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Abstract

This article proposes an optimal and robust methodology for model selection. The model of interest
is a parsimonious alternative framework for modeling the stochastic dynamics of mortality improvement
rates introduced by Doukhan et al. (2017). The approach models mortality improvements using a random
field specification with a given causal structure instead of the commonly used factor-based decomposition
framework. It captures some well documented stylized facts of mortality behavior: dependencies among
adjacent cohorts, the cohort effects, cross generations correlations and the conditional heteroskedasticity of
mortality. Such a class of models is a generalization of the now widely used AR-ARCH models for univariate
processes. The framework being general, Doukhan et al. (2017) investigate and illustrate a simple variant,
called the three-level memory model. However, it is not clear which is the best parametrization to use for
specific mortality uses. In this paper, we investigate the optimal model choice and parameter selection among
potential and candidate models. More formally, we propose a methodology well-suited to such a random field
able to select the best model in the sense that the model is not only correct but also most economical among
all the correct models. Formally, we show that a criterion based on a penalization of the log-likelihood, e.g.
the using the Bayesian Information Criterion, is consistent. Finally, we investigate the methodology based
on Monte-Carlo experiments as well as real-world datasets.
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1 Introduction

Recent advances in mortality modeling offer a wide variety of models to capture most of the stylized facts
in human mortality dynamics. Most notably, there are the so-called factor-based models widely in use by
practitioners, which have known an increasing recognition from the actuarial community, see Barrieu et al.
(2012) and the reference therein. Starting with the well-celebrated Lee and Carter (1992)’s model, most of
the subsequent models rely on a factor-based decomposition of mortality surface. These factors are intended
to handle the complex patterns of mortality evolution over time and capture essentially the age, period and
cohort effects. Although these models are quite intuitive, their statistical properties are, however, not accurately
understood. Moreover, the accuracy of such a framework has been widely discussed and it has been shown that
the latter fails, in many cases, to cope with some essential stylized facts inherent in mortality dynamics. Indeed,
the cohort effect is of paramount importance when dealing with mortality in some countries, e.g. England
& Wales and United States. For instance, the factor-based models attempted to incorporate a specific factor
dependent on the year of birth as to enhance the goodness-of-fit of models with only age and period effect. Even
if this undesired remaining diagonal effect is, generally, accommodated, it is still unclear how such a cohort-
effect can be interpreted and identified, e.g. Hunt and Villegas (2015). On the other hand, these classic models
are based on the assumption of the homoskedasticity of their residuals. However, the assumption of constant
variance is always violated in practice as it is varying and does depend on the age and time.

A way to address these issues is to consider the surface of mortality improvements as a sole random field
without any further assumption on the particular dependence structure neither the factors driving its evolution.
This is done in Doukhan et al. (2017) using a parsimonious approach involving a generalization of the well-known
AR-ARCH univariate processes, see Doukhan and Truquet (2007). The AR-ARCH for mortality surface is a
random field where the improvement rates dynamics are described as an autoregressive random field over a given
adjacent neighborhood. The errors of this improvement rates also are described as an autoregressive conditional
heteroskedastic model. Each part of the model is characterized by a neighborhood giving the number of lags
in years and ages to be taken into account. The model is introduced in its general form which is intended
to accommodate to every population own characteristics, i.e. cohort effect, cross-cohorts dependence as well
as conditional heteroskedasticity. For more insights, in Section 3, we fully describe the model and give some
intuitions on its construction.

To estimate the parameters, Doukhan et al. (2017) use a quasi maximum likelihood estimator (QMLE) and
show its consistency and asymptotic normality. For numerical illustration, they use a simple variant without
any empirical basis. Therefore, in the current paper, we investigate the optimal model choice and neighborhoods
selection among potential and candidate models. More formally, we propose a methodology well-suited to such a
random field able to select the best model in the sense that the model is not only correct but also most economical
among all the correct models. Formally, in Section 3, after recalling some inference results in Doukhan et al.
(2017), we show that a criterion based on a penalization of the log-likelihood, e.g. the one using the Bayesian
Information Criterion, is consistent.

The rest of the paper is organized as follows. In Section 2, after introducing the AR-ARCH random field
model specification, we recall some theoretical results related to the existence of a stationary solution. In
Section 3 we introduce the robust estimation procedure for the parameters based on the QMLE and recall some
results on its consistency and asymptotic behavior. These will be crucial for defining a consistent procedure for
model selection based a penalization of the QMLE. In this section, we will show that a specific penalization of
the QMLE yields to a consistent criterion for selecting the optimal neighborhoods. Finally, in Section 4, we
assess the effectiveness of the procedure using Monte-Carlo experiments. Next, we use real-world data-sets to
illustrate the procedure and compare the performance of the selected model to some benchmark models.
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2 Random Fields Memory Models for Mortality Improvement Rates

2.1 Classic Mortality Models. Denote by m(a,t) the crude death rate at age a and date t. Time is assumed
to be measured in years, so that calendar year t has the meaning of the time interval [t, t + 1). For expository
purpose and since we will be working with only a subset of historical data, we will henceforth re-index the
observable ages by a = 0, 1, . . . , I − 1 and the observable dates by t = 0, 1, . . . , J − 1; where I and J are,
respectively the number of ages and years. The crude mortality rate m(a,t), among other actuarial quantities
used to assess mortality, is of paramount importance when dealing life insurance and pension liabilities. Its future
evolution is generally modeled using the so-called factor-based models. Among others, there is the so-called Lee
and Carter. In their seminal paper, Lee and Carter (1992) postulated that the (log) mortality rates at different
ages are captured by a common factor, and an age-specific coefficient with respect to this common trend. More
precisely, we have for any a and t

logm(a,t) = αa + βaκt + ε(a,t), with ε(a,t) ∼ N (0, σ) (2.1)

where αa is the time average level of logm(a,t) at age a, κt is the common factor also known as the period mortality
effect and βa is the age-specific sensitivity coefficient with respect to κt. The development of stochastic modeling
of mortality was on the basis of the above model. Indeed, the variety of models that have been introduced in the
literature, see Cairns et al. (2006), Renshaw and Haberman (2006), Cairns et al. (2009) and Dowd et al. (2010)
among others, were a generalization of the Lee and Carter in the sense that they generally include additional
parameters whether dependent on the age, the period or even on the age of birth. These factors are intended to
capture the complex patterns of mortality evolution over time, age and cohort. As noted by Mavros et al. (2016),
“the number and form of these types of effects is usually what distinguishes one model from another ”. However,
some recent works show the limit of this mainstream approach, e.g. Giacometti et al. (2012), Chai et al. (2013),
Hunt and Villegas (2015) and Mavros et al. (2016) among others. A major drawback of these models relate in
particular to the assumption of homoskedastic error terms ε(a,t). In fact, the assumption of constant variance is
always violated: the observed logarithm of central death rates is much more variable and the volatility is time
varying, see e.g. Lee and Miller (2001) and Gao and Hu (2009). Furthermore, the mortality evolution is known
to be related to the age of birth, see Willets (2004). This is referred to as the cohort effect and translates the
persistent of some shocks on mortality among cohorts. This is generally observed when plotting the residuals
ε(a,t) of models such as (2.1) as an apparent diagonal structure which requires additional univariate cohort
processes in some countries. This phenomenon has lead to various extensions of the initial Lee-Carter model,
e.g. Renshaw and Haberman (2006) or Cairns et al. (2009) and the reference therein, by the inclusion of factors
depending on the age of birth. The inclusion of additional univariate processes enhances the goodness-of-fit of
the model but over-fit clearly the model and thus produces less reliable forecasts. Moreover, age-period-cohort
models lack of identifiability and suffer from the limited interpretability of its structure, see Hunt and Villegas
(2015). On the other hand, the heteroskedasticity of mortality rates is not taken into account in such models as
suggested by some recent empirical works, see Gao and Hu (2009) and Giacometti et al. (2012) among others.

