all variables and time series (i.e., in this research
to all gridded time series of the German modeling domain),
ensuring that all relations between different climatic fac-
tors (between temperature, radiation, precipitation, etc.)
and their respective spatial distributions are captured as
observed (Lutz et al. 2013; Orlowsky et al. 2008).
Shortcomings due to the resampling of climate records
from the past (i.e., from a time span with lesser radiative
forcing than to be expected in future) concern the projected
time slice, which should typically be limited to the near
future (Orlowsky 2007), and the projection of extremes is

of course delimited by the observational database (Lutz
et al. 2013). Rather principal constrains of STARS concern
the consistency of the modeled results. Wechsung and
Wechsung (2015) demonstrated that the resampling proce-
dure conditioned by a predefined warming signal tends to
turn short-term weather co-variations of temperature and
its co-variables (e.g., the coincidence of reoccurring hot
days during longer-lasting dry spells and rather cool days
during rainy phases in summer) into long-term climate
trends diverging from the forcing climate model projec-
tions. This becomes apparent in different STARS results
(cf. Lutz et al. 2013; Wechsung and Wechsung 2015) gen-
erally suggesting a future drying trend for Germany with
increasing warming rates particularly in summer, whereas
the ECHAM6 model results suggest only very minor
changes (cf. Svoboda et al. 2015).

Against this background, time series performed with
STARS are suggested to be applied when analyzing environ-
mental impacts of limited warming signals as is mostly the
case in near-future climate projections. Moreover, STARS en-
semble realizations used in environmental sensitivity studies
offer the opportunity to estimate uncertainties when, e.g.,
modeling site-specific forest productivity and allow to explic-
itly selecting, e.g., particular dry or moist STARS realizations
to model the range of possible near-future biophysical re-
sponses changing water availability. The twenty-first-century
temperature increase in the ECHAM6 extreme-end warming
RCP 8.5 scenario instead is of course out of scope for STARS
and only sufficiently captured in the REMO simulations.
Given that anthropogenic radiative forcing will affect future
average conditions, spatiotemporal distributions, and ex-
tremes (IPCC 2014), centennial high-resolution REMO sim-
ulations are particularly suited, to analyze and assess future
forest response on both long-term transient climate changes
and altered frequencies and magnitudes of extremes beyond
the historically observed range. In view of these different ap-
plication domains, STARS and REMO projections should not
be seen as competing but as complementary model realiza-
tions of possible future climates.

2.4 Workflow of data processing

All steps in generating spatial high-resolution climate data were
performed using the System for Automated Geoscientific
Analysis (SAGA). The modular structured, free, and open
source Geographical Information System SAGAwas explicitly
developed for applications in the field of regional climate and
environmental modeling (Conrad et al. 2015). It provides vari-
ous routines for the parameterization of topographically deter-
mined or effected topoclimatic processes based on digital terrain
models and land use data (Böhner et al. 2006, 2008). For all
climate variables, daily raster data were generated as SAGA
grids at a spatial resolution of 250 m. For the environmental
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database of the German NFI, climate information were extract-
ed for the 26,450 inventory plots using the Geospatial Data
Abstraction Library (GDAL 2017). Obtained daily time series
at inventory plots were stored to sqlite3 database files. All fol-
lowing temporal aggregations and further treatments of the dai-
ly data were finally done using SQL and Python with a focus on
the sqlite3 command line utility and the Python pandas library.

2.5 Aggregated climate parameters

The “NFI 2012 environmental data base climate” pro-
vides more than 80 aggregated climate parameters for
26,450 forest inventory plots and accordingly the NFSI
data bases for 2470 soil inventory plots. For precipita-
tion, air temperature (min, mean, max), vapor pressure
deficit, global radiation (on horizontal and inclined sur-
faces), and wind speed, we aggregated monthly, season-
ally, yearly, and multi-yearly climate parameters at the
inventory points of the NFI and NFSI. Since the use of
WordClim data (Hijmans et al. 2005) is widespread in
ecological modeling, the database also provides biocli-
matic variables following Hijmans’ definition. Based on
the daily resolved data, climatic thresholds, such as the
number of frost days, were evaluated.

3 Data access and metadata description

The climate database consists of seven sqlite3 database files
for the NFI and seven sqlite3 database files for the NFSI. The
content of each sqlite3 database is described in Table 6. All
sqlite3 files are archived in the Open Agrar Repository of the
Thünen Institute. Access to the databases is provided via the
URL: https://doi.org/10.3220/DATA/20180823-102429

(Dietrich et al. 2018). Associated metadata are available at
https://agroenvgeo.data.inra.fr/geonetwork/srv/fre/catalog.
s e a r c h# /me t a d a t a / d 0789030 - c 94 e - 4883 - 8d38 -
2a7332c98673. All sqlite3 databases contain the same data
model and table structure (see Table 7). The tables with
prefixed “z_*” are metadata tables with descriptions of the
databases (z_db), the tables (z_tab), and columns (z_col).
The structure of these tables is based on the official database
of the German NFI. Further metadata are provided in a sepa-
rate spreadsheet. The table x_bl contains the code values for
the individual federal states of Germany. The coded values are
used in the columns “bl” of the actual data tables (climate_*,
bioclim_variables). This enables quick queries and analyses of
all inventory points of an individual state. The structure of the
data tables is always similar: the first two columns (tnr and enr
for NFI, id for NFSI) describe the number of the inventory
clusters and the respective plot. The time context of the cli-
matic parameters is then described in different columns (year,
month, year_first, year_last, month_first, month_last). Other
advanced database features such as normalization and rela-
tionships are not applied. In order to keep the data volume
for the download as small as possible, no indices were created.
To increase the performance of SQL queries a subsequent
creation of indices by the user is recommended. For reuse of
the sqlite3 databases, we suggest the R or Python program-
ming languages with the appropriate extensions (CRAN:
RSQLite, Python: sqlite3, pandas).

4 Technical validation

For quality assurance, all raster datasets were controlled based
on the residuals of observed and gridded daily and monthly
data. Moreover, a Leave-One-Out-Cross-Validation

Table 6 Database name and content description

Database name Description

wpkskw_1961_2013_bwi Retrospective climate data from 01.01.1961–31.12.2013 for NFI

wpkskw_1961_2013_bze Retrospective climate data from 01.01.1961–31.12.2013 for NFSI

wpkskw_stars_rcp26_2011_2050_bwi STARS climate projection for RCP scenario 2.6 from 01.01.2011–31.12.2050 for NFI

wpkskw_stars_rcp45_2011_2050_bwi STARS climate projection for RCP scenario 4.5 from 01.01.2011–31.12.2050 for NFI

wpkskw_stars_rcp85_2011_2050_bwi STARS climate projection for RCP scenario 8.5 from 01.01.2011–31.12.2050 for NFI

wpkskw_stars_rcp26_2011_2050_bze STARS climate projection for RCP scenario 2.6 from 01.01.2011–31.12.2050 for NFSI

wpkskw_stars_rcp45_2011_2050_bze STARS climate projection for RCP scenario 4.5 from 01.01.2011–31.12.2050 for NFSI

wpkskw_stars_rcp85_2011_2050_bze STARS climate projection for RCP scenario 8.5 from 01.01.2011–31.12.2050 for NFSI

wpkskw_remo_rcp26_2011_2100_bwi REMO climate projection for RCP scenario 2.6 from 01.01.2011–31.12.2100 for NFI

wpkskw_remo_rcp45_2011_2100_bwi REMO climate projection for RCP scenario 4.5 from 01.01.2011–31.12.2100 for NFI

wpkskw_remo_rcp85_2011_2100_bwi REMO climate projection for RCP scenario 8.5 from 01.01.2011–31.12.2100 for NFI

wpkskw_remo_rcp26_2011_2100_bze REMO climate projection for RCP scenario 2.6 from 01.01.2011–31.12.2100 for NFSI

wpkskw_remo_rcp45_2011_2100_bze REMO climate projection for RCP scenario 4.5 from 01.01.2011–31.12.2100 for NFSI