It is of course very important to tackle these limitations when considering a new modeling approach, but
it is also essential to take into account the dependence structure between adjacent cohorts. Indeed, some recent
works, and even common intuition, point out the importance of cross-cohorts correlation, see e.g. Loisel and
Serant (2007) and Jevtić et al. (2013). In their empirical work, Loisel and Serant (2007) show that correlation
among close generations is higher enough to be omitted. The same conclusions were drawn in the very recent
work of Mavros et al. (2016). It is worth mentioning that the Lee and Carter’s model in Equation (2.1) im-
plicitly imposes a perfect dependence between mortality rates at the single age level. However, as noted by
Loisel and Serant (2007), although common intuition suggests that correlation among close generations is high
but should not necessary be perfect. A first attempt to tackle this last stylized fact was using vector-based
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formulation of the mortality rates for a given range of ages. More specifically, it does consists on the modeling
of the time-dependent vector m(a,t), for a = 1, . . . , I − 1. For instance, Loisel and Serant (2007) and Lazar and
Denuit (2009) were among the first to consider a model based on the study of the multivariate time series of
the differences of logits of yearly mortality rates taking into account inter-age correlations. Subsequent works
focused on vector-autoregressive (VAR) models whether on a general framework without any assumption on the
dependency between adjacent cohorts or with a given rigid dependency. For instance, in Mavros et al. (2016)
used a simple first order vector autoregressive process allowing for interaction between specific adjacent ages.
This was applied to the residuals ε(a,t) for a factor-based model to cope with the remaining non-stationary effect
mentioned above. However, the dependency was limited to immediate generations. In other words, the residuals
of population aged a at time t are only explained using the ones aged a − 1 and a + 1 at the same period. In
the same line, Li and Lu (2017) used the same idea but applied directly to the (transformed) mortality rates.
Similar approaches were also considered when it comes to jointly modeling multiple populations, e.g. Gaille and
Sherris (2011) and Salhi and Loisel (2017).

2.2 Through A Random Field Framework. In contrast to this univariate factor-based framework, Doukhan
et al. (2017) approach the problem of modeling mortality rates by considering the whole surface as a sole random
field without any further assumptions on the particular dependence structure neither the factors driving its
evolution. Thus, unlike the mainstream models, such a framework is intended to accommodate not only the
cross-cohorts dependence but also the conditional heteroskedasticity. This is amended by modeling the whole
mortality (improvements) surface as a random field with a Markov property. The use of a random field for
mortality modeling was, for example, considered in Millossovich and Biffis (2006) who propose a spatial random
field model in which the covariance between adjacent cohorts is only a function of the distance between the ages,
but not of ages. However, the introduced framework is developed in continuous time and it is inspired from the
assumed similarities between the force of mortality and interest rates. It thus mainly aims at solving pricing
problems for life annuities and longevity-linked securities, e.g. Olivieri and Pitacco (2012) for a discussion.
(i) Mortality Surface. In the sequel, we consider the process Xs parameterized by the lattice points s = (a, t)

and defined as the centered mortality improvement rates IR(a,t) = log
(
m(a,t)/m(a,t−1)

)
. Formally, we let

Xs = IRs − IR, (2.2)

where IR is the average improvement rate over I × J . As noted before, empirical studies show that the differ-
entiation of mortality rates (in the logarithmic scale) removes the non-stationarity, see for example Chai et al.
(2013). This is also advocated by the models introduced above as the time-dependent factors are described by
random walks with a constant drift. However, these models assume that IRs only depend on the observed age.
Moreover, the conditional average of the improvement rates should not only depend on the age but also on the
cohort, i.e. t−a, as well as the rates experienced in adjacent generations. First, this is to allow for capturing the
cohort effect, i.e. the persistent effect of mortality shocks in the same cohort. Second, including experience from
neighbor generations allows improving the assessment of the global mortality. Formally, this will account for
the diffusion phenomenon well known in demographic theory. Indeed, some changes in health risk behaviors are
adopted first among some cohorts, and then diffuse through the population. We can refer to this as learning or
diffusive effects. Therefore, in order to account for correlations, in a natural way, across generations, a Markov
property for the random field Xs is needed. Formally, we assume that Xs has interaction with a finite number of
neighbors arranged in any manner around the point s = (a, t). This neighborhood is denoted by V ⊂ N2 \ {0}.
Its shape is of paramount importance as it directly conditions the causality of the random field. In Figure 1, at
the lattice points s = (a, t), here referred to as the point (0, 0), the neighborhood is depicted and corresponds
to the grayed area, which obviously excludes the point s. This subset is causal in the sense of Doukhan and
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Figure 1: Causal random field. A bi-dimensional representation of the random field Xs = IRs − IR, with
s = (a, t). The grayed area repsents the causal neighbor V needed to characterize the evolution of Xs.

Truquet (2007), that is, stable by addition.
(ii) Random Field Memory Models. The starting point of the approach introduced in Doukhan et al. (2017) is a
formulation of the random field X in the sense of Doukhan and Truquet (2007). More formally, let V ⊂ N2 \{0}
be a given neighborhood, let Θ ⊂ Rd be a set of possible parameters, for d a positive integer, and consider
ξ = (ξs)s∈N2 an independent and identically distributed (i.i.d.) random field, and F a given parametric function
taking values in R: F : RV × Θ × R → R (endowed with a suitable norm ‖ · ‖), and consider solutions of the
equation:

Xs = F
(

(Xs−v)v∈V , θ, ξs
)
, with s ∈ N2. (2.3)

For Z ∈ Rk (k ≥ 1) denote ‖Z‖p = (E‖Z‖p)1/p for an integer p ≥ 1. In the above equation the set V , as discussed
above, refers to a neighborhood of Xs used to characterize its evolution. Recall that the set V does not contain
the point (0, 0), that is, (s−v) 6= s for any v ∈ V . This is abstract formulation in which Xs is expressed in terms
of its own past values and the present and past values of a sequence of i.i.d. random variables. In the case where
the set V is causal, see Doukhan and Truquet (2007), the existence and uniqueness of a stationary solution of
Equation (2.3) in Lp (p ≥ 1) rely on the contraction principle, which can be summarized in the following two
properties:
A-1 ‖F (x0, θ, ξ)‖p <∞ for some x0 ∈ RV ,

A-2 ‖F (x′, θ, ξ) − F (x, θ, ξ)‖p <
∑
v∈V αv‖x′v − xv‖ for all x = (xv)v∈V , x′ = (x′v)v∈V ∈ RV , where the

coefficients αv are such that
∑
v∈V αv < 1.

The model in Equation (2.3) is a general formulation of random fields models with infinite interactions, which
can be extended to the case where X takes values in Rk and F takes values in Rq, for integers k, q > 1. These
models are not necessarily Markov, neither linear nor homoskedastic. Moreover the inputs do not need ad-
ditional distributional assumptions. It is thus an extension of ARMA random fields which are special linear
random fields, see e.g. Loubaton (1989) and Guyon (1995). Such an extension yields a novel random field
which is capable of taking into account the nonlinearity and spatial dependency well adapted in our context.
In other words, we can fit a particular spatial model of the form (2.3) to such data to give an appealing tools
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for investigating both spatiality and non-Gaussianity patterns in the evolution of mortality surface. Based on
this abstract formulation, Doukhan et al. (2017) proposed a specific form for the function F that is intended to
tackle the various limitations encountered when using the factor-based approaches.

2.3 AR-ARCH-type random fields. We let s = (a, t) ∈ N2 and consider some subsets V1, V2 ⊂ N2 \{0}. In
view of different stylized facts discussed above and the aim of improving the mainstream approaches, Doukhan
et al. (2017) considered a Markov property characterizing both the conditional behavior of Xs. First, they
propose to decompose the specific features of the random field Xs into a conditional mean ms and conditional
variance σ2

s defined as

ms = E
[
Xs|

{
X(u,v);u < a, v ≤ t

}]
, and σ2

s = Var
(
Xs|

{
X(u,v);u < a, v ≤ t

})
. (2.4)

These conditional moments are then assumed to evolve as spatial autoregressive process, which has a structure
very similar to the structure of the univariate AR model. More specifically, the conditional mean and variance,
i.e. ms and σ2

s in (2.4), are of the following form
ms =

∑
v∈V1

βvXs−v,

σ2
s = α0 +

∑
v∈V2

αvX
2
s−v,

(2.5)

where (βv)v∈V1
, α0 and (αv)v∈V2

are real positive coefficients. Here, V1 and V2 are the neighborhoods needed to
characterize the evolution of conditional mean and variance of each Xs in terms of its own past values and the
present and past values of the adjacent cohorts. By doing so, we incorporate the observed heteroskedasticity in
real-world datasets as well as the persistence of mortality shocks over adjacent cohorts. The main idea is that
σ2
s, the conditional variance of Xs, has an spatial autoregressive structure and is positively correlated to its own

recent past and to recent values of some adjacent cohorts defined by the set V2. Therefore, the error terms are
not equal across ages, in extent that they could be larger for some ages or ranges of ages than for others. Given
these first two conditional moments, Doukhan et al. (2017) introduced a random field model of the form:

Xs = ms + σs · ξs, (2.6)

where (ξs)s∈I×J is an independent and identically distributed (centered) random field. Here, the dynamics of
ms and σs are given in Equation (2.5). More specifically, the latter can be written in a more tractable form as
follows

Xs = ξs ·
√
α0 +

∑
v∈V2

αvX2
s−v +

∑
v∈V1

βvXs−v. (2.7)

This is a class of conditionally heteroskedastic random field with an autoregressive (AR) component where
the innovation is defined from a standardized random field ξs given as an autoregressive conditional heteroskedas-
ticity (ARCH), see Equation (2.5). The combined model is referred to as the AR-ARCH random field and it is
a generalization of the now widely used AR-ARCH models for random processes, see Engle (1982). As already
mentioned, such a specification is in accordance with some recent results obtained for mortality series that
exhibit conditional heteroskedasticity and conditional non-normality features, which are significant empirical
long-term mortality structures, see e.g. Giacometti et al. (2012), Chai et al. (2013) and Chen et al. (2015).

Using the notation from Doukhan and Truquet (2007), recalled in the previous subsection, the parameters of
the model are then denoted θ =

(
α0, (αv)v∈V2

, (βv)v∈V1

)
where V2 is the neighborhood for the conditional vari-

ance and V1 is the the neighborhood characterizing the conditional mean. Note that the model in Equation (2.7)
satisfies the assumptionsA-1 andA-2 needed to ensure the existence and the uniqueness of a stationary solution.
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Indeed, note that the function F is given by

F (x, θ, z) = z

√
α0 +

∑
v∈V2

αvx2
v +

∑
v∈V1

βvxv,

for x = (xs)s∈N2 , θ = (α0, (αv)v∈V2
, (βs)v∈V1

), and z ∈ R.
Then, letting µ be the law of the centered i.i.d. random field (ξt)t∈N2 , Equation (2.6) can be expressed in the
following form

Xs = H
(
(ξs−t)t∈N2

)
, with H ∈ Lp

(
RN2

, µ
)
,

so that the conditions for the existence and uniqueness of a stationary solution can be written as

‖ξ0‖p <∞, κp ≡ ‖ξ0‖p
∑
s∈V1
|αs|+

∑
s∈V2
|vs| < 1, p ≥ 1. (C0)

For p = 2, a weaker condition than the previous one is given by

‖ξ0‖2 <∞, Eξ0 = 0, κ2
2 ≡ ‖ξ0‖22

(∑
s∈V1
|αs|

)2
+
(∑

s∈V2
|vs|
)2
< 1, p = 2. (C1)

3 Estimation, Asymptotic Inference and Model Selection

In this section, we study the maximum likelihood estimator (MLE) for the parameter θ in the AR-ARCH random
field model in Equation (2.7). More precisely, we consider an approximation of the MLE called Quasi-Maximum
Likelihood Estimator (QMLE) and prove its consistency, together with the asymptotic normality. To this end,
we assume throughout the sequel that the errors ξs is an i.i.d. zero-mean and centered Gaussian random field.

3.1 Quasi Maximum Likelihood Estimator (QMLE). For the sake of simplicity we consider that the
observation are real numbers (i.e. taking values in Rk, with k = 1), the results exposed here can be extended
to more general systems, but this remains a topic for future research. For a real function g and an integer p, let
us write ‖g(X)‖p := (E |g(X)|p)

1
p , the Lp norm.

Suppose that the random field is observed for I = {s−v, v ∈ V1 ∪ V2} (the initial states) and s ∈ O ⊂ N2. Let
us write T the number of observations in O, we assume that the following equation can always be written using
s ∈ O and s− v ∈ O ∪ I. Conditionally to I the quasi log-likelihood of the model can be written as:

LT (xs, s ∈ O; θ) =
1

T

(∑
s∈O
−1

2
ln

(
α0 +

∑
v∈V2

αvx
2
s−v

)
−
(
xs −

∑
v∈V1

βvxs−v
)2

2
(
α0 +

∑
v∈V2

αvx2
s−v
)) . (3.1)

We will consider the estimator based on maximizing the above function (QMLE) over the set Θ, which will be
denoted θ̂T , i.e.

θ̂T = arg max
θ∈Θ

LT (xs, s ∈ O; θ) . (3.2)

We say that θ̂T is the QMLE estimator. In order to study the consistency of this estimator we assume the
following properties:

H-1 Finite second order moment, i.e. E(X2
s ) <∞.

H-2 The model is identifiable, in the sense that for each set of parameters
(
(βv)∈V1 , (αv)∈V2

)
and

(
(β′v)∈V1 , (α

′
v)∈V2

)

7



we have ∥∥∥ ∑
v∈V1

βvXs−v −
∑
v∈V1

β′vXs−v
∥∥∥

2
= 0 ⇔ (βv)v∈V1

= (β′v)v∈V1
,

and (
α0 +

∑
v∈V2

αvX
2
s−v
)(
α′0 +

∑
v∈V2

α′vX
2
s−v
)−1 a.s.

= 1 ⇔ (αv)v∈V2
= (α′v)v∈V2

.

H-3 The set of possible parameters Θ is compact and the true parameter θ0 of the model (2.7) belongs to the
interior of Θ.

H-4 E
(
X4
s

)
<∞.

These are classic assumptions required for consistency and asymptotic normality of the QMLE used in Doukhan
et al. (2017). The hypothesis H-1 assumes that the variance of the random field X is finite, which is in line with
the object of interest, i.e. mortality improvements. On the other hand, H-2 ensures the identifiability of the
model, which is a critical condition for the consistency as we may see later on this section. This will impose that
the quasi likelihood LT (xs, s ∈ O; θ) has a unique maximum at the true parameter value θ0 over the compact
set Θ from assumption H-3. Based on these assumptions, Doukhan et al. (2017) derive a first result which deals
with the asymptotic behavior of the (quasi)-likelihood recalled in the following theorem.

Theorem 1. For the model in Equation (2.7), under the assumptions H-1, H-2 and H-3

L(θ) = lim
T→∞

LT (xs, s ∈ O; θ)

exists a.s. for all θ ∈ Θ and is uniquely maximized at θ0.

This is the first step toward showing that the QMLE is consistent for the parameters of the jointly
parametrized conditional mean and conditional variance. To this end, notice that the set of continuous functions
G defined as

G =

{
g
(
(xs, (xs−v)v∈V1

, (xs−v)v∈V2
; θ
)

= −1

2
ln

(
α0 +

∑
v∈V2

αvx
2
s−v

)
−
(
xs −

∑
v∈V1

βvxs−v
)2

2
(
α0 +

∑
v∈V2

αvx2
s−v
) , θ ∈ Θ

}
,

is Glivenko-Cantelli for the L1−norm since the set of possible parameters Θ is a compact set, i.e. assumption
H-3. Then, applying Theorem 5.7 of van der Vaart (1998), Doukhan et al. (2017) demonstrate that the QMLE is
consistent and asymptotically normally distributed, provided that the random field has a finite fourth moment,
i.e. assumption H-4.