wpkskw_remo_rcp85_2011_2100_bze REMO climate projection for RCP scenario 8.5 from 01.01.2011–31.12.2100 for NFSI
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(LOOCV)was carried out for autochthonous as well as alloch-
thonous weather conditions showing extremely high and low
temperatures and high precipitation amounts to check model
robustness for extreme synoptic conditions.Mean temperature
showed a mean residue amount of 0.8 K with a 75 percentile
of 1.0 K and a 90 percentile of 1.6 K for approximately 2.000
cases at DWDweather station sites. Concerning precipitation,
the mean residue amount was 2.0 mm with regard to a
Germany-wide, averaged precipitation amount of 8.1 mm
and a mean maximum of 70.3 mm, showing a 75 percentile
of 2.7 mm and a 90 percentile of 4.6 mm. Subsequently, the
quantity of raster per year and climate parameter as well as
their file size was checked for completeness and plausibility.
GRASS GIS (2017) was used to export raster properties
(number of pixels, number of Data-/NoData-pixels) and sta-
tistics (e.g., min, max, variance, range, mean, sum, median) to
a sqlite3 database. With SQL queries, extreme values could be
detected very quickly for the entire time series and checked for
plausibility. In addition, the database entries were graphically
visualized with the statistic software R, e.g., in histograms.
After the point extraction of the climate raster with GDAL,
we checked whether all inventory plots had been queried. The
resulting sqlite3 database with climate parameters for the in-
ventory plots was queried again with regard to extreme values
and used for graphical visualization.

5 Reuse potential and usage limitations

The climate database offers many options for a broad
range of analyses, especially in conjunction with the
NFI data and the other environmental databases on soil
(Benning et al. in review) and hydrological balance
(Schmidt-Walter et al. in review). In fact, the database

on the hydrological balance (Schmidt-Walter et al. in
review) used the daily resolved climate data at each
inventory to calculate the water budget and stress indi-
cators due to drought or soil wetness. Within the project
“forest productivity–carbon sequestration–climate
change” (WP-KS-KW) itself, the climate data were ap-
plied to predict forest growth in Germany for the period
2013–2050. Three empirical climate sensitive forest
growth simulators, WEHAM, TreeGrOSS, and SILVA
used the inventory data of third NFI in 2012 to
describe forest growth, yield, and carbon sequestration
over 40 years. Nothdurft et al. (2012) also modeling
climate sensitive growth based on inventory data.
Also, the climate parameters can be used as input var-
iables for the modeling of habitats, e.g., invasive species
or bark beetle infestation (Baier et al. 2007). Climate
data are also important parameters for the modeling of
the mortality (Nothdurft 2013) and susceptibility
(Mellert et al. 2016) of tree species, their vulnerability,
and its economic effects (Hanewinkel et al. 2010, 2013)
under the changing climatic conditions.

One possibility of the methodical development in the re-
gionalization of climate data would be the consideration not
only of the weather stations of the National German Weather
Service (DWD) but also of forest climate stations to better
represent the internal climate of forest stands.

In addition to daily observations, average monthly wind
climatologies from Böhner (2004) were used for the regional-
ization of wind speed. Therefore, the resulting data do not
represent the maximum speed of peak gusts and are therefore
less suitable for the modeling of storm damage in forests.
Within the project WP-KS-KW, the regionalized wind speed
data were used for the modeling of evapotranspiration pro-
cesses of forest stands.

Table 7 Database table name and content description

Table name Description

bioclim_variables Bioclimatic variables

climate_monthly Monthly values of climatic parameters

climate_multiyear_monthly Monthly values of climatic parameters as average of a range of years

climate_multiyear_seasonal Values of climatic parameters for seasons in years as average of a range of years

climate_multiyear_yearly Yearly values of climatic parameters as average of a range of years

climate_yearly Yearly values of climatic parameters

climate_yearly_seasonal Values of climatic parameters for seasons in years

threshold_indices Yearly number of days where the daily value of air temperature or the precipitation is lower than
or greater than or equal to several threshold values and some temperature sums of these days

x_bl Key describing federal states of Germany

z_col Columns of database

z_db Databases of context

z_parameter_version Daily climatic parameters forming basis for aggregations represented in database

z_tab Tables of database
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