Theorem 2 (Doukhan et al. (2017)).
(i) Consistency. If the assumptions H-1, H-2 and H-3 hold, then the QMLE estimator θ̂T in Equation (3.2)
is consistent, in the sense that for each (βv)v∈V1

, (β′v)v∈V1
, (αv)v∈V2

and (α′v)v∈V2
we have

θ̂T
P−→ θ0.

(ii) Asymptotic normality. Under assumptions H-1, H-2, H-3 and H-4,

√
T
(
θ̂T − θ0

) L−→ N
(
0, A−1

0 B0A
−1
0

)
,
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where 
A0 = −E

[
∂2g(Xs, (Xs−v)v∈V1

, (Xs−v)v∈V2
; θ0)

∂θ2

]
,

B0 = E

[
∂g(Xs, (Xs−v)v∈V1

, (Xs−v)v∈V2
; θ0)

∂θ

(
∂g(Xs, (Xs−v)v∈V1

, (Xs−v)v∈V2
; θ0)

∂θ

)T]
.

(3.3)

Let us give some interpretations of the above results. (i) Asymptotic normal distribution result in Theorem 2
allows us to approximate the distribution of the estimated parameters θ. This can be used, for instance, to obtain
confidence intervals, to conduct hypothesis testing. (ii) Results recalled in Theorem 2 are also of paramount
importance when it comes to mortality forecasting. As the amount of data at our disposal is, generally, limited,
the parameter estimates using the QMLE in (3.2) most inevitably be subject to some degree of uncertainty. As
demonstrated by Cairns et al. (2006), the parameter uncertainty forms a significant element of the uncertainty
in forecasts of future mortality. Thus, Theorem 2 allows us to quantify this uncertainty on parameters based on
their asymptotic distribution.

These different results deal mainly with the estimation of the parameters. Doukhan et al. (2017) also
introduce an estimation method based on moments matching. However, the latter is less effective than the
one based on the likelihood maximization. Moreover, there is no statistical inference results for the moment
method which makes it less interesting for our application. On the other hand, the question of model choice
remained open. Indeed, the authors introduce an illustrative model considering two distinct neighborhoods for
the conditional mean and the conditional variance. Formally, the two neighborhoods considered in Doukhan
et al. (2017) are given by V1 = {(1, 1)} and V2 = {(1, 0), (0, 1)}. To some extent, numerical applications show
that this simple variant is able to outperform classic models in predicting both mortality rates and residual
life expectancies. However, the particular form of the neighborhoods does not have any empirical basis as the
spatial dependence between adjacent cohort may change from one country to another. It is quite obvious that
enlarging the sets V1 and V2 will fit the data better, in particular, if one compares the QMLE attained by each
model. Moreover, there is no quantitative tool developed for such a class of models to optimally select the best
model, in the sense that full feature of a given (mortality) population is represented. In general, when various
models are plausible, the best model should be fitted within each of the competing types and compared using
an information criterion. The latter encompasses the (quasi) likelihood attained by each model but penalizes
models that are over-parametrized. The choice of the penalty is of critical importance to ensure the consistency
of the selected model. In other words, the convergence of the selected neighborhoods V1 and V2 to the true ones.
In our case, in the literature, there is no theoretical results on the appropriate criterion to be used to ensure
this consistency. Therefore, in the next section, we will show that, provided some technical assumptions on the
asymptotic behavior of the penalty term, the consistency of the model selection is fulfilled by some of the classic
procedures.

3.2 Optimal Model Selection. The previous subsection recalls some results of Doukhan et al. (2017) dealing
with inference about the model (2.6). The model being general, it is not clear which is the best parametrization
to use as there are a number of potential, or candidate, models. Here, being best is in the sense that the model is
not only correct but also most economical, meaning that it is simplest among all correct models. In this section
we deal with the problem of model selection and propose a methodology well-suited to the random field specifi-
cation in Equation (2.6). The results recalled in Theorem 2 allows to prove the tightness of the likelihood ratio
test statistic (LRTS) and so to prove consistency of an estimator of the true neighborhoods for the conditional
mean and the conditional variance using an information criterion like the Bayesian Information Criterion (BIC).
First we define the LRTS and give its asymptotic behavior.
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(i) Likelihood ratio test statistic (LRTS). Suppose we wish to test the null hypothesis H0 : θ ∈ Θ0 versus the
alternative H1 : θ ∈ Θ1 where θ0 is (a segment of) an affine linear subspace of (a segment of) a bigger affine
linear space Θ1. Write θ̂T,0 and θ̂T,1, the (quasi)-maximum likelihood estimators if the parameter set is Θ0 and
Θ1 respectively. Here, we assume that the true value of the parameter θ0 is an inner point of Θ0 (so of Θ1).
According to the definition of the quasi log-likelihood (3.1), the LRTS denoted by ∆T is given as follows:

∆T = −2T

(
sup
θ∈Θ1

LT (xs, s ∈ O; θ)− sup
θ∈Θ0

LT (xs, s ∈ O; θ)

)
. (3.4)

Let us recall that a family of random sequences {Yn, n = 1, 2, . . .} will be said to be oP (1) if for every δ > 0 and
ε > 0 there exists a constant N(δ, ε) such that P (|Yn| < ε) ≥ 1 − δ for all n ≥ N(δ, ε). A direct application of
Theorem 2 and classic results on QMLEs (see Vuong (1989)) yields:

∆T =
√
T
(
θ̂T,1 − θ̂T,0

)T
A0

√
T
(
θ̂T,1 − θ̂T,0

)
+ oP (1)

T→∞−→
dim(Θ1)−dim(Θ0)∑

i=1

λiχ
2
i (1). (3.5)

Where
(
χ2
i (1)

)
1≤i≤dim(Θ1)−dim(Θ0)

are independent χ2 variables with one degree of freedom and
(λi)1≤i≤dim(Θ1)−dim(Θ0) are strictly positive real numbers. Note that there is no analytical computation of
the distribution of a weighted sum of χ2 variables. However, this result shows that the LRTS is tight (bounded
in probability) for our model and we can assess the true model thanks to a suitable information criterion.

(ii) Penalized QMLE. Let us denote V1 and V2 the maximal possible neighborhoods for the conditional mean
and the conditional variance of model (2.7). A sub-model of

Xs = ξs

√
α0 +

∑
v∈V2

αvX2
s−v +

∑
v∈V1

βvXs−v,

will be specified by setting some parameters αv and βv to 0. Let us write V 0 = V 0
1 ∪V 0

2 the smallest neighborhood
such that the model (2.7) realizes the true regression function. For a fixed neighborhood V = V1 ∪ V2, let |V |
be the number of elements of the neighborhood associated to non-zero parameters αv or βv and write ΘV the
set of these non-zero parameters in model (2.7). In order to optimally select the adequate model we need to
introduce another quantity that aims at penalizing the less economical models. Indeed, penalization is a classic
approach to select a model. In short, penalization chooses the model minimizing the sum of the empirical risk,
i.e. how well the model fits data, and of some measure of complexity of the model (called penalty). In our case,
let us define the penalized QMLE as follows:

UT (V ) = T × sup
θ∈ΘV

LT (xs, s ∈ V; θ)− aT (|V |), (3.6)

and write V̂ the neighborhood maximizing (3.6). Here, aT (|V |) is a penalty which is a function of |V |, i.e. the
model complexity. In the sequel, the selection approach consists in assuming the existence of a true model of
minimal size and aims at finding it. More formally, this corresponds to the existence of the set V 0 = V 0

1 ∪ V 0
2

such that the model in Equation (2.7) realizes the true regression function. Then, we are aiming at localizing
these using a selection criterion. To this end, the following assumptions are needed to ensure that the selected
neighborhoods tend almost surely (with probability one) to the true model when the dimension of the data goes
the infinity:

I-1 V1, V2 (maximal possible neighborhoods) are finite set and V 0
1 ⊂ V1, V 0

2 ⊂ V2.

I-2 aT (.) is increasing, aT (k1)− aT (k2) goes to infinity as T tends to infinity as soon as k1 > k2 and aT (k)/T
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tends to 0 as T tends to infinity for any k ∈ N.

Theorem 3. Under the assumptions of Theorem 2-(i), I-1 and I-2, V̂ converges in probability to V 0.

Proof. Let us write V = V1 ∪ V2. Applying (3.5), yields to

P(|V̂ | > |V 0|) ≤
|V|∑

k=|V 0|+1

P
(
UT (k) ≥ UT (k0)

)

=

|V|∑
k=|V 0|+1

∑
V, |V |=k

P
(
T ×

(
sup
θ∈ΘV

LT (xs, s ∈ V; θ) ,

− sup
θ∈Θ0

LT (xs, s ∈ V; θ)
)
≥ aT (|V |)− aT (|V 0|)

)
T→∞−→ 0,

since T×
(
supθ∈ΘV

LT (xs, s ∈ V; θ)− supθ∈Θ0 LT (xs, s ∈ V; θ)
)
is bounded in probability and aT (|V |)−aT (|V 0|)

goes to infinity as T tends infinity (Assumption I-2). Now, we can write

P(V 0 6⊂ V̂ ) ≤
∑

V,V 0 6⊂V
P
(

sup
θ∈ΘV

LT (xs, s ∈ V; θ)− sup
θ∈Θ0

LT (xs, s ∈ V; θ) ≥ aT (|V |)− aT (|V 0|)
T

)
,

and, if V 0 6⊂ V̂ , supθ∈ΘV
LT (xs, s ∈ V; θ)− supθ∈Θ0 LT (xs, s ∈ V; θ) converges in probability to supθ∈ΘV

L(θ)−
L(θ0) < 0, so P(V 0 6⊂ V̂ )

T→∞−→ 0 because (aT (|V |)− aT (|V 0|))/T T→∞−→ 0. Finally, V̂ converges in probability
to a neighborhood such that |V̂ | ≤ |V 0| and V 0 ⊂ V̂ , hence V̂ T→∞−→ V 0 in probability, which is the desired the
result.

Note that it is easy to see that assumption I-2 is fulfilled by the Bayesian Information Criterion (BIC).
Therefore, according to the above theorem, the BIC is a consistent selection criterion for our model.

(iii) Bayesian Information Criterion. As noted before, model selection is the choice of an element V ⊂ V1 ∪ V2

(neighborhood) using the data records Xs with s ∈ O. To do this, we use the Bayesian Information Criterion
(BIC) as a decision function that penalizes the (quasi) log-likelihood at rate log T by the model dimension, i.e.
aT (|V |) = |V | log T . More formally, we choose the model (neighborhoods) as

V̂ = arg min
V⊂V1∪V2

UT (V ).

This choice represents a compromise between goodness-of-fit and a simple, interpretable model. Also, thanks
to Theorem 3, such a criteria selects the true model as V̂ → V 0 in probability. In addition, the use of the BIC
allows for comparative analyses to the existing models. Indeed, most of the recent work on mortality modeling
rely on this criteria to rank the models, see e.g. Cairns et al. (2009) and Dowd et al. (2010) among others.
However, we have to adjust the (quasi)-likelihood in order to include the information at the edges of the space
I. More specifically, one should let the parameters αν and βν equal to zero for all data that are not contributing
to the QMLE.

(iv) Search Algorithm. The selection of the optimal model needs to browse over the maximal sets V1 and V2

looking into all the possible combination of points s = (a, t) ∈ V1 ∪ V2 separately for the conditional mean
and the conditional variance. For instance, if the neighborhoods V1 and V2 consist, respectively, of n and m

elements; then the implementation of the selection procedure for this random field model has a 2n+m complexity.
In other terms, when n = m = 3, e.g. V1 = V2 = {(1, 0), (1, 1), (0, 1)}, we need to test 64 models. Even if this is
computationally very simple, the time complexity can make the model choice rapidly infeasible. In fact, when
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Figure 2: The initial (maximal) candidate neighborhoods V1 ≡ V2 given as a collection of points (i, j) ∈
{(1, 0), (1, 1), (0, 1), (1, 2), (2, 1), (2, 2), (0, 2), (2, 0)}.

considering larger sets the number of models grows drastically. Indeed, when one considers maximal sets V1 and
V2 as depicted in Figure 2 for instance, we should test 216 = 65536 models, making this particular step very
time-consuming. In fact, the selection procedure involves the optimization of the (quasi)-likelihood in order to
estimate the parameters of each candidate model. For instance, if one relies on some statistical softwares, such as
R, the (non-linear) optimization routines in most packages will be sufficient to find the values of the parameters
θ that maximize the (quasi)-likelihood. This can be, for instance, implemented based on some derivative-free
algorithms as the Nelder-Mead using heuristics to search for the maximizers under the constraint of stationarity
(C0) or (C1). However, these methods have excessive run-time and the characterization of the optimal model
can take some days or even months. Therefore, in order to enhance this step we can supply the optimization al-
gorithm with the closed form formulas of the gradient and Hessian of the likelihood function g, see Appendix A1.

(v) Spatial Autocorrelation Function. In order to enhance the computation time, we can choose to reduce the
dimension of the maximal neighborhoods. To this end, we will build an empirical procedure, which does not
aim at robustness, on the basis of the well celebrated Box & Jenkins procedure. The latter advocates the
inspection of the autocorrelation function both for the time-series as well as their residuals. The pre-selection of
the maximal lags relies on the confidence on the level of the autocorrelation. Therefore, in the sequel, we consider
the generalization of the autocorrelation for random field, called the spatial autocorrelation function. Formally,
denote the covariance function of the random field X as C(s, s− h) = Cov(Xs, Xs−h), where s, s− h ∈ I. Since
X is stationary, we have C(s, s+ h) = C(0, h) = C0(h) for all s ∈ I, h, and a stationary covariance function C0.
Now, let S(h; I) = {s : s ∈ I, s+ h ∈ I} be the collection of pairs that are distanced by h and denote |S(h; I)|
its cardinality, i.e. the number of distinct pairs in S(h; I). Under the constant (zero)-mean assumption, the
following statistic

Â(h; I) =
1

|S(h; I)|
∑

s∈S(h;I)

XsXs−h, (3.7)

is an estimator of the covariance C0(h) = C(0, h) for a spatial lag h ∈ R2
+ and ρ(h) = C0(h)/C0(0) is the

estimator of the autocorrelation for the random field X. This functional will be used later on to determine,
empirically, the candidate maximal sets V1 and V2. A more concise inspection of the asymptotic behavior of
the autocorrelation in Equation (3.7) for AR-ARCH random field is, however, beyond the scope of the current
paper and will be explored in future work.

1In our case, the execution time for implementing the neighborhood selection procedure on the maximal neighborhoods in Figure 2
using R was expected to take too much time. Therefore, we have solved this by considering parallel calculations and making use of
external compiled languages to speed up the selection routine.
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4 Numerical and Empirical Analyses

In this section, we investigate the performance of the BIC based model selection. First, we run a Monte-Carlo
experiment to assess the statistical properties developed in the previous section. Next, we consider a real-world
dataset of mortality rates and explore the optimal neighborhood characterizing the mortality improvement rates
dynamics. Hence, we forecast future evolution of mortality and compare these outputs to classic models dis-
cussed in Subsection 2.1.

4.1 Simulation Study. In this section, we examine the finite sample properties of the model selection using
Monte-Carlo simulations. With no loss of generality, we generate data from the model in Equation (2.6) with i.i.d.
r.v. ξs ∼ N (0, 1), given the specification of the neighborhoods in Figure 2 and an arbitrary set of parameters
that fulfill the stationarity constraint. The Monte-Carlo analysis serves as an illustration of the robustness of
the QMLE estimation as well as the model selection. Using the notation of the previous sections, we investigate
the impacts of varying the sample size T on the performance of these procedures.

Building on the previous considerations, we set the sample size T = I ×J = 3000 (I = 30 ages and J = 100

years), 30× 40 and use 1000 replications, we then study the performance of the selection procedure. In Table 1,
we report the outputs of this analysis. The two panels show how many times (in frequency) the BIC selected
each model out of 1000 independent simulations for different sizes of the dataset. The true model is presented
in bold where the 1’s correspond to the parameters belonging the true neighborhood and 0’s are those excluded.
We reported the percentages of samples in which each competing models provide a better penalized fit than
the other competing models. The model selection method performed reasonably well in identifying the true
model, though its ability to recover the true model (in bold) increases with the sample size. For small sized
samples (lower part of Table 1), the model selection methods recovered at most 42.3%. When the sample size
is large (upper part of Table 1), the model selection recovered at most 64.8%. We notice also that the number
of competing models decreases with the sample size. Note that the consistency of the BIC selection criteria in
Theorem 3 is achieved (the model selection method identifies (almost surely) the true neighborhoods) for big
enough datasets, i.e. I × J →∞, which is in line with the result shown in Table 1.

Table 1: Model Selection. Monte-Carlo assessment of relative performance of the selection method across
data sizes based on 1000 replications.

V 2 V 1

(1,1) (2,2) (0,1) (1,0) α0 (1,1) (2,2) (0,1) (1,0)

I = 30, J = 100 1 1 1 0 1 1 0 1 0 64.8%
1 1 0 1 1 1 0 1 0 11.1%
1 1 1 1 1 1 0 1 0 7.2%
1 1 1 0 1 1 0 1 1 6.1%

I = 30, J = 40 1 1 1 0 1 1 0 1 0 42.30%
1 1 1 1 1 1 0 1 1 12.00%
1 1 1 1 1 1 1 1 0 8.1%
1 1 1 1 1 1 0 1 0 8.1%
1 1 1 0 1 1 0 1 1 6.4%
1 1 0 0 1 1 0 1 0 5.4%

In the light of the above remarks, a particular attention should be paid to the implementation of this model
for mortality dynamics. In fact, to be able to select the true model (neighborhoods) we need to have relatively
large datasets to achieve the consistency requirement. However, we are then left with a challenging trade-off
between enlarging the observed age and year periods or losing the consistency of the selection procedure. The
former can undoubtedly be a good compromise to achieve the identification (almost surely) of the true neigh-
borhoods but may alter the relevance of the fitted model. Indeed, including very old mortality improvement
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records would induce a misspecification of the future mortality decline. In fact, the mortality improvements
were systematically lower at the beginning of the last century till the end of the second world war so as the
cohort effect. Therefore, in the following empirical analysis we restrict the mortality data historical data and do
include the recent period. More precisely, we use the period 1970− 2016. The age band will be fixed to 55− 89

to be in line with recent literature in mortality modeling and thus enables readers to compare the estimation
results to other papers more readily.

4.2 Real-World Data Application. In order to illustrate our model selection methodology, we consider the
mortality data from the Human Mortality Database (HMD)2 for the male population of France (FRA), England
& Wales (GBP) and the United States (USA). We have at our disposal, the exposures and deaths sample ranging
from 1970 to 2016, and for 35 ages, 55 to 89 inclusive.

(i) Model Selection. Before proceeding to the selection of the optimal neighborhoods using the criterion in Sub-
section 3.2, we explore the autocorrelation function of the random field X using the definition in Equation (3.7).
The aim is to reduce the dimensionality of the maximal neighborhoods V1 and V2 characterizing the two con-
ditional moments. Using larger neighborhoods will not only require heavy machine calculation and thus take
significant time to test all the candidate models but it is more likely to overfit the data. Therefore, we inspect
the autocorrelation function to determine potential maximal lags in years and ages. This is motivated by the
univariate time-series practice which advocates the examination of the so-called ACF and PACF plots3 in order
to identify the maximum order (lag) of the models, based on the characterization of the asymptotic behavior
of the autocorrelation. In most univariate models, the autocorrelation decreases with a given rate suggesting
the nullity beyond a certain lag. The latter is used as the maximum lag. Unfortunately, in our case, there is
no available asymptotic results for the behavior of the autocorrelation in 3.7, in particular when the underlying
random field is described using the AR-ARCH structure in Equation (2.7). Developing a specific test for this
particular model is challenging but goes beyond the scope of the current paper.
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Figure 3: Autocorrelation. Autocorrelation of the random field and its squared values given in absolute value
following the definition in Equation (3.7).

2The data was downloaded from www.mortality.org on December 2016.
3These stand, respectively, for the autocorrelation function and the partial autocorrelation function.
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Here, we will only use a visual inspection of the autocorrelation function to determine the maximal neighbor-
hoods V1 and V2 without any theoretical basis. If a test or the asymptotic behavior of the autocorrelation were
available, one has to plot the confidence regions with a given probability and thus select the candidate models
within these regions. Figure 3 shows the autocorrelation function (ACF) of the random field X for the three
populations (bottom panel) and the ACF of the squares of the random field (top panel). For each population,
the squares are much more autocorrelated than the initial improvement which is in line with the intuition behind
ARCH structure. The first orders autocorrelation, in year and ages, lie in the interval [0.4, 0.6] in the immediate
neighborhoods, and they gradually decline after some lags. These autocorrelations are sufficiently large to be
taken into account locally. In view of the amount of data at our disposal, we may think that the computation of
the autocorrelation for large lags are not consistent as few pairs (Xs, Xs−h) are available. To recap, these figures
are in supporting the initial hint on the autoregressive behavior of the mortality improvement rates together
with the inter-generational dependence. On the other hand, the three populations show substantial evidence of
ARCH effects given the structure of the conditional variance, as judged by the autocorrelations of the squared
process in the top panel of Figure 3. Indeed, the ARCH behavior is generally characterized by a little correlation
in the process itself and yet profound correlation in the squared process, see Figure 3.

For the purposes of the present article, and based on the considerations above, it suffices to consider a
narrow characterization of each maximal neighborhood. Thus, for convenience and sake of applicability, the
maximal neighborhoods used throughout the sequel are those displayed in Figure 2. Although this does not
capture the whole dependence as described in Figure 3, we will check later on this section if the selected model
captures conveniently the stylized behavior in each population’s mortality.
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Figure 4: Model Selection. Estimation of the parameters for the optimal model maximizing the penalized
QMLE. The grayed area corresponds to parameters that were not selected by the procedure and are excluded from
the neighborhoods.

In Figure 4, we report the results of the selection procedure. A set of 216 models were investigated and the
one maximizing the BIC criterion is selected. The parameters of the neighborhood with “—” do not belong to
the optimal neighborhood. The remaining parameters are estimated and their values are reported.

(ii) Diagnostic Checks. In order to assess the validity of the fitted models for these populations, we consider
some standard diagnostics checks. Formally, we investigate the distributional assumption on ξs under the correct
model. Therefore, given the estimation of the parameters (α̂0, (α̂v)v∈V2

, (β̂v)v∈V1
) for optimal neighborhoods V1
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and V2 in Figure 4, we derive the corresponding implied residuals given by ξ̂s = m̂s/σ̂s, where the conditional
mean and variance m̂s and σ̂s are given in Equation (2.5). These are assumed to behave as i.i.d. standard
normal random field. Figure 10 reports the QQ-plots of ξ̂s depicting the empirical quantiles against those of a
standard normal distribution. We notice that the plots are nearly straight lines except some outliers. However,
the sample size is 2030, so the outliers are a very small fraction of the data. Thus, a Gaussian distribution
would be suitable for the residuals ξ̂s. Moreover, the histograms of the residuals, shown in Figure 11, appear to
be normal with slight deviations at the tails for all populations. Further evidence may be obtained by applying
normality tests such as those in Razali and Wah (2011). These are some of the frequently used statistical test
for residual analysis. Failing these tests indicates that the residuals are not normal, which is an indication that
the selected model is not consistent with the data. Results are displayed in Table 2, which shows that for most
of the tests the residuals do validate the hypothesis of normality. Furthermore, we want to ensure that the
residuals do not exhibit any serial correlation which may violate the underlying assumption of independence.
In Figure 9, we plot the spatial autocorrelation of the standardized residuals, as implied by the selected model
using the definition in Equation (3.7). None of the plots provide any evidence of a persistent autocorrelation.
Indeed, regardless of the lag in the age and year, the autocorrelation does not exceed 0.18 and is equal or close
to 0 in most cases. This being said, we can conclude that the residuals for the three populations do satisfy the
assumptions. Hence, the whole information embedded in each mortality surface is perfectly captured by the
selected models and the remaining information consists only of white noise.

Table 2: Normality tests. We perform normality tests of the residuals ξ̂s using the Shapiro-Wilk (SW) test,
Anderson-Darling statistics (AD), the Cramér-von Mises test (CVM), Pearson-χ2 (PC) test and the Shapiro-
Francia (CF).

SW AD CVM PC SF

USA 0.3428 0.7048 0.7991 0.8523 0.3947
FRA 0.6171 0.5212 0.5438 0.6279 0.4322
GBP 0.6114 0.7626 0.8548 0.9309 0.4827

On the other hand, we further examine the fitting of the selected models using residual heatmaps. The
right panel of Figure 5 displays the residuals against the calendar year and age. In the left panel we also depict
the residuals of the Lee-Carter model fitted to the same data. These figures allow to compare the goodness-of-
fit behavior of the models. The plots of the Lee-Carter residuals indicate an obvious remaining structure not
captured by the model. In particular, we observe clusters of high and low residuals, which is a specific feature
that characterizes heteroscedastic fields. Indeed, this means that “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small changes” a well known effect in financial
literature also called volatility clustering. In actuarial literature, such an effect is referred to as a cohort effect
and represents the tendency of some group of cohorts to experience more rapid improvements mortality rates
than generations born either side of this period. However, this effect is captured by our model as we can see
from Figure 5, which is also intended to inspect if any pattern is still present and did not perfectly captured
by the selected models. Indeed, we observe that these residuals are reasonably randomly distributed along both
year and age dimensions. The heatmaps only show small traces of diagonal patterns around the cohorts born in
1920 and 1918 for the French population, but these are barely noticeable. These remaining isolated effects may
be related to anomalies in the datasets. In fact, Cairns et al. (2016) highlighted the presence of such anomalies
and errors in the data in period mortality tables in the form of isolated cohort effects for years of birth around
the two world wars, that is 1915, 1920, 1940 and 1945.

We can, thus, conclude that all the selected models succeed to capture all the main features present in the
initial mortality improvement rates.
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Figure 5: Standarized Residuals. Heatmaps for the standarized residuals produced by the Lee-Carter (left
panel) and the selected AR-ARCH model (right panel) for the French, England & Wales and United States male
populations.

(iii) Predictive Performance. The estimated models are used to predict future evolution of mortality. We look at
the mortality rates predicted by our model and the Lee-Carter model in Equation (2.1). Here, we only validate
the performance based on an out-of-sample analysis instead of an in-sample inspection. This is because the
benchmark model is over-parametrized and might undoubtedly outperform over the AR-ARCH.

In Figure 7, we display the 95% confidence intervals as well as the median prediction of the death rates
from the two models for selected ages 65, 75 and 85. First of all, we observe that the projected mortality rates
continue the historical downward trend for the considered populations. In comparison with the forecasts of the
Lee-Carter, we notice that the mortality rates predicted by our model show substantial differences at higher
ages, i.e. 75 and 85 for instance. This phenomenon is also observed by Doukhan et al. (2017) using a simple
variant of the model (2.6). For lower ages, at first sight, we see that the AR-ARCH model provides forecasts
that are very close to the benchmark, which suggests that there is no tendency to a general out-performance at
these age levels. This is due to the boundary condition which makes the bias on the projection of the mortality
rates made at lower ages spread over the diagonals. However, the impact of such a bias has to be minimized
as the cohort effect and cross-generation dependency is limited at lower ages. This is why the model produces
significantly different forecast at high ages. Moreover, we observe that the evolution of mortality rates exhibits
downward drifts comparable to the benchmark for all populations with the exception of the UK population where
our model anticipates a more drastic fall of mortality compared to the benchmark. Regarding the confidence
intervals, we can observe that those related to the benchmark are quite narrow. This may be explained by the
rigid structure of the Lee-Carter as it was widely discussed in the literature. For instance, in Lee (2000), the Lee-
Carter model is shown to generate overly narrow confidence intervals and generally result in an underestimation
of the risk of more extreme outcomes. On the other hand, the forecasting intervals produced by the AR-ARCH
are substantially wider than those of the Lee-Carter. The difference is even more pronounced for the higher
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Figure 6: Mortality Rates. Forecast mortality rates at age 65, 75 and 85 for the France, England & Wales and
US populations produced by both the selected AR-ARCH (black) model and Lee-Carter (red). The 95% prediction
intervals are also included.

Year

L
if
e

 E
x
p

e
c
ta

n
c
y

1
4

1
6

1
8

2
0

2
2

2000 2010 2020 2030 2040

a
 =

 6
5

2000 2010 2020 2030 2040

7
8

9
1

0
1

2

a
 =

 7
5

3
.0

3
.5

4
.0

4
.5

FRA

a
 =

 8
5

2000 2010 2020 2030 2040

GBP USA

 
AR/ARCH Lee−Carter

Figure 7: Life Expectancy. Forecast life expectancy at age 65, 75 and 85 for the France, England & Wales and
US populations produced by both the selected AR-ARCH (black) model and Lee-Carter (red). The 95% prediction
intervals are also included.
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ages, i.e. 75 and 85. This is mainly due, as discussed earlier, to the increasing uncertainty at higher ages, which
is not captured by the benchmark that assumes a constant variance regardless of the age. The AR-ARCH allows
to cope with this drawback as the variance of the mortality improvements is also modeled as an autoregressive
random field.

For a closer examination, we use the forecasts provided by the out-of-sample analysis and derive the cor-
responding remaining period life expectancies. Figure 7 shows 95% confidence intervals for life expectancies
forecasts for ages 65, 75 and 85. We also depict with solid lines the median life expectancies of these projections.
First, we can see that the AR-ARCH random field model produces forecasts at least equivalent to the LC at
lower ages. However, for higher ages, our model suggests a more increasing life expectancy compared to the
Lee-Carter. As soon as the confidence intervals are concerned, we remark that those related to the benchmark
are quite narrow and underestimate the evolution of life expectancy. Therefore, the AR-ARCH forecasts should
encompass a broader range of probable outcomes. The most striking feature of the AR-ARCH model is its ability
to predict very high life expectancies at higher ages. It is, then, important to consider biological reasonableness
of such a behavior, see Cairns et al. (2006). As noted by Liu and Li (2017), this may be interpreted in terms of
a limiting behavior of life expectancies. In other terms, the future life expectancy should not exceed a certain
range. However, there is no common census of experts on such a limit. Therefore, in order to validate the be-
havior of the two models we fit the models to data on the period ranging from 1970 to 1999 for each population,
and forecast the future improvement rates from year 2000 to 2016. Next, we recover the corresponding mortality
rates as well as the life expectancies.

Besides the visual inspection of the forecast, we introduce some quantitative metrics to assess the forecast
accuracy. In fact, as noted before, looking at Figure 7 may not reveal the actual performance over the whole
mortality surface. Therefore, we consider an aggregate representative metric that summarizes the performance
of each model. More precisely, we considered the mean absolute forecast error (MAFE) and root mean squared
forecast error (RMSFE). These criteria measured the closeness of the forecasts in comparison with the actual
values of the variable being forecast, regardless of the direction of forecast errors. These are defined as follows:

MAFE =
1

|J |
∑
s∈J

∣∣ms − m̂s

∣∣, and RMSFE =
1

|J |
∑
s∈J

√
(ms − m̂s)

2
,

where J the set used to assess the forecasts and |J | its size. Here, ms represents the actual holdout sample
and m̂s the forecasts, see Figure 12 in Subsection B.2. In addition, we are also considering a measurement
for the confidence intervals accuracy. As discussed above, we wanted to check if the outputs of the considered
model encompasses sufficiently large amount of observed quantities. Also, the model produced wide confidence
intervals and one could question the coherence of such a behavior. In fact, this can be a drawback if the forecast
interval is too wide compared to the realized scenarios. To do this, we introduce a scoring rule for evaluating the
pointwise interval forecast accuracy defined by Gneiting and Raftery (2007). Therefore, as the above analysis,
we consider the symmetric 95% prediction interval and we let m̂u

s and m̂l
s be, respectively, its lower and upper

bounds. Then, letting s = (a, t), we define the scoring metric for a given forecast horizon t and age a as follows

IS(a,t)(95%) =
(
m̂u
s − m̂l

s

)
+

2

5%

(
m̂l
s −ms

)
1ms<m̂l

s
+

2

5%
(m̂s −mu

s ) 1ms>m̂u
s
.

As noted by Shang (2012), the optimal interval score is achieved when the actual realized mortality rate lies
between predicted bounds at the 95% level, with the distance between the upper and lower bounds being minimal.
In order to summarize the above metric, defined per age and forecast horizon, we consider the average score
over the considered ages for each horizon. First, on Table 3, we compare the point forecast errors between the
benchmarks and the optimal AR-ARCH model discussed so far, both for mortality rates qa and life expectancy
forecasts. We can observe that the AR-ARCH model outperforms the other models in terms of point and forecast
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Table 3: Point Forecast Accuracy. Forecast errors between the LC, AR-ARCH and the CBD (see Cairns
et al. (2006)) two-factor model both for mortality rates and life expectancies over the period 2000-2016.

AR-ARCH LC CBD

USA
Mortality Rate RMSFE 1,51E-05 5,30E-05 3,68E-05

MAFE 2,47E-03 3,99E-03 4,14E-03

Life Expectancy RMSFE 1,13E-01 1,69E-01 2,72E-01
MAFE 2,75E-01 3,42E-01 4,34E-01

FRA
Mortality Rate RMSFE 1,07E-05 2,30E-05 5,04E-05

MAFE 2,19E-03 2,84E-03 4,49E-03

Life Expectancy RMSFE 1,66E-01 2,11E-01 4,01E-01
MAFE 3,28E-01 3,79E-01 5,24E-01

GBR
Mortality Rate RMSFE 4,11E-05 8,34E-05 8,01E-05

MAFE 4,36E-03 5,83E-03 5,72E-03

Life Expectancy RMSFE 7,29E-01 8,64E-01 8,70E-01
MAFE 7,03E-01 7,87E-01 7,89E-01

accuracy as measured by the MAFE and RMSFE. This corroborates the the above discussion and confirms that
the model can behave in a similar fashion, for some ages, but outperform in average both for life expectancy
and probability rates. When comparing the interval forecast accuracy, see Figure 8, we observe that our model
outperforms the others. In particular, the longer the forecast horizon, the larger the deviation between the AR-
ARCH and the benchmarks, see also Figures 13 and 12 in Subsection B.2. Moreover, we can remark that the
score remains stable over the forecast horizon unlike the others whose score diverge over the horizon. However,
for the French population, our model is very close to the Lee and Carter. This could mainly due to the fact that
the mortality dynamics for this particular population do not exhibit a clear cohort effect.

5 Concluding Remarks

In this paper, we addressed the problem of optimal and robust selection of neighborhoods for the random field
models introduced in Doukhan et al. (2017). The latter is a parsimonious alternative approach for modeling the
stochastic dynamics of mortality improvements. We have shown that a procedure based on the penalization of
the QMLE is asymptotically consistent, in the sense that it selects the true model (neighborhoods) as far as
the sample size goes infinity. This particular behavior depends on the form of the penalty and we show that a
classic BIC criterion fulfills the conditions that amend to the consistency.

This being shown, we explored numerically the procedure robustness and consistency for selecting the
true model. For this, we draw conclusions on the efficiency of the BIC-based penalization using Monte-Carlo
experiments. We implement the procedure in a simple case, where the maximal neighborhoods are predefined.
Next, we investigate the procedure using real-world datasets of mortality rates. As shown in Doukhan et al.
(2017) using even a simple model specification of the AR-ARCH structure, the selected model for the considered
population corroborate the conclusions in Doukhan et al. (2017). In fact, our model outperform the classic
factor-based approaches even those with a cohort component.

Finally, we should note that the AR-ARCH structure can be implemented to tackle the problems encountered
when using factor-based approaches in order to characterize the evolution of the residuals. Indeed, based on the
work of Mavros et al. (2016) which proposes a simple vector auto-regressive model (VAR) to model the residuals,
one can hence consider the AR-ARCH as a parsimonious and coherent alternative for residuals modeling. Indeed,
as noted throughout the paper, the latter does not impose any predefined structure on the dependency of the
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Figure 8: Confidence Interval Forecast Score. The mean interval score across ages for different forecasting
years for the LC, AR-ARCH and CBD two-factor models.

underlying random field and does tackle the problem of the heteroskedasticity. These were not considered by
the VAR model used in Mavros et al. (2016).

Other types of models may be considered and a reference for random processes is Doukhan (2018). First
we will work out the case of integer valued models of the GLM type as worked in Ferland et al. (2006), since
this naturally corresponds to count individuals of a certain age at a given date.
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Appendix A The gradient and the Hessian of the (quasi)-likelihood
function g

The derivatives of the function g needed for the optimization problem can be derived explicitly, after some
algebra, and are given as follows. These appear also in Equation (3.3). First, the different elements of the
gradient ∂g/∂θ are given by:
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Similarly, the elements of the Hessian matrix ∂2g/∂θ2 are given by:
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Appendix B Additional Figures

B.1 Diagnostic Checks of Models Residuals.
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Figure 9: Autocorrelation. Inspection of spatial autocorrelation of the residuals ξ̂s using the definition of
spatial autocorrelation function given in Equation (3.7).
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Figure 10: QQ-plots. Visual inspection of the normality of the residuals. Drawing of the QQ-plotsis is based
on 100 Monte-Carlo simulations and compares between the obtained empirical quantiles of ξs with the theoretical
quantiles of a centered Gaussian i.i.d. random field.
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Figure 11: Histograms of residuals. Comparison of the historical residuals densities (histograms) and a
standard Gaussian density (lines).
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B.2 Out-of-Sample Analysis and Predictive Performance.
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Figure 12: Life Expectancy. Forecast life expectancy over the period 2000-2030 at age 65, 75 and 85 for
the France, England & Wales and US populations produced by both the selected AR-ARCH (black) model and
Lee-Carter (red). The 95% prediction intervals are also included. The crude mortality over the observed period
is also presented (black circles).
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Figure 13: Mortality Rates. Forecast mortality rates over the period 2000-2030 at age 65, 75 and 85 for
the France, England & Wales and US populations produced by both the selected AR-ARCH (black) model and
Lee-Carter (red). The 95% prediction intervals are also included. The crude mortality over the observed period
is also presented (black circles).
